Advances in DNA Barcoding of Toxic Marine Organisms
Abstract
:1. Introduction
2. Survey of Methodology
3. DNA Barcoding Is widely Used in Toxic Marine Algae and Metazoans
3.1. Toxic Marine Algae
3.2. Toxic Marine Invertebrates
3.2.1. Mollusca
3.2.2. Cnidaria
3.3. Toxic Marine Fish
3.3.1. Pufferfish
3.3.2. Scombridae
4. Disadvantages of DNA Barcoding
5. Fluorescence Methods of DNA Barcoding
5.1. Real-Time Fluorescence PCR
5.2. High Resolution Melting
6. High-Throughput Methods of DNA Barcoding
6.1. DNA Metabarcoding
6.2. Microarray
7. Other Methods Used with DNA Barcoding
8. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bricelj, V.M.; Connell, L.B.; Konoki, K.; Macquarrie, S.P.; Scheuer, T.; Catterall, W.A.; Trainer, V.L. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 2005, 434, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.F.; Williams, S.R.; Nordt, S.P.; Manoguerra, A.S. A review of selected seafood poisonings. Undersea Hyperb. Med. 1999, 26, 175–184. [Google Scholar] [PubMed]
- Cohen, N.J.; Deeds, J.R.; Wong, E.S.; Hanner, R.H.; Yancy, H.F.; White, K.D.; Thompson, T.M.; Wahl, M.; Pham, T.D.; Guichard, F.M.; et al. Public health response to puffer fish (Tetrodotoxin) poisoning from mislabeled product. J. Food Prot. 2009, 72, 810–817. [Google Scholar] [CrossRef]
- Nagarajan, M.; Parambath, A.N.; Prabhu, V.R. DNA barcoding: A potential tool for invasive species identification. DNA Barcoding Mol. Phylogeny 2018, 73–85. [Google Scholar] [CrossRef]
- Weigt, L.A.; Driskell, A.C.; Baldwin, C.C.; Ormos, A. DNA barcoding fishes. Methods Mol. Biol. 2012, 858, 109–126. [Google Scholar] [PubMed]
- Wong, E.H.K.; Hanner, R.H. DNA barcoding detects market substitution in North American seafood. Food Res. Int. 2008, 41, 828–837. [Google Scholar] [CrossRef]
- Fields, A.T.; Abercrombie, D.L.; Eng, R.; Feldheim, K.; Chapman, D.D. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species. PLoS ONE 2015, 10, e0114844. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, S.F.; Carrera, C.; Vilarino, N.; Louzao, M.C.; Santamarina, G.; Cantalapiedra, A.G.; Botana, L.M. Acute cardiotoxicity evaluation of the marine biotoxins OA, DTX-1 and YTX. Toxins 2015, 7, 1030–1047. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, R.S.; Hernandez, B.C.; Hernandez, E.L. Identification of meat and poultry species in food products using DNA barcoding. Food Control 2017, 80, 23–28. [Google Scholar] [CrossRef]
- Hofmann, T.; Knebelsberger, T.; Kloppmann, M.; Ulleweit, J.; Raupach, M.J. Egg identification of three economical important fish species using DNA barcoding in comparison to a morphological determination. J. Appl. Ichthyol. 2017, 33, 925–932. [Google Scholar] [CrossRef]
- Mwale, M.; Dalton, D.L.; Jansen, R.; De Bruyn, M.; Pietersen, D.; Mokgokong, P.S.; Kotzé, A. Forensic application of DNA barcoding for identification of illegally traded African pangolin scales. Genome 2016, 60, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Stockle, M.Y.; Hebert, P.D. Barcode of life. Sci. Am. 2008, 299, 82–88. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, V.S. DNA barcoding: Perspectives from a “partnerships for enhancing expertise in taxonomy” (PEET) debate. Syst. Biol. 2005, 54, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Ratnasingham, S.; Hebert, P.D. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Collette, B.B.; Reeb, C.; Block, B.A. Systematics of the tunas and mackerels (Scombridae). Tuna Physiol. Ecol. Evolut. 2001, 19, 1–33. [Google Scholar]
- Couceiro, L.; Lopez, L.; Sotka, E.E.; Ruiz, J.M.; Barreiro, R. Molecular data delineate cryptic Nassarius species and characterize spatial genetic structure of N. nitidus. J. Mar. Biol. Assoc. UK 2012, 92, 1175–1182. [Google Scholar] [CrossRef]
