Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods
Abstract
:1. Introduction
2. Active and Bioactive Packaging
3. Probiotics in Bioactive Edible Films and Coatings
4. Materials for Edible Films and Coatings for Probiotic Applications
- i
- Cellulose is the major cell wall component in plants. Cellulose derivatives such as methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) are commonly found in the formulation of edible coatings. Films and coatings based on cellulose and its derivatives are transparent, flexible, odourless and tasteless. MC is more resistant to water, however, the water vapor permeability is quite high. Both MC and HPMC have the ability to form gelatinous coatings after thermal processes, which give the opportunity to be used to prevent oil absorption in frying foodstuff [31]. Regarding their use as probiotic carriers in edible films and coatings, several studies are available [37,38,39,40].
- ii
- Chitosan is mainly obtained from the exoskeleton of crustaceans and fungal cell walls. Chitosan is the N-deacetylated derivative of chitin [41]. Chitosan degree of deacetylation, has been reported as an important parameter that determines many of its physicochemical and biological properties, such as crystallinity, hydrophobicity and degradation. The degree of deacetylation of chitosan is controlled by a relatively aggressive alkaline hydrolysis process applied to chitin, with a combination of exposure time and temperature [42,43]. The molecular weight of chitosan is depended on the initial source material (shrimp, crab, fungi) and can be decreased with processing to increase the deacetylation. Molecular weight has been proven to be an important factor in chitosan properties such as crystallinity, degradation, tensile strength and moisture content [43]. Mechanical and barrier properties of chitosan films can be controlled by selecting a suitable solvent system, the appropriate molecular weight of chitosan as well as the addition of plasticizers [44,45]. Chitosan as a coating material has excellent film-forming abilities, broad antimicrobial activity and compatibility with other substances such as vitamins, minerals and antimicrobial agents. This material receives particular interest for the targeted release of probiotics because of its high compatibility with living cells [46]. Furthermore, chitosan has been studied for application as a coating due to its antifungal and antibacterial abilities [47,48,49]. Chitosan can form semi-permeable coatings, which can modify the internal atmosphere when applied to fruits and vegetables. The main disadvantage of chitosan films is their low moisture barrier, which makes their broad use in food applications difficult [35].
- iii
- One of the most commonly used polysaccharides is alginate. Alginate is a generic term for the salts of alginic acid. Alginates possess good film-forming properties and produce transparent and water-soluble films [50]. It has been used mainly for meat products, since it delays dehydration and eliminates lipid oxidation [35,51].
- iv
- Starch and its derivatives have been widely used as food hydrocolloids, because they are inexpensive, abundant, biodegradable and easy to use. Coatings made from starch are usually transparent, odourless, tasteless and colourless with low permeability to oxygen at low-to-intermediate relative humidity [52]. Starch films have excellent barrier properties to O2 and CO2, but not to water. Starch granules contain the macromolecules amylose and amylopectin, which can form solutions and gels. Amylose is a sparsely branched molecule mainly based on α(1–4) bonds with a molecular weight of 105–106 anhydroglucose units [53]. During gel formation amylose and amylopectin form inter- and intra-molecular crosslinks so that they produce a macromolecular network, and subsequently the film after water evaporation. Physical crosslinks in the macromolecular network of starch are formed mainly by microcrystalline domains of amylose. The more these domains exist in the starch-based film, the higher the tensile strength of the films [54]. A high amylose content in starch is responsible for the production of strong and flexible films [55]. Chemical, physical and functional properties of edible films and coatings depend on the amylose/amylopectin ratio [53]. Degree of crystallinity of starch films increases by increasing the amylose content of starch [54]. Starches with high-amylose content have been used to extend the shelf life of deep fried foods [56]. Additionally to the usual starch films, modified starch films have started to be investigated because they possess good solubility and improved mechanical properties. Starches such as cross-linked, substituted, oxidized and acid-hydrolyzed are being produced as a result of chemical modifications. These chemical modifications have been examined regarding their effect on the film characteristics such as their mechanical, barrier and thermal properties. More specifically, starches with increased numbers of cross-linkages exhibit improved water absorption and maintain viscosity and texture. Substitution results in increased water affinity, lower starch gelatinization temperature, better hydration, and less firm gels. Oxidized starches are applied to deep fried food as coatings to improve their eating quality by retaining crispiness. These starches usually are corn, potato, cassava and bean starches. Acid-modified starches, are usually applied to jelly candies, processed meats and to extruded cereals and snacks. Acid hydrolysis leads to decreased swelling power, increased solubility and more options regarding the gelatinization temperature compared to native starches [56].
