Tyrosine-Kinase Inhibitors Therapies with Mainly Anti-Angiogenic Activity in Advanced Renal Cell Carcinoma: Value of PET/CT in Response Evaluation
Abstract
:1. Introduction
1.1. Background
1.2. Tyrosine Kinase Inhibitors (TKIs) Targeting Angiogenesis
1.3. The Need of Imaging Methods for Targeted Therapies
2. Imaging of Glucose Metabolism (18F-FDG PET/CT)
2.1. Qualitative Assessment
2.2. Quantitative Assessment
3. Other Radiotracers
3.1. Imaging of Proliferation and Growth
3.2. Imaging of Hypoxia
3.3. Imaging of Angiogenesis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Chow, W.H.; Devesa, S.S.; Warren, J.L.; Fraumeni, J.F. Rising incidence of renal cell cancer in the United States. JAMA 1999, 281, 1628–1631. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, T.; Klaassen, Z.; Goldberg, H.; Kulkarni, G.S.; Hamilton, R.J.; Fleshner, N.E. Metastatic renal cell carcinoma: Patterns and predictors of metastases-A contemporary population-based series. Urol. Oncol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Marech, I.; Gadaleta, C.D.; Ranieri, G. Possible Prognostic and Therapeutic Significance of c-Kit Expression, Mast Cell Count and Microvessel Density in Renal Cell Carcinoma. Int. J. Mol. Sci. 2014, 15, 13060–13076. [Google Scholar] [CrossRef] [PubMed]
- Vanharanta, S.; Shu, W.; Brenet, F.; Hakimi, A.A.; Heguy, A.; Viale, A.; Reuter, V.E.; Hsieh, J.J.; Scandura, J.M.; Massagué, J. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat. Med. 2013, 19, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Kaelin, W.G. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 2013, 23, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, H. The Roles of VHL-Dependent Ubiquitination in Signaling and Cancer. Front. Oncol. 2012, 2, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina Villaamil, V.; Aparicio Gallego, G.; Santamarina Cainzos, I.; Valladares-Ayerbes, M.; Anton Aparicio, L.M. Searching for Hif1-alpha interacting proteins in renal cell carcinoma. Clin. Transl. Oncol. 2012, 14, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Billemont, B.; Meric, J.B.; Izzedine, H.; Taillade, L.; Sultan-Amar, V.; Rixe, O. Angiogenesis and renal cell carcinoma. Bull. Du Cancer 2007, 94, 232–240. [Google Scholar]
- Li, J.; Gobe, G. Protein kinase C activation and its role in kidney disease. Nephrology 2006, 11, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Kashiwagi, S.; Jain, R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer 2006, 6, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guan, J.L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009, 28, 35–49. [Google Scholar] [CrossRef] [PubMed]
- McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Montalto, G.; Cervello, M.; Nicoletti, F.; Fagone, P.; Malaponte, G.; Mazzarino, M.C.; et al. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012, 3, 954–987. [Google Scholar] [CrossRef] [PubMed]
- Nissan, M.H.; Rosen, N.; Solit, D.B. ERK pathway inhibitors: How low should we go? Cancer Discov. 2013, 3, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Santulli, G.; Totary-Jain, H. Tailoring mTOR-based therapy: Molecular evidence and clinical challenges. Pharmacogenomics 2013, 14, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Dengina, N.; Tsimafeyeu, I.; Mitin, T. Current Role of Radiotherapy for Renal-Cell Carcinoma: Review. Clin. Genitourin. Cancer 2017, 15, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Gore, M.E.; Szczylik, C.; Porta, C.; Bracarda, S.; Bjarnason, G.A.; Oudard, S.; Hariharan, S.; Lee, S.H.; Haanen, J.; Castellano, D.; et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: An expanded-access trial. Lancet Oncol. 2009, 10, 757–763. [Google Scholar] [CrossRef]
- Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.B.; et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 2003, 9, 327–337. [Google Scholar] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, G.; Mammi, M.; Di Paola, D.E.; Russo, E.; Gallelli, L.; Citraro, R.; Gadaleta, C.D.; Marech, I.; Ammendola, M.; De Sarro, G.; et al. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: A new treatment for metastatic soft tissue sarcoma. Crit. Rev. Oncol. Hematol. 2014, 89, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Davis, I.D.; Mardiak, J.; Szczylik, C.; Lee, E.; Wagstaff, J.; Barrios, C.H.; Salman, P.; Gladkov, O.A.; Kavina, A.; et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. J. Clin. Oncol. 2010, 28, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Herbst, R.S.; Liu, G.; Park, J.W.; Kies, M.S.; Steinfeldt, H.M.; Pithavala, Y.K.; Reich, S.D.; Freddo, J.L.; Wilding, G. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: Pharmacokinetic and clinical results. J. Clin. Oncol. 2005, 23, 5474–5483. [Google Scholar] [CrossRef] [PubMed]
- Marech, I. Highlights: Recent Clinical Applications of Novel Molecular Targeting Agents in Cancer. J. Rashid Latif Med. Coll. 2013, 2, 1–7. [Google Scholar]
- Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial. Lancet 2011, 378, 1931–1939. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; Tomczak, P.; Hutson, T.E.; Michaelson, M.D.; Negrier, S.; Oudard, S.; Gore, M.E.; Tarazi, J.; Hariharan, S.; et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013, 14, 552–562. [Google Scholar] [CrossRef]
- Bex, A. New options for second-line therapy of advanced renal cancer. Lancet Oncol. 2013, 14, 450–451. [Google Scholar] [CrossRef]
- Hart, C.D.; De Boer, R.H. Profile of cabozantinib and its potential in the treatment of advanced medullary thyroid cancer. Oncol. Targets Ther. 2013, 6, 1–7. [Google Scholar]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.L.; Peltola, K.; et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Tannir, N.M.; Mainwaring, P.N.; Rini, B.I.; Hammers, H.J.; Donskov, F.; Roth, B.J.; Peltola, K.; et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): Final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 917–927. [Google Scholar] [CrossRef]
- Lee, S.H.; Lopes de Menezes, D.; Vora, J.; Harris, A.; Ye, H.; Nordahl, L.; Garrett, E.; Samara, E.; Aukerman, S.L.; Gelb, A.B.; et al. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin. Cancer Res. 2005, 11, 3633–3641. [Google Scholar] [CrossRef] [PubMed]
- Sivanand, S.; Pena-Llopis, S.; Zhao, H.; Kucejova, B.; Spence, P.; Pavia-Jimenez, A.; Yamasaki, T.; McBridge, D.J.; Gille, J.; Wolff, N.C.; et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci. Transl. Med. 2012, 4, 137ra175. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Porta, C.; Vogelzang, N.J.; Sternberg, C.N.; Szczylik, C.; Zolnierek, J.; Kollmannsberger, C.; Rha, S.Y.; Bjarnason, G.A.; et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: An open-label, randomised phase 3 trial. Lancet Oncol. 2014, 15, 286–296. [Google Scholar] [CrossRef]
- Eskens, F.A.; de Jonge, M.J.; Bhargava, P.; Isoe, T.; Cotreau, M.M.; Esteves, B.; Hayashi, K.; Burger, H.; Thomeer, M.; Van Dorm, J.; et al. Biologic and clinical activity of tivozanib (AV-951, KRN-951), a selective inhibitor of VEGF receptor-1, -2, and -3 tyrosine kinases, in a 4-week-on, 2-week-off schedule in patients with advanced solid tumors. Clin. Cancer Res. 2011, 17, 7156–7163. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Nosov, D.; Eisen, T.; Bondarenko, I.; Lesovoy, V.; Lipatov, O.; Tomczak, P.; Lyulko, O.; Alyasova, A.; Harza, M.; et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: Results from a phase III trial. J. Clin. Oncol. 2013, 31, 3791–3799. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Kodama, K.; Takase, K.; Sugi, N.H.; Yamamoto, Y.; Iwata, M.; Tsuruoka, A. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013, 340, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Glen, H.; Michaelson, M.D.; Molina, A.; Eisen, T.; Jassem, J.; Zolnierek, J.; Maroto, JP.; Mellado, B.; et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: A randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015, 16, 1473–1482. [Google Scholar] [CrossRef]