- Montano, S.; Maggioni, D.; Arrigoni, R.; Seveso, D.; Puce, S.; Galli, P. The hidden diversity of zanclea associated with scleractinians revealed by molecular data. PLoS ONE 2015, 10, e0133084. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Kocour, M.; Kunal, S.P. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region. Mitochondrial DNA Part A 2016, 27, 1976–1980. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, V.; Schaeffer, B.; Missoup, A.D.; Kennis, J.; Colyn, M.; Denys, C.; Tatard, C.; Cruaud, C.; Laredo, C. Assessment of three mitochondrial genes (16S, Cytb, CO1) for identifying species in the Praomyini tribe (Rodentia: Muridae). PLoS ONE 2012, 7, e36586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, M.W.; Cowan, R.S.; Hollingsworth, P.M.; van den Berg, C.; Madriñán, S.; Petersen, G.; Seberg, O.; Jørgsensen, T.; Cameron, K.M.; Carine, M.; et al. A proposal for a standardised protocol to barcode all land plants. Taxon 2007, 56, 295–299. [Google Scholar]
- Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; Weigt, L.A.; Janzen, D.H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8369–8374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, J.; Lickey, E.B.; Beck, J.T.; Farmer, S.B.; Liu, W.; Miller, J.; Siripun, K.C.; Winder, C.T.; Schilling, E.E.; Small, R.L. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 2005, 92, 142–166. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.M.; Wortley, A.H.; Mann, D.G. An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 2007, 158, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Moniz, M.B.; Kaczmarska, I. Barcoding of diatoms: Nuclear encoded ITS revisited. Protist 2010, 161, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Moniz, M.B.; Kaczmarska, I. Barcoding diatoms: Is there a good marker? Mol. Ecol. Resour. 2009, 9, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamsher, S.E.; Evans, K.M.; Mann, D.G.; Poulickova, A.; Saunders, G.W. Barcoding diatoms: Exploring alternatives to COI-5P. Protist 2011, 162, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Hamsher, S.E.; Saunders, G.W. A floristic survey of marine tube-forming diatoms reveals unexpected diversity and extensive co-habitation among genetic lines of the Berkeleya rutilans complex (Bacillariophyceae). Eur. J. Phycol. 2014, 49, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Li, Q.; Kong, L.; Yu, H.; Zheng, X. Comparing the usefulness of distance, monophyly and character-based DNA barcoding methods in species identification: A case study of neogastropoda. PLoS ONE 2011, 6, e26619. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Li, Q.; Kong, L. Monophyly, distance and character-based multigene barcoding reveal extraordinary cryptic diversity in Nassarius: A complex and dangerous community. PLoS ONE 2012, 7, e47276. [Google Scholar] [CrossRef] [PubMed]
- Galindo, L.A.; Kool, H.H.; Dekker, H. Review of the Nassarius pauperus (Gould, 1850) complex (Nassariidae): Part 3, reinstatement of the genus Reticunassa, with the description of six new species. Eur. J. Taxon. 2017, 275, 1–43. [Google Scholar] [CrossRef]
- Moura, C.J.; Harris, D.J.; Cunha, M.R.; Rogers, A.D. DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool. Scr. 2008, 37, 93–108. [Google Scholar] [CrossRef]
- Armani, A.; Tinacci, L.; Giusti, A.; Castigliego, L.; Gianfaldoni, D.; Guidi, A. What is inside the jar? Forensically informative nucleotide sequencing (FINS) of a short mitochondrial COI gene fragment reveals a high percentage of mislabeling in jellyfish food products. Food Res. Int. 2013, 54, 1383–1393. [Google Scholar] [CrossRef]
- McInnes, J.C.; Alderman, R.; Lea, M.-A.; Raymond, B.; Deagle, B.E.; Phillips, R.A.; Stanworth, A.; Thompson, D.R.; Catry, P.; Weimerskirch, H.; et al. High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Mol. Ecol. 2017, 26, 4831–4845. [Google Scholar] [CrossRef] [PubMed]