- v
- Pectins are structural components of plant cell walls. These materials are a common type of gelling agents, as they are widely used in jams, jellies and sweets, apart from the production of edible films. Several studies have investigated the potential of pectin as a material in edible films [57,58].
- vi
- Gelatin is obtained by controlled hydrolysis of collagen at high temperatures in the presence of water and it is widely found in nature. Antioxidant and antimicrobial activities are associated with gelatin [59]. In general, gelatin films and coatings have poor water vapor barrier properties [35] and their application includes meats, since they reduce oxygen, oil and moisture transport [31]. López de Lacey et al. [60] and Soukoulis et al. [61], have investigated the properties of gelatin edible films incorporated with probiotics.
5. Microencapsulation Techniques
6. Effects of Edible Films on Probiotic Viability
7. Prebiotics to Enhance Probiotic Viability
8. Sensory Assessment
9. Regulatory Issues
10. Future Trends
Author Contributions
Conflicts of Interest
Abbreviations
FAO | Food and Agriculture Organization of the United Nations |
WHO | World Health Organization |
MC | Methylcellulose |
HPMC | Hydroxypropyl methylcellulose |
CMC | Carboxymethyl cellulose |
GI | Gastrointestinal |
WPI | Whey Protein Isolate |
GA | Gum Arabic |
EFSA | European Food Safety Authority |
EC | European Commission |
EU | European Union |
References
- Araya, M.; Morelli, L.; Reid, G.; Sanders, M.E.; Stanton, C.; Pineiro, M. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; World Health Organization, Food and Agriculture Organization of the United Nations: London, ON, Canada, 2002. [Google Scholar]
- Ogier, J.C.; Serror, P. Safety assessment of dairy microorganisms: The Enterococcus genus. Int. J. Food Microbiol. 2008, 126, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; von Wright, A.; Morelli, L.; Marteau, P.; Brassart, D.; de Vos, W.M.; Fonden, R.; Saxelin, M.; Collins, K.; Mogensen, G.; et al. Demonstration of safety of probiotics—A review. Int. J. Food Microbiol. 1998, 44, 93–106. [Google Scholar] [CrossRef]
- De Prisco, A.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 2016, 48, 27–39. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Dueñas, M.T.; Lopez, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.G.; Lain, J.E.; del Valle, M.J.; Vannini, V.; van Sinderen, D.; Taranto, M.P.; de Valdez, G.F.; de Giori, G.S.; Sesma, F. B-Group vitamin production by lactic acid bacteria—Current knowledge and potential applications. J. Appl. Microbiol. 2011, 111, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Μ.; Hashiguchi, M.; Shiga, T.; Tamura, H.; Mochizuki, M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS ONE 2015, 10, e0139795. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.A.; Chang, H.C. Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT-Food Sci. Technol. 2015, 62, 210–217. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, F.; Wang, X.; Sui, Y.; Yang, L.; Wang, J. Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. J. Dairy Sci. 2013, 96, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Priebe, M.G.; Zhong, Y.; Huang, C.; Harmsen, H.J.M. Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. J. Appl. Microbiol. 2007, 104, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Le Leu, R.K.; Hu, Y.; Brown, I.L.; Woodman, R.J.; Young, G.P. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 2010, 31, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Rafter, J.; Bennett, M.; Caderni, G.; Clune, Y.; Hughes, R. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr. 2007, 85, 488–496. [Google Scholar] [PubMed]