- Backer, M.V.; Backer, J.M. Imaging Key Biomarkers of Tumor Angiogenesis. Theranostics 2012, 2, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.S.; Sharma, R.; Tyagi, T. VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: Present and future. Curr. Cancer Drug Targets 2011, 11, 624–653. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D. Novel angiogenesis inhibitors: Addressing the issue of redundancy in the angiogenic signaling pathway. Cancer Treat. Rev. 2011, 37, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Morland, C.; Rudman, S.; Nathan, P.; Mallett, S.; Montana, G.; Cook, G.; Vicky, G. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated 18F–Fluorodeoxyglucose (18F–FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study. BMC Cancer 2017, 17, 392. [Google Scholar] [CrossRef] [PubMed]
- Vasudev, N.S.; Goh, V.; Juttla, J.K.; Thompson, V.L.; Larkin, J.M.G.; Gore, M.; et al. Changes in tumour vessel density upon treatment with anti-angiogenic agents: Relationship with response and resistance to therapy. Br. J. Cancer 2013, 109, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Gofrit, O.N.; Orevi, M. Diagnostic Challenges of Kidney Cancer: A Systematic Review of the Role of Positron Emission Tomography-Computerized Tomography. J. Urol. 2016, 196, 648–657. [Google Scholar] [CrossRef] [PubMed]
- van der Veldt, A.A.; Meijerink, M.R.; van den Eertwegh, A.J.; Bex, A.; De Gast, G.; Haanen, J.B.; Boven, E.; et al. Sunitinib for treatment of advanced renal cell cancer: primary tumor response. Clin. Cancer Res. 2008, 14, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Porta, C.; Schmidinger, M.; Algaba, F.; Patard, J.J.; Khoo, V.; Eisen, T.; Horwich, A. Renal cell carcinoma: ESMO Clinical Practice Guide- lines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 23 (Suppl 7), vii65–vii71. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. The Place of FDG PeT/CT in Renal Cell Carcinoma: Value and Limitations. Front. Oncol. 2016, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Delbeke, D.; Martin, W.H. Positron emission tomography imaging in oncology. Radiol. Clin. N. Am. 2001, 39, 883–917. [Google Scholar] [CrossRef]
- Altini, C.; Niccoli Asabella, A.; Di Palo, A.; Fanelli, M.; Ferrari, C.; Moschetta, M.; Rubini, G. 18F-FDG PET/CT role in staging of gastric carcinomas: Comparison with conventional contrast enhancement computed tomography. Medicine (Baltimore) 2015, 94, e864. [Google Scholar] [CrossRef] [PubMed]
- Niccoli-Asabella, A.; Notaristefano, A.; Rubini, D.; Altini, C.; Ferrari, C.; Merenda, N.; Fanelli, M.; Rubini, G. 18F-FDG PET/CT in suspected recurrences of epithelial malignant pleural mesothelioma inasbestos-fibers-exposed patients (comparison to standard diagnostic follow-up). Clin. Imaging 2013, 37, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Parghane, R.V.; Sood, A.; Vaiphei, K.; Aggarwal, A.N.; Mittal, B.R. Presentation of Unusual Tracheal Metastasis on Fluorine-18 Fuorodeoxyglucose Positron Emission Tomography/Computed Tomography after 9 years in Postnephrectomy Patient of Renal Cell Carcinoma: A Case Report and a Review of Literature. World J. Nucl. Med. 2017, 16, 240–242. [Google Scholar] [PubMed]
- Kayani, I.; Avril, N.; Bomanji, J.; Chowdhury, S.; Rockall, A.; Sahdev, A.; Nathan, P.; Wilson, P.; Shamash, J.; Sharoe, K.; Lim, L.; et al. Sequential FDG-PET/CT as a biomarker of response to sunitinib in metastatic clear cell renal cancer. Clin. Cancer Res. 2011, 17, 6021–6028. [Google Scholar] [CrossRef] [PubMed]