- McFadden, C.S.; Haverkort-Yeh, R.; Reynolds, A.M.; Halàsz, A.; Quattrini, A.M.; Forsman, Z.H.; Benayahu, Y.; Toonen, R.J. Species boundaries in the absence of morphological, ecological or geographical differentiation in the Red Sea octocoral genus Ovabunda (Alcyonacea: Xeniidae). Mol. Ph. Evolut. 2017, 112, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Miranda, L.S.; Hirano, Y.M.; Mills, C.E.; Falconer, A.; Fenwick, D.; Marques, A.C.; Collins, A.G. Systematics of stalked jellyfishes (Cnidaria: Staurozoa). PeerJ 2016, 4, e1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.R.; Yin, M.C.; Hsieh, Y.L.; Yeh, Y.H.; Yang, Y.C.; Chung, Y.L.; Hsieh, C.H.E. Authentication of consumer fraud in Taiwanese fish products by molecular trace evidence and forensically informative nucleotide sequencing. Food Res. Int. 2014, 55, 294–302. [Google Scholar] [CrossRef]
- Armani, A.; Guardone, L.; La Castellana, R.; Gianfaldoni, D.; Guidi, A.; Castigliego, L. DNA barcoding reveals commercial and health issues sold on the Italian market in ethnic seafood. Food Control 2015, 55, 206–214. [Google Scholar] [CrossRef]
- Tuney, I. Molecular identification of puffer fish Lagocephalus Sceleratus (Gmelin, 1789) and Lagocephalus Spadiceus (Richardson, 1845) from Eastern Mediterranean, Turkey. Fresenius Environ. Bull. 2016, 25, 1429–1437. [Google Scholar]
- Vinas, J.; Tudela, S. A validated methodology for genetic identification of tuna species (Genus Thunnus). PLoS ONE 2009, 4, e7606. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa-Gerasmio, I.R.; Babaran, R.P.; Santos, M.D. Discrimination of juvenile yellowfin (thunnus albacares) and bigeye (t-obesus) tunas using mitochondrial DNA control region and liver morphology. PLoS ONE 2012, 7, e35604. [Google Scholar] [CrossRef]
- Seyhan, D.; Turan, C. DNA barcoding of Scombrid species in the Turkish marine waters. J. Black Sea Mediterr. Environ. 2016, 22, 35–45. [Google Scholar]
- Bosch-Orea, C.; Sanchís, J.; Farré, M.; Barceló, D. Analysis of lipophilic marine biotoxins by liquid chromatography coupled with high-resolution mass spectrometry in seawater from the Catalan Coast. Anal. Bioanal. Chem. 2017, 409, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, G.; Chorus, I.; Falconer, I.R.; Lin, T. Cyanobacteria: Impacts of climate change on occurrence, toxicity and water quality management. Water Res. 2012, 46, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.; Droop, S. Biodiversity, biogeography and conservation of diatoms. Biogeogr. Freshw. Algae 1996, 118, 19–32. [Google Scholar]
- Lewitus, A.J.; Horner, R.A.; Caron, D.A.; Garcia-Mendoza, E.; Hickey, B.M.; Hunter, M.; Huppert, D.D.; Kudela, R.M.; Langlois, G.W.; Largier, J.L.; et al. Harmful algal blooms along the North American west coast region: History, trends, causes, and impacts. Harmful Algae 2012, 19, 133–159. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, T.J.; Costa, J.; Oliveira, M.B.; Mafra, I. DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chem. 2017, 230, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, G.; Chen, Y.; Qin, P.; Yu, M.; Ye, L.; Yan, P.; Jin, C. Correlation between toxicity of poisonous Nassarius Sp and their habitats. Chin. J. Health Lab. Technol. 2007, 63–67. Available online: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2007&filename=ZWJZ200701023&uid=WEEvREcwSlJHSldRa1FhcEE0RVZvUjMwRCtWait1dEdGa2VxQ0NNZjlwVT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4ggI8Fm4gTkoUKaID8j8gFw!!&v=MTQ5NjIxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkxLZmJ1UnRGeXptV3IvTlB6ckJkTEc0SHRiTXJvOUhaNFI4ZVg= (accessed on 24 September 2018). (In Chinese).