- Molina, M.A.; Díaz, A.M.; Hesse, C.; Ginter, W.; Gentilini, M.V.; Nuñez, G.G.; Canellada, A.M.; Sparwasser, T.; Berod, L.; Castro, M.S.; et al. Immunostimulatory Effects Triggered by Enterococcus faecalis CECT7121 Probiotic Strain Involve Activation of Dendritic Cells and Interferon-γ Production. PLoS ONE 2015, 10, e0127262. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, R.; Shah, N.P. Immune System Stimulation by Probiotic Microorganisms. Crit. Rev. Food Sci. Nutr. 2014, 54, 938–956. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.S.; Patole, S.K.; Rao, S. Role of Probiotics in Short Bowel Syndrome in Infants and Children—A Systematic Review. Nutrients 2013, 5, 679–699. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Quigley, E.M.M. Probiotics in the management of irritable bowel syndrome and inflammatory bowel disease. Curr. Opin. Gastroenterol. 2013, 29, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Choi, S.C.; Park, K.S.; Park, M.I.; Shin, J.E. Change of Fecal Flora and Effectiveness of the Short-term VSL#3 Probiotic Treatment in Patients With Functional Constipation. J. Neurogastroenterol. Motil. 2015, 21, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Riezzo, G.; Orlando, A.; Attoma, B.D.; Guerra, V.; Valerio, F.; Lavermicocca, P.; De Candia, S.; Russo, F. Randomised clinical trial: Efficacy of Lactobacillus paracasei enriched artichokes in the treatment of patients with functional constipation—A double-blind, controlled, crossover study. Aliment. Pharmacol. Ther. 2012, 35, 441–450. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med. Infect. Dis. 2007, 5, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Branco, G.F.; Nazzaro, F.; Cruz, A.G.; Faria, J.A.F. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 292–302. [Google Scholar] [CrossRef]
- Vijaya Kumar, B.; Vijayendra, S.V.N.; Reddy, O.V.S. Trends in dairy and non-dairy probiotic products—A review. J. Food Sci. Technol. 2015, 52, 6112–6124. [Google Scholar] [CrossRef] [PubMed]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Coma, V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008, 78, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Wyrwa, J.; Barska, A. Innovations in the food packaging market: Active packaging. Eur. Food Res. Technol. 2017, 243, 1681–1692. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Gavara, R.; Lagaron, J.M. Bioactive packaging: Turning foods into healthier foods through biomaterials. Trends Food Sci. Technol. 2006, 17, 567–575. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Skandamis, P.N. Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Curr. Opin. Food Sci. 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Batista, R.A.; Azeredo, H.M.C.; Otoni, C.G. Probiotics and their potential application in active edible films and coatings. Food Res. Int. 2016, 90, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem. 2014, 159, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.S.; Rojas-Grau, M.A.; Rodríguez, E.J.; Ramírez, J.; Carmona, A.; Martin-Belloso, O. Alginate- and Gellan-based Edible Films for Probiotic Coatings on Fresh-Cut Fruits. J. Food Sci. 2007, 72, E190–E196. [Google Scholar] [CrossRef] [PubMed]
- Bourtoom, T. Edible films and coatings: Characteristics and properties. Int. Food Res. J. 2008, 15, 237–248. [Google Scholar]
- Rojas-Grau, M.A.; Soliva-Fortuny, R.; Martin-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci. Technol. 2009, 20, 438–447. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; del Río, M.A.; Pérez-Gago, M.B. Antimicrobial Edible Films and Coatings for Fresh and Minimally Processed Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef] [PubMed]