- Alongi, P.; Caobelli, F.; Gentile, R.; Stefano, A.; Russo, G.; Albano, D.; Baldasri, S.; Gilardi, M.C.; Midiri, M. Recurrent renal cell carcinoma: Clinical and prognostic value of FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Yamamoto, S.; Fukushima, K.; Minamimoto, R.; Kamai, T.; Jadvar, H. Update on advances in molecular PET in urological oncology. Jpn. J. Radiol. 2016, 34, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.W.; Holm, S.; Lund, E.L.; Højgaard, L.; Kristjansen, P.E. Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro. Neoplasia 2001, 3, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends Mol. Med. 2002, 8, S62–S67. [Google Scholar] [CrossRef]
- Airley, R.E.; Mobasheri, A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: Novel pathways and targets for anticancer therapeutics. Chemotherapy 2007, 53, 233–256. [Google Scholar] [CrossRef] [PubMed]
- Revheim, M.E.; Winge-Main, A.K.; Hagen, G.; Fjeld, J.G.; Fossa, S.D.; Lilleby, W. Combined positron emission tomography/computed tomography in sunitinib therapy assessment of patients with metastatic renal cell carcinoma. Clin. Oncol. 2011, 23, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Ueno, D.; Yao, M.; Tateishi, U.; Minamimoto, R.; Makiyama, K.; Hayashi, N.; Sano, F.; Murakami, T.; Kishida, T.; Miura, T.; et al. Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer 2012, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Minamimoto, R.; Nakaigawa, N.; Tateishi, U.; Suzuki, A.; Shizukuishi, K.; Kishida, T.; Miura, T.; Makiyama, K.; Yao, M.; Kubota, Y.; et al. Evaluation of response to Multikinase inhibitor in metastatic renal cell carcinoma by FDG PET/contrast-enhanced CT. Clin. Nucl. Med. 2010, 35, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Kamai, T.; Abe, H.; Sakamoto, S.; Kitajima, K.; Nishihara, D.; Hideo, Y.; Tsunehito, K.; Hironori, B.; Masahiro, Y.; et al. Clinically significant association between the maximum standardized uptake value on 18F-FDG PET and expression of phosphorylated Akt and S6 kinase for prediction of the biological characteristics of renal cell cancer. BMC Cancer 2015, 15, 1097. [Google Scholar] [CrossRef] [PubMed]
- Caldarella, C.; Muoio, B.; Isgrò, M.A.; Porfiri, E.; Treglia, G.; Giovanella, L. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to tyrosine-kinase inhibitors in patients with metastatic primary renal cell carcinoma. Radiol. Oncol. 2014, 48, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Vercellino, L.; Bousquet, G.; Baillet, G.; Barré, E.; Mathieu, O.; Just, P.A.; Desgrandchamps, F.; Misset, J.L.; Hindiè, E.; Moretti, J.L.; et al. 18F-FDG PET/CT imaging for an early assessment of response to sunitinib in metastatic renal carcinoma: Preliminary study. Cancer Biother. Radiopharm. 2009, 24, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Horn, K.P.; Yap, J.T.; Agarwal, N.; Morton, K.A.; Kadrmas, D.J.; Beardmore, B.; butterfield, R.I.; Boucher, K.; Hoffman, J.M.; et al. FDG and FLT-PET for early measurement of response to 37.5 mg daily sunitinib therapy in metastatic renal cell carcinoma. Cancer Imaging 2015, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Lyrdal, D.; Boijsen, M.; Suurküla, M.; Lundstam, S.; Stierner, U. Evaluation of sorafenib treatment in metastatic renal cell carcinoma with 2-fluoro-2-deoxyglucose positron emission tomography and computed tomography. Nucl. Med. Commun. 2009, 30, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Kakizoe, M.; Yao, M.; Tateishi, U.; Minamimoto, R.; Ueno, D.; Namura, K.; Makiyama, K.; Hayashi, N.; Sano, F.; Kishida, T.; et al. The early response of renal cell carcinoma to tyrosine kinase inhibitors evaluated by FDG PET/CT was not influenced by metastatic organ. BMC Cancer 2014, 14, 390. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.; Niccoli Asabella, A.; Merenda, N.; Altini, C.; Fanelli, M.; Muggeo, P.; De Leonardis, F.; Perillo, T.; Santoro, N.; Rubini, G.; et al. Pediatric Hodgkin Lymphoma: Predictive value of interim 18F-FDG PET/CT in therapy response assessment. Medicine 2017, 96, e5973. [Google Scholar] [CrossRef] [PubMed]