- Zhang, N.; Su, J.; Liu, H.; Ye, S.; Li, L.; Cai, L. The species and toxicities of Nassariidae collected from the coast of Southeast China Sea. Asian J. Ecotoxicol. 2009, 4, 289–294. [Google Scholar]
- Berdalet, E.; Fleming, L.E.; Gowen, R.J.; Davidson, K.; Hess, P.; Backer, L.C.; Moore, S.K.; Hoagland, P.; Enevoldsen, H. Marine harmful algal blooms, human health and wellbeing: Challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. U. K. 2015, 96, 61–91. [Google Scholar] [CrossRef] [PubMed]
- Hinder, S.L.; Hays, G.C.; Brooks, C.J.; Davies, A.P.; Edwards, M.; Walne, A.W.; Gravenor, M.B. Toxic marine microalgae and shellfish poisoning in the British isles: History, review of epidemiology, and future implications. Environ. Health 2011, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.; Costa, P.M.; Teixeira, M.A.; Ferreira, M.S.; Costa, M.H.; Costa, F.O. Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol. 2013, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Dohna, T.A.; Kochzius, M. Obstacles to molecular species identification in sea anemones (Hexacorallia: Actiniaria) with COI, a COI intron, and ITS II. Mar. Biodivers. 2016, 46, 291–297. [Google Scholar] [CrossRef]
- Forsman, A. Some like it hot: Intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers. Evolut. Ecol. 2000, 14, 25–38. [Google Scholar] [CrossRef]
- Ponce, D.; Brinkman, D.L.; Luna-Ramirez, K.; Wright, C.E.; Dorantes-Aranda, J.J. Comparative study of the toxic effects of Chrysaora quinquecirrha (Cnidaria: Scyphozoa) and Chironex fleckeri (Cnidaria: Cubozoa) venoms using cell-based assays. Toxicon 2015, 106, 57–67. [Google Scholar] [CrossRef] [PubMed]
- McFadden, C.S.; Benayahu, Y.; Pante, E.; Thoma, J.N.; Nevarez, P.A.; France, S.C. Limitations of mitochondrial gene barcoding in Octocorallia. Mol. Ecol. Resour. 2011, 11, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Isbister, G.K.; Kiernan, M.C. Neurotoxic marine poisoning. Lancet Neurol. 2005, 4, 219–228. [Google Scholar] [CrossRef]
- Landsberg, J.H.; Hall, S.; Johannessen, J.N.; White, K.D.; Conrad, S.M.; Abbott, J.P.; Flewelling, L.J.; Richardson, R.W.; Dickey, R.W.; Jester, E.L. Saxitoxin puffer fish poisoning in the United States, with the first report of Pyrodinium bahamense as the putative toxin source. Environ. Health Perspect. 2006, 114, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Buhay, J.E.; Whiting, M.F.; Crandall, K.A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 2018, 105, 13486–13491. [Google Scholar] [CrossRef] [PubMed]
- Magnacca, K.N.; Brown, M.J. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolut. Biol. 2010, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.S.; Jaffar Ali, H.A. Numts: An impediment to DNA barcoding of polyclinids, tunicata. Mitochondrial DNA Part A 2016, 27, 3395–3398. [Google Scholar] [CrossRef] [PubMed]
- Batovska, J.; Cogan, N.O.I.; Lynch, S.E.; Blacket, M.J. Using next-generation sequencing for DNA barcoding: Capturing allelic variation in ITS2. G3 Genes Genomes Genet. 2017, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.F.; Biessy, L.; Argyle, P.A.; Trnski, T.; Halafihi, T.; Rhodes, L.L. Molecular identification of gambierdiscus and fukuyoa (dinophyceae) from environmental samples. Mar. Drugs 2017, 15, 243. [Google Scholar] [CrossRef] [PubMed]
- Kuo, J.-H.; Tsuei, H.-W.; Jia, Z.-L.; Lin, C.-Y.; Chang, Y.-H.; Chen, B.-L.; Kuan, J.; Lin, H.-Y.; Chiueh, L.-C.; Shih, D.Y.-C.; et al. Identification of ingredient in mullet roe products by the real-time PCR method. Food Anal. Methods 2017, 11, 1–9. [Google Scholar] [CrossRef]