- Ramos, O.L.; Fernandes, J.C.; Silva, S.I.; Pintado, M.E.; Xavier Malcata, F. Edible Films and Coatings from Whey Proteins: A Review on Formulation, and on Mechanical and Bioactive Properties. Crit. Rev. Food Sci. Nutr. 2012, 52, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Suput, D.Z.; Lazic, V.L.; Popovic, S.Z.; Hromis, N.M. Edible films and coatings-Sources, Properties and application. Food Feed Res. 2015, 42, 11–22. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Technol. 2011, 22, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-González, L.; Iván Quintero Saavedra, J.; Chiralt, A. Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocoll. 2013, 33, 92–98. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Iván Quintero Saavedra, J.; Chiralt, A. Antilisterial and physical properties of biopolymer films containing lactic acid bacteria. Food Control 2014, 35, 200–206. [Google Scholar] [CrossRef]
- Romano, N.; José Tavera-Quiroz, M.; Bertola, N.; Mobili, P.; Pinotti, A.; Gómez-Zavaglia, A. Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Res. Int. 2014, 64, 560–566. [Google Scholar] [CrossRef]
- Tavera-Quiroz, M.J.; Romano, N.; Mobili, P.; Pinotti, A.; Gómez-Zavaglia, A.; Bertola, N. Green apple baked snacks functionalized with edible coatings of methylcellulose containing Lactobacillus plantarum. J. Funct. Foods 2015, 16, 164–173. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Foster, L.J.R.; Ho, S.; Hook, J.; Basuki, M.; Marçal, H. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties. PLoS ONE 2015, 10, e0135153. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Camacho, A.P.; Cortez-Rocha, M.O.; Ezquerra-Brauer, J.M.; Graciano-Verdugo, A.Z.; Rodríguez-Félix, F.; Castillo-Ortega, M.M.; Yépiz-Gómez, M.; Plascencia-Jatomea, M. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydr. Polym. 2010, 82, 305–315. [Google Scholar] [CrossRef]
- Park, S.Y.; Marsh, K.S.; Rhim, J.W. Characteristics of Different Molecular Weight Chitosan Films Affected by the Type of Organic Solvents. J. Food Sci. 2002, 67, 194–197. [Google Scholar] [CrossRef]
- De Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010, 20, 292–302. [Google Scholar] [CrossRef]
- Raafat, D.; Sahl, H.-G. Chitosan and its antimicrobial potential—A critical literature survey. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Vicente, A.A.; Teixeira, J.A.; Miranda, C. Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol. Technol. 2007, 44, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, N.S.T.; Aguiar, A.J.A.A.; de Oliveira, C.E.V.; de Sales, C.V.; de Melo e Silva, S.; da Silva, R.S.; Stamford, T.C.M.; de Souza, E.L. Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiol. 2012, 32, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.S.; Rojas-Graü, M.A.; Carmona, A.; Rodríguez, F.J.; Soliva-Fortuny, R.; Martin-Belloso, B. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 2008, 22, 1493–1503. [Google Scholar] [CrossRef]
- Varela, P.; Fiszman, S.M. Hydrocolloids in fried foods. A review. Food Hydrocoll. 2011, 25, 1801–1812. [Google Scholar] [CrossRef]
- Corrales, M.; Han, J.H.; Tauscher, B. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int. J. Food Sci. Technol. 2009, 44, 425–433. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect on starch type on the physic-chemical properties of edible films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Talja, R.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 2007, 67, 288–295. [Google Scholar] [CrossRef]
- Liu, Z.; Han, J.H. Film-forming characteristics of starches. J. Food Sci. 2005, 70, E31–E36. [Google Scholar] [CrossRef]