- Altini, C.; Niccoli Asabella, A.; De Luca, R.; Fanelli, M.; Caliandro, C.; Quartuccio, N.; Rubini, D.; Cistaro, A.; Montemurro, S.; Rubini, G.; et al. Comparison of (18)F-FDG PET/CT methods of analysis for predicting response to neoadjuvant chemoradiation therapy in patients with locally advanced low rectal cancer. Abdom. Imaging 2015, 40, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Khandani, A.H.; Cowey, C.L.; Moore, D.T.; Gohil, H.; Rathmell, W.K. Primary renal cell carcinoma: Relationship between 18F-FDG uptake and response to neoadjuvant sorafenib. Nucl. Med. Commun. 2012, 33, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Namura, K.; Minamimoto, R.; Yao, M.; Makiyama, K.; Murakami, T.; Sano, F.; Hayashi, N.; Tateishi, U.; Ishigaki, H.; Kishida, T.; et al. Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F–FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: A preliminary report. BMC Cancer 2010, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Larson, S.M.; Erdi, Y.; Akhurst, T.; Mazumdar, M.; Macapinlac, H.A.; Finn, R.D.; Casilla, C.; Fazzari, M.; Srivastava, N.; Yeung, H.W.; et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging: The visual response score and the change in total lesion glycolysis. Clin. Positron Imaging 1999, 2, 159–171. [Google Scholar] [CrossRef]
- Chen, H.H.; Chiu, N.T.; Su, W.C.; Guo, H.R.; Lee, B.F. Prognostic Value of Whole-Body Total lesion glycolysis at Pretreatment FDg PeT/cT in non–small cell lung cancer. Radiology 2012, 264, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Roedl, J.B.; Colen, R.R.; Holalkere, N.S.; Fischman, A.J.; Choi, N.C.; Blake, M.A. Adenocarcinomas of the esophagus: Response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT comparison to histopathologic and clinical response evaluation. Radiother. Oncol. 2008, 89, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Veit-Haibach, P.; Schaefer, N.G.; Steinert, H.C.; Soyka, J.D.; Seifert, B.; Stahel, R.A. Combined FDG-PET/CT in response evaluation of malignant pleural mesothelioma. Lung Cancer 2010, 67, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Benz, M.R.; Allen-Auerbach, M.S.; Eilber, F.C.; Chen, H.J.; Dry, S.; Phelps, M.E.; Czernin, J.; Weber, W.A. Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J. Nucl. Med. 2008, 49, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Paeng, J.C.; Kwak, C.; Park, Y.H.; Kim, T.M.; Lee, S.; Chung, J.; Kim, E.; Lee, S.; et al. Prognostic implication of extrarenal metabolic tumor burden in advanced renal cell carcinoma treated with targeted therapy after nephrectomy. Ann. Nucl. Med. 2013, 27, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Farnebo, J.; Grybäck, P.; Harmenberg, U.; Laurell, A.; Wersäll, P.; Blomqvist, L.K.; Ullen, A.; Sandstrom, P. Volumetric FDG-PET predicts over- all and progression-free survival after 14 days of targeted therapy in metastatic renal cell carcinoma. BMC Cancer 2014, 14, 408. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Cho, A.; Yun, M.; Choi, Y.D.; Rha, S.Y.; Kang, W.J. Prognostic Value of Pretreatment Metabolic Tumor Volume and Total Lesion Glycolysis Using 18F-FDG PET/CT in Patients With Metastatic Renal Cell Carcinoma Treated With Anti-Vascular Endothelial Growth Factor-Targeted Agents. Clin. Nucl. Med. 2017, 42, e235–e241. [Google Scholar] [CrossRef] [PubMed]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50, 1220S–1250S. [Google Scholar] [CrossRef] [PubMed]
- Toyohara, J.; Fujibayashi, Y. Trends in nucleoside tracers for PET imaging of cell proliferation. Nucl. Med. Biol. 2003, 30, 681. [Google Scholar] [CrossRef]