- Abdel-Gawad, F.K.; Osman, O.; Bassem, S.M.; Nassar, H.F.; Temraz, T.A.; Elhaes, H.; Ibrahim, M. Spectroscopic analyses and genotoxicity of dioxins in the aquatic environment of Alexandria. Mar. Pollut. Bull. 2018, 127, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Beatrice-Lindner, P.; Garrido-Cardenas, J.A.; Sepulveda, C.; Acien-Fernandez, F.G. A new approach for detection and quantification of microalgae in industrial-scale microalgal cultures. Appl. Microbiol. Biotechnol. 2018, 102, 8429–8436. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Park, S.Y.; Hwang, J.; Lee, J.; Jung, S.W.; Chung, Y.; Lee, T.-K. Monitoring the seasonal dynamics of microalgae in the South Sea of Korea by use of a cytochrome c oxidase I DNA barcode. Aquat. Ecosyst. Health Manag. 2018, 21, 10–18. [Google Scholar] [CrossRef]
- Farrell, H.; Oconnor, W.A.; Seebacher, F.; Harwood, D.T.; Murray, S.A. Molecular detection of the sxta gene from saxitoxin-producing alexandrium minutum in commercial oysters. J. Shellfish Res. 2016, 35, 169–177. [Google Scholar] [CrossRef]
- Soares, S.; Grazina, L.; Costa, J.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. Botanical authentication of lavender (Lavandula spp.) honey by a novel DNA-barcoding approach coupled to high resolution melting analysis. Food Control 2018, 86, 367–373. [Google Scholar] [CrossRef]
- Singtonat, S.; Osathanunkul, M. Fast and reliable detection of toxic Crotalaria spectabilis Roth. in Thunbergia laurifolia Lindl. herbal products using DNA barcoding coupled with HRM analysis. BMC Complement. Altern. Med. 2015, 15, 162. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Li, J.J.; Sun, W.; Liu, H.G.; Wu, L.; Liu, D.; Hu, Z.G.; Chen, S.L. Application of HRM combined with DNA barcoding to analysis of the Armeniacae semen amarum mixed in Persicae semen. Acta Pharm. Sin. 2017, 52, 647–652. [Google Scholar]
- Ali, M.A.; Gyulai, G.; Hidvegi, N.; Kerti, B.; Hemaid, F.M.A.A.; Pandey, A.K.; Lee, J. The changing epitome of species identification—DNA barcoding. Saudi J. Biol. Sci. 2014, 21, 204–231. [Google Scholar]
- Yoccoz, N.G.; Brathen, K.A.; Gielly, L.; Haile, J.; Edwards, M.E.; Goslar, T.; Von Stedingk, H.; Brysting, A.K.; Coissac, E.; Pompanon, F.; et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 2012, 21, 3647–3655. [Google Scholar] [CrossRef] [PubMed]
- Lallias, D.; Hiddink, J.G.; Fonseca, V.G.; Gaspar, J.M.; Sung, W.; Neill, S.P.; Barnes, N.; Ferrero, T.; Hall, N.; Lambshead, P.J.D. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. ISME J. 2015, 9, 1208–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvitti, L.; Wood, S.A.; Fairweather, R.; Culliford, D.; McNabb, P.; Cary, S.C. In situ accumulation of tetrodotoxin in non-toxic Pleurobranchaea maculata (Opisthobranchia). Aquat. Sci. 2017, 79, 335–344. [Google Scholar] [CrossRef]
- Politi, L.; Groppi, A.; Polettini, A.; Montagna, M. A rapid screening procedure for drugs and poisons in gastric contents by direct injection-HPLC analysis. Forensic Sci. Int. 2004, 14, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.T.; Olds, B.P.; Renshaw, M.A.; Turner, C.R.; Li, Y.; Jerde, C.L.; Mahon, A.R.; Pfrender, M.E.; Lamberti, G.A.; Lodge, D.M. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 2016, 16, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Teletchea, F.; Bernillon, J.; Duffraisse, M.; Laudet, V.; Hanni, C. Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J. Appl. Ecol. 2008, 45, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Sarwat, M.; Yamdagni, M.M. DNA barcoding, microarrays and next generation sequencing: Recent tools for genetic diversity estimation and authentication of medicinal plants. Crit. Rev. Biotechnol. 2016, 36, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Valentini, P.; Galimberti, A.; Mezzasalma, V.; De Mattia, F.; Casiraghi, M.; Labra, M.; Pompa, P.P. DNA barcoding meets nanotechnology: Development of a universal colorimetric test for food authentication. Angew. Chem. Int. Ed. Engl. 2017, 56, 8094–8098. [Google Scholar] [CrossRef] [PubMed]