- Shah, U.; Naqash, F.; Gani, A.; Masoodi, F.A. Art and Science behind Modified Starch Edible Films and Coatings: A Review. Comp. Rev. Food Sci. Food Saf. 2016, 15, 568–580. [Google Scholar] [CrossRef]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Macnaughtan, W.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll. 2017, 70, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Espitia, P.J.P.; Du, W.-X.; Avena-Bustillos, R.D.J.; Soares, N.D.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- López de Lacey, A.M.; López-Caballero, M.E.; Gómez-Estaca, J.; Gómez-Guillén, M.C.; Montero, P. Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innov. Food Sci. Emerg. Technol. 2012, 16, 277–282. [Google Scholar] [CrossRef]
- Soukoulis, C.; Singh, P.; Macnaughtan, W.; Parmenter, C.; Fisk, I.D. Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food Hydrocoll. 2016, 52, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Gialamas, H.; Zinoviadou, K.G.; Biliaderis, C.G.; Koutsoumanis, K.P. Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Res. Int. 2010, 43, 2402–2408. [Google Scholar] [CrossRef]
- Concha-Meyer, A.; Schobitz, R.; Brito, C.; Fuentes, R. Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control 2011, 22, 485–489. [Google Scholar] [CrossRef]
- Altamirano-Fortoul, R.; Moreno-Terrazas, R.; Quezada-Gallo, A.; Rosell, C.M. Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocoll. 2012, 29, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Kanmani, P.; Lim, S.T. Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem. 2013, 141, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- López de Lacey, A.M.; López-Caballero, M.E.; Montero, P. Agar films containing green tea extract and probiotic bacteria for extending fish shelf-life. Food Sci. Technol. 2014, 55, 559–564. [Google Scholar] [CrossRef]
- Soukoulis, C.; Yonekura, L.; Gan, H.-H.; Behboudi-Jobbehdar, S.; Parmenter, C.; Fisk, I. Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll. 2014, 39, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Piermaria, J.; Diosma, G.; Aquino, C.; Garrote, G.; Abraham, A. Edible kefiran films as vehicles for probiotic microorganisms. Innov. Food Sci. Emerg. Technol. 2015, 32, 193–199. [Google Scholar] [CrossRef]
- Odila Pereira, J.; Soares, J.; Sousa, S.; Madureira, A.R.; Gomez, A.; Pintado, M. Edible films as carriers for probiotic bacteria. LWT-Food Sci. Technol. 2016, 73, 543–550. [Google Scholar] [CrossRef]
- Pavli, F.; Kovaiou, I.; Apostolakopoulou, G.; Kapetanakou, A.; Skandamis, P.; Nychas, G.E.; Tassou, C.; Chorianopoulos, N. Alginate-Based Edible Films Delivering Probiotic Bacteria to Sliced Ham Pretreated with High Pressure Processing. Int. J. Mol. Sci. 2017, 18, 1867. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.S.; Verruck, S.; Vieira, C.R.W.; Prudêncio, E.S.; Amante, E.R.; Amboni, R.D.M.C. Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments. LWT-Food Sci. Technol. 2015, 64, 1004–1009. [Google Scholar] [CrossRef]
- Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
- Martín, M.J.; Lara-Villoslada, F.; Ruiz, M.A.; Morales, M. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. [Google Scholar] [CrossRef]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 2003, 13, 3–13. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 2004, 14, 737–743. [Google Scholar] [CrossRef]
- Iyer, C.; Phillips, M.; Kailasapathy, K. Release studies of Lactobacillus casei strain Shirota fromchitosan-coated alginate-starch microcapsules in ex vivo porcine gastrointestinal contents. Lett. Appl. Microbiol. 2005, 41, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Iyer, C.; Kailasapathy, K. Effect of Co-encapsulation of Probiotics with Prebiotics on Increasing the Viability of Encapsulated Bacteria under In Vitro Acidic and Bile Salt Conditions and in Yogurt. J. Food Sci. 2005, 70, M18–M23. [Google Scholar] [CrossRef]