- Liu, G.; Jeraj, R.; Vanderhoek, M.; Perlman, S.; Kolesar, J.; Harrison, M.; Simoncic, U.; Eickoff, J.; Carmichael, L.; Chao, B.; et al. Pharmacodynamic study using FLT PET/CT in patients with renal cell cancer and other solid malignancies treated with sunitinib malate. Clin. Cancer Res. 2011, 17, 7634–7644. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.T.; Spaeth, N.; Biollaz, G.; Pahnke, J.; Alessi, P.; Trachsel, E.; Treyer, V.; Weber, B.; Neri, D.; Buck, A. Uptake of 18F-Fluorocholine, 18F-FET, and 18F-FDG in C6 Gliomas and Correlation with 131I-SIP(L19), a Marker of Angiogenesis. J. Nucl. Med. 2007, 48, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alcoceba, R.; Saniger, L.; Campos, J.; Nunez, M.C.; Khaless, F.; Gallo, M.A.; Espinosa, A.; Lacal, J.C.; et al. Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene 1997, 15, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Katz-Brull, R.; Degani, H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero transmethod. Anticancer Res 1996, 16, 1375–1380. [Google Scholar] [PubMed]
- DeGrado, T.R.; Baldwin, S.W.; Wang, S.; Orr, M.D.; Liao, R.P.; Friedman, H.S.; Reiman, R.; Price, D.T.; Coleman, R.E.; et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J. Nucl. Med. 2001, 42, 1805–1814. [Google Scholar] [PubMed]
- Al-Saeedi, F.; Welch, A.E.; Smith, T.A. [methyl-3H]Choline incorporation into MCF7 tumour cells: Correlation with proliferation. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Middendorp, M.; Maute, L.; Sauter, B.; Vogl, T.J.; Grünwald, F. Initial experience with 18F-fluoroethylcholine PET/CT in staging and monitoring therapy response of advanced renal cell carcinoma. Ann. Nucl. Med. 2010, 24, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Oyama, N.; Takahara, N.; Hasegawa, Y.; Tanase, K.; Miwa, Y.; Akino, H.; Okazawa, H.; Kudo, T.; Fujibayashi, Y.; Yokoyama, O.; et al. Assessment of therapeutic effect of sunitinib by 11C-Acetate PET compared with FDG PET imaging in a patient with metastatic renal cell carcinoma. Nucl. Med. Mol. Imaging 2011, 45, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Mounier, C.; Bouraoui, L.; Rassart, E. Lipogenesis in cancer progression (review). Int. J. Oncol. 2014, 45, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Shreve, P.; Chiao, P.C.; Humes, H.D.; Schwaiger, M.; Gross, M.D. Carbon-11-acetate PET imaging in renal disease. J. Nucl. Med. 1995, 36, 1595–1601. [Google Scholar] [PubMed]
- Murakami, M.; Zhao, S.; Zhao, Y.; Chowdhury, N.F.; Yu, W.; Nishjima, K.; Takiguchi, M.; Tamaki, N.; Kuge, Y.; et al. Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int. J. Oncol. 2012, 41, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Lawrentschuk, N.; Poon, A.M.; Foo, S.S.; Johns Putra, L.; Murone, C.; Davis, I.D.; Bolton, D.M.; Scott, A.; et al. Assessing regional hypoxia in human renal tumours using F-fluoromisonidazole positron emission tomography. BJU Int. 2005, 96, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Hugonnet, F.; Fournier, L.; Medioni, J.; Smadja, C.; Hindié, E.; Huchet, V.; Itti, E.; Cuenod, C.A.; Chatellier, G.; Oudard, S.; Faraggi, M.; et al. Hypoxia in Renal Cancer Multicenter Group: Metastatic renal cell carcinoma: Relationship between initial metastasis hypoxia, change after 1 month’s sunitinib, and therapeutic response: An 18F-fluoromisonidazole PET/CT study. J. Nucl. Med. 2011, 201, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Dearling, J.L.J.; Packard, A.B. Some thoughts on the mechanism of cellular trapping of Cu(II)-ATSM. Nucl. Med. Biol. 2010, 37, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, M.; Rajerison, H.; Guerard, F.; Mougin-Degraef, M.; Barbet, J.; Michel, N.; Cherel, M.; Faivre-Chauvet, A. Contribution of [64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-MISO—A selected review. Nucl. Med. Rev. Cent. East. Eur. 2011, 14, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Chen, K.; Mohamedali, K.A.; Cao, Q.; Gambhir, S.S.; Rosenblum, M.G.; Chen, X. PET of vascular endothelial growth factor receptor expression. J. Nucl. Med. 2006, 47, 2048–2056. [Google Scholar] [PubMed]