- Gbassi, G.K.; Vandamme, T.; Ennahar, S.; Marchioni, E. Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 2009, 129, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Özer, B.; Kirmaci, H.A.; Şenel, E.; Atamer, M.; Hayaloglu, A. Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int. Dairy J. 2009, 19, 22–29. [Google Scholar] [CrossRef]
- Hébrard, G.; Hoffart, V.; Beyssac, E.; Cardot, J.M.; Alric, M.; Subirade, M. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J. Microencapsul. 2010, 27, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Chávarri, M.; Marañón, I.; Ares, R.; Ibañez, F.C.; Marzo, F.; Villarán, M.D.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 2010, 142, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Doherty, S.B.; Gee, V.L.; Ross, P.R.; Stanton, C.; Fitzgerald, G.; Brodkorb, A. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll. 2011, 25, 1604–1617. [Google Scholar] [CrossRef]
- Mirzaei, H.; Pourjafar, H.; Homayouni, A. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem. 2012, 132, 1966–1970. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Lenton, D.; Cook, M.T.; Khutoryanskiy, V.V.; Charalampopoulos, D. Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydr. Polym. 2012, 90, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, I.; Bejar, W.; Ayadi, D.; Chouayekh, H.; Kammoun, R.; Bejar, S.; Ben Salah, R. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int. J. Biol. Macromol. 2013, 61, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Nualkaekul, S.; Cook, M.T.; Khutoryanskiy, V.V.; Charalampopoulos, D. Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Res. Int. 2013, 53, 304–311. [Google Scholar] [CrossRef]
- Mandal, S.; Hati, S.; Puniya, A.K.; Khamrui, K.; Singh, K. Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298. J. Sci. Food Agric. 2014, 94, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.E.C.; Liserre, A.M.; Coelho, A.L.A.; Menezes, C.R.; Moreno, I.; Yotsuyanagi, K.; Azambuja, N.C. Acerola nectar with added microencapsulated probiotic. LWT-Food Sci. Technol. 2013, 54, 125–131. [Google Scholar] [CrossRef]
- Malmo, C.; La Storia, A.; Mauriello, G. Microencapsulation of Lactobacillus reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Soufflé. Food Bioprocess Technol. 2013, 6, 795–805. [Google Scholar] [CrossRef]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.S.; Grosso, C.R.F.; Gigante, M.L. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Frutos, M.J. Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion. LWT-Food Sci. Technol. 2015, 64, 824–828. [Google Scholar] [CrossRef]
- Yeung, T.W.; Üçok, E.F.; Tiani, A.K.; McClements, D.J.; Sela, D.A. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery. Front. Microbiol. 2016, 7, 494. [Google Scholar] [CrossRef] [PubMed]
- De Araújo Etchepare, M.; Raddatz, G.C.; de Moraes Flores, E.M.; Zepka, L.Q.; Jacob Lopes, E.; Barin, J.S.; Ferreira-Grosso, C.R.; de Menezes, C.R. Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Sci. Technol. 2016, 65, 511–517. [Google Scholar] [CrossRef]
- Gaudreau, H.; Champagne, C.P.; Remondetto, G.E.; Gomaa, A.; Subirade, M. Co-encapsulation of Lactobacillus helveticus cells and green tea extract: Influence on cell survival in simulated gastrointestinal conditions. J. Funct. Foods 2016, 26, 451–459. [Google Scholar] [CrossRef]
- Ying, D.; Sanguansri, L.; Weerakkody, R.; Bull, M.; Singh, T.K.; Augustin, M. Effect of encapsulant matrix on stability of microencapsulated probiotics. J. Funct. Foods 2016, 25, 447–458. [Google Scholar] [CrossRef]
- Coghetto, C.C.; Brinques, G.B.; Siqueira, N.M.; Pletsch, J.; Soares, R.M.D.; Ayub, M.A.Z. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J. Funct. Foods 2016, 24, 316–326. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Morfin, R.C.; Perez-Masiá, R.; Sánchez, G.; López-Rubio, A. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in vitro digestion. LWT-Food Sci. Technol. 2016, 69, 438–446. [Google Scholar] [CrossRef]
- Dafe, A.; Etemadi, H.; Zarredar, H.; Mahdavinia, G.R. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. Int. J. Biol. Macromol. 2017, 97, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Holkem, A.T.; Raddatz, G.C.; Barin, J.S.; Flores, E.M.M.; Muller, E.I.; Codevilla, C.F.; Jacob Lopes, E.; Ferreira-Grosso, C.R.; de Menezes, C.R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Sci. Technol. 2017, 76, 216–221. [Google Scholar] [CrossRef]
- Bosnea, L.A.; Moschakis, T.; Biliaderis, C.G. Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics under Different Stresses. Food Bioprocess Technol. 2014, 7, 2767–2781. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007, 137, 2493S–2502S. [Google Scholar] [PubMed]
- Schrezenmeir, J.; de Vrese, M. Probiotics, prebiotics, and synbiotics—Approaching a definition. Am. J. Clin. Nutr. 2001, 73, 361S–364S. [Google Scholar] [PubMed]
- Shah, N.P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Corona-Hernandez, R.I.; Alvarez-Parilla, E.; Lizardi-Mendoza, J.; Islas-Rubio, A.R.; de la Rosa, L.A.; Wall-Medrano, A. Structural Stability and Viability of Microencapsulated Probiotic Bacteria: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 614–628. [Google Scholar] [CrossRef]
- Guilbert, S.; Gontard, N.; Cuq, B. Technology and applications of edible protective films. Packag. Technol. Sci. 1995, 8, 339–346. [Google Scholar] [CrossRef]
- García-Argueta, I.; Quintero-Salazar, B.; Dominguez-Lopez, A.; Gómez-Oliván, L.M.; Díaz-Bandera, D.; Dublán-García, O. Effect of Edible Coating Based on Whey, Inulin and Gelatine with Lactobacillus casei on the Textural and Sensorial Properties of a Cracker Cookie. J. Prob. Health 2016, 4, 153. [Google Scholar] [CrossRef]
- Commission Regulation (EC) 1935/2004. Materials and Articles Intended to Come into Contact with Food and Repealing Directives 80/590/EEC and 89/109/EEC; Official Journal of the European Union: Brussels, Belgium, 2004. [Google Scholar]
- Commission Regulation (EC) 450/2009. Active and Intelligent Materials and Articles Intended to Come into Contact with Food; Official Journal of the European Union: Brussels, Belgium, 2009. [Google Scholar]
- Regulation (EU) 1169/2011. Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004; Official Journal of the European Union: Brussels, Belgium, 2011. [Google Scholar]
- Commission Regulation (EC) No 1924/2006. Nutrition and Health Claims Made on Foods; Official Journal of the European Union: Brussels, Belgium, 2006. [Google Scholar]
- Regulation (EU) 432/2012. Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health; Official Journal of the European Union: Brussels, Belgium, 2012. [Google Scholar]
- Regulation (EU) 2283/2015. Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001; Official Journal of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- Miquel, S.; Beaumont, M.; Martín, R.; Langella, P.; Braesco, V.; Thomas, M. A proposed framework for an appropriate evaluation scheme for microorganisms as novel foods with a health claim in Europe. Microb. Cell Fact. 2015, 14, 48. [Google Scholar] [CrossRef] [PubMed]
Biopolymer Material | Probiotics | Additives | Application Matrix | Reference |
---|---|---|---|---|
Alginate/Gellan | B. lactis Bb-12 | Glycerol | Fresh-cut apples and papayas | [30] |
Sodium caseinate | L. sakei | Sorbitol | Fresh beef | [62] |
Alginate/Starch | C. maltaromaticum | Glycerol | Smoked salmon | [63] |
Gelatin | L. acidophilus, B. bifidum | Glucose, cysteine, sorbitol, glycerol | Hake fish | [60] |
Starch | L. acidophilus | - | Baked bread | [64] |
Pullulan/Starch | L. plantarum, L. reuteri, L. acidophilus | - | - | [65] |