- Wang, H.; Cai, W.; Chen, K.; Li, Z.B.; Kashefi, A.; He, L.; Chen, X. A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Oosting, S.F.; Brouwers, A.H.; van Es, S.C.; Nagengast, W.B.; Oude Munnink, T.H.; Lub-de Hooge, M.N.; Hollema, H.; de Jong, J.R.; de Jong, I.J.; de Haas, S.; et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 2015, 56, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Kuchar, M.; Oliveira, M.C.; Gano, L.; Santos, I.; Kniess, T. Radioiodinated sunitinib as a potential radiotracer for imaging angiogenesis-radiosynthesis and first radiopharmacological evaluation of 5-125I-iodo-sunitinib. Bioorg. Med. Chem. Lett. 2012, 22, 2850–2855. [Google Scholar] [CrossRef] [PubMed]
Drug | Mechanism of Action | Pivotal Study | Comparator | Line of Treatment | Study Design | EMA Approval |
---|---|---|---|---|---|---|
Sunitinib | VEGFR-1/2/3, PDGFRα/β, c-KitR, FLT-3, CSF1-R and RET-R inhibitor | Motzer RJ, NEJM 2007 | IFN-α | First-line in MSKCC good/int/high risk patients and after first-line treatment with cytokines | Phase III | Yes |
Gore ME, Lancet Oncol 2009 | ||||||
Pazopanib | VEGFR-1/2/3, PDGFRα/β and c-KitR inhibitor | Sternberg CN, JCO 2010 | Placebo | First-line in MSKCC good/int risk patients and after first-line treatment with cytokines | Phase III | Yes |
Sternberg CN, Eur J Cancer 2013 | ||||||
Sorafenib | BRAF, VEGFR-2, PDGFR, FLT-3 and c-KitR inhibitor | TARGET study | Placebo | First-line in MSKCC good/int risk patients and after first-line treatment with cytokines or VEGF/VEGFR inhibitors | Phase III | Yes |
Escudier B, NEJM 2007 | ||||||
INTORSECT study | ||||||
Hutson TE, JCO 2014 | ||||||
Axitinib | VEGFR-1/2/3 inhibitor | AXIS study | Sorafenib | After first-line treatment with cytokines or VEGF/VEGFR inhibitors | Phase III | Yes |
RINI B, Lancet 2011 | ||||||
Cabozantinib | VEGFR-1/2/3, MET, cKitR, FLT-3 and AXL inhibitor | METEOR study | Everolimus | After first-line treatment with VEGF/VEGFR inhibitors | Phase III | Yes |
Choueri NEJM 2015 | ||||||
Dovitinib | VEGFR-1/2/3, FGFR and PDGFR inhibitor | GOLD study | Sorafenib | - | Phase III | No |
Motzer RJ, Lancet Oncol 2014 | ||||||
Tivozanib | VEGFR-1/2/3 inhibitor | TIVO-1 study | Sorafenib | - | Phase III | No |
Motzer RJ, JCO 2013 | ||||||
Lenvatinib | VEGFR-1/3, FGFR1–4, PDGFRα, RET-R and c-KitR inhibitor | Study 205 | Everolimus | - | Phase II | Yes |
Motzer RJ, Lancet Oncol 2015 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranieri, G.; Marech, I.; Niccoli Asabella, A.; Di Palo, A.; Porcelli, M.; Lavelli, V.; Rubini, G.; Ferrari, C.; Gadaleta, C.D. Tyrosine-Kinase Inhibitors Therapies with Mainly Anti-Angiogenic Activity in Advanced Renal Cell Carcinoma: Value of PET/CT in Response Evaluation. Int. J. Mol. Sci. 2017, 18, 1937. https://doi.org/10.3390/ijms18091937
Ranieri G, Marech I, Niccoli Asabella A, Di Palo A, Porcelli M, Lavelli V, Rubini G, Ferrari C, Gadaleta CD. Tyrosine-Kinase Inhibitors Therapies with Mainly Anti-Angiogenic Activity in Advanced Renal Cell Carcinoma: Value of PET/CT in Response Evaluation. International Journal of Molecular Sciences. 2017; 18(9):1937. https://doi.org/10.3390/ijms18091937
Chicago/Turabian StyleRanieri, Girolamo, Ilaria Marech, Artor Niccoli Asabella, Alessandra Di Palo, Mariangela Porcelli, Valentina Lavelli, Giuseppe Rubini, Cristina Ferrari, and Cosmo Damiano Gadaleta. 2017. "Tyrosine-Kinase Inhibitors Therapies with Mainly Anti-Angiogenic Activity in Advanced Renal Cell Carcinoma: Value of PET/CT in Response Evaluation" International Journal of Molecular Sciences 18, no. 9: 1937. https://doi.org/10.3390/ijms18091937
APA StyleRanieri, G., Marech, I., Niccoli Asabella, A., Di Palo, A., Porcelli, M., Lavelli, V., Rubini, G., Ferrari, C., & Gadaleta, C. D. (2017). Tyrosine-Kinase Inhibitors Therapies with Mainly Anti-Angiogenic Activity in Advanced Renal Cell Carcinoma: Value of PET/CT in Response Evaluation. International Journal of Molecular Sciences, 18(9), 1937. https://doi.org/10.3390/ijms18091937