Isolate Pea Protein/MC/Sodium caseinate/HPMC | L. plantarum | Glycerol | - | [37] |
Agar | B. animalis spp. lactis, L. paracasei spp. paracasei | Green tea extract, glycerol | Hake fillets | [66] |
Methylcellulose (MC) | L. delbruecki subsp. bulgaricus, L. plantarum | Fructooligosaccharides (FOS), sorbitol | - | [39] |
Gelatin | L. rhamnosus GG | Inulin, polydextrose, wheat dextrin, glucose-oligosaccharides, glycerol | - | [29] |
Alginate, Whey Protein Concentrate | L. rhamnosus GG | Glycerol | Bread | [67] |
MC, Sodium caseinate | L. reuteri, L. acidophilus | Glycerol | - | [38] |
Kefiran | L. plantarum | Glycerol | - | [68] |
WPI | B. animalis Bb-12, L. casei | Glycerol | - | [69] |
Rice/Corn Starch, Gelatine/Sodium caseinate/Soy protein concentrate | L. rhamnosus GG | Glycerol | - | [61] |
Sodium alginate | L. plantarum, L. pentosus | Glycerol | Ham slices | [70] |
Sodium alginate/Pectin/κ-Carrageenan-Locust bean gum/Gelatine/Whey protein concentrate | L. rhamnosus GG | Glycerol | - | [57] |
Biopolymer Material | Probiotics | Additives | Application Matrix | Reference |
---|---|---|---|---|
Alginate | L. acidophilus, L.casei, B. bifidum | - | - | [76] |
Chitosan/Alginate | L. casei Shirota | - | - | [77] |
Alginate/maize starch | L. acidophilus, B. lactis | - | Yoghurt | [78] |
Alginate/Whey protein | L. plantarum | - | - | [79] |
Alginate | B. bifidum, L. acidophilus | - | White-brined cheese | [80] |
Whey protein/Alginate | S. boulardii | - | - | [81] |
Alginate/Chitosan | L. gasseri, B. bifidum | - | - | [82] |
WPI | L. rhamnosus GG | - | - | [83] |
Sodium alginate/Maize starch | L. acidophilus | - | White-brined cheese | [84] |
Alginate/Chitosan | L. plantarum | - | Pomegranate juice | [85] |
Alginate/Chitosan | L. plantarum | - | - | [86] |
Alginate/Pectins | L. plantarum, B. longum | - | Pomegranate and cranberry juice | [87] |
Alginate | L. casei | Maize starch, poly-l-lysine, stearic acid, bees wax | - | [88] |
Cellulose acetate phthalate | B. animalis BB-12 | - | Acerola nectar | [89] |
Alginate/Chitosan | L. reuteri | - | Chocolate souffle | [90] |
Pectin/Whey protein concentrate | L. acidophilus | - | Yoghurt | [91] |
Sodium alginate | L. plantarum | Inulin | - | [92] |
Sweet whey | Bifidobacterium BB-12 | Inulin, polydextrose | [71] | |
Sodium alginate/Chitosan | B. longum | - | - | [93] |
Sodium alginate | L. acidophilus | Hi-maize | - | [94] |
Calcium pectinate | L. helveticus | Green tea extracts | - | [95] |
WPI/Hydrolysed whey protein | L. rhamnosus GG | - | - | [96] |
Sodium alginate/Citric pectin | L. plantaru | - | - | [97] |
Whey protein concentrate | L. plantarum | - | - | [98] |
CMC/κ-carrageenan | L. plantarum | - | - | [99] |
Sodium alginate | B. animalis BB-12 | - | - | [100] |
WPI/GA | Lactobacillus paracasei subsp. paracasei/Lactobacillus paraplantarum | - | - | [101] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavli, F.; Tassou, C.; Nychas, G.-J.E.; Chorianopoulos, N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int. J. Mol. Sci. 2018, 19, 150. https://doi.org/10.3390/ijms19010150
Pavli F, Tassou C, Nychas G-JE, Chorianopoulos N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. International Journal of Molecular Sciences. 2018; 19(1):150. https://doi.org/10.3390/ijms19010150
Chicago/Turabian StylePavli, Foteini, Chrysoula Tassou, George-John E. Nychas, and Nikos Chorianopoulos. 2018. "Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods" International Journal of Molecular Sciences 19, no. 1: 150. https://doi.org/10.3390/ijms19010150
APA StylePavli, F., Tassou, C., Nychas, G. -J. E., & Chorianopoulos, N. (2018). Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. International Journal of Molecular Sciences, 19(1), 150. https://doi.org/10.3390/ijms19010150