- Taboada, L.; Sánchez, A.; Pérez-Martín, R.I.; Sotelo, C.G. A new method for the rapid detection of Atlantic cod (Gadus morhua), Pacific cod (Gadus macrocephalus), Alaska pollock (Gadus chalcogrammus) and ling (Molva molva) using a lateral flow dipstick assay. Food Chem. 2017, 233, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Arora, K. Advances in Nano based biosensors for food and agriculture. Nanotechnol. Food Secur. Water Treat. 2018, 1–52. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef]
- Lan, W.; Bo, W.; Zhao, M.; Wei, L.; Peng, Z.; Shi, Y.; Chao, X.; Ping, W.; Wei, S.; Chen, S. Rapid identification of officinal akebiae caulis and its toxic adulterant aristolochiae manshuriensis caulis (aristolochia manshuriensis) by loop-mediated isothermal amplification. Front. Plant Sci. 2016, 7, 887. [Google Scholar] [CrossRef]
- Mezzasalma, V.; Ganopoulos, I.; Galimberti, A.; Cornara, L.; Ferri, E.; Labra, M. Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification. Int. J. Legal Med. 2017, 131, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.; Alam, M.J.; Geng, Y.; Li, Z.; Yamasaki, S.; Shi, L. Loop-mediated isothermal amplification method for rapid detection of the toxic dinoflagellate Alexandrium, which causes algal blooms and poisoning of shellfish. FEMS Microbiol. Lett. 2008, 282, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.B.; Seo, D.J.; Oh, H.; Kingsley, D.H.; Choi, C. Development of one-step reverse transcription loop-mediated isothermal amplification for norovirus detection in oysters. Food Control 2017, 73, 1002–1009. [Google Scholar] [CrossRef]
- Niessen, L.; Vogel, R.F. Detection of fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 2010, 140, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Uchii, K.; Takahara, T.; Matsuhashi, S.; Yamanaka, H.; Minamoto, T. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 2015, 10, e0122763. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, E.A.; Hong, J.W.; Quake, S.R.; Leadbetter, J.R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 2006, 314, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Porter, T.M.; Hajibabaei, M. Scaling up: A guide to high throughput genomic approaches for biodiversity analysis. Mol. Ecol. 2018, 27, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Yuan, Y.; Liu, W.; Liu, L.; Qin, Q.; Yi, M. Identification of inhibitory compounds against singapore grouper iridovirus infection by cell viability-based screening assay and droplet digital PCR. Mar. Biotechnol. 2017, 20, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Shimabukuro, H.; Hori, M.; Yoshida, G.; Terada, T.; Miyajima, T. Quantitative real-time polymerase chain reaction (PCR) and droplet digital PCR duplex assays for detecting Zostera marina DNA in coastal sediments. Limnol. Oceanogr. Methods. 2018, 16, 264253–264264. [Google Scholar] [CrossRef]
- Xiong, X.; Yao, L.; Ying, X.; Lu, L.; Guardone, L.; Armani, A.; Guidi, A.; Xiong, X. Multiple fish species identified from China’s roasted Xue Yu fillet products using DNA and mini-DNA barcoding: Implications on human health and marine sustainability. Food Control 2018, 88, 123–130. [Google Scholar] [CrossRef]
- Giusti, A.; Ricci, E.; Guarducci, M.; Gasperetti, L.; Davidovich, N.; Guidi, A.; Armani, A. Emerging risks in the European seafood chain: Molecular identification of toxic Lagocephalus spp. in fresh and processed products. Food Control 2018, 91, 311–320. [Google Scholar] [CrossRef]
- Marcus, J.M. Our love-hate relationship with DNA barcodes, the Y2K problem, and the search for next generation barcodes. AIMS Genet. 2018, 5, 1–23. [Google Scholar] [CrossRef]
- Suriya, J.; Krishnan, M.; Bharathiraja, S.; Sekar, V.; Sachithanandam, V. Implications and utility of DNA barcoding. DNA Barcoding Mol. Phylogeny 2018, 45–64. [Google Scholar] [CrossRef]
- Lo, Y.T.; Shaw, P.C. DNA-based techniques for authentication of processed food and food supplements. Food Chem. 2018, 240, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, A.; Penafiel, N.; Arteaga, A.; Bustamante, L.; Pichardo, F.; Coloma, L.A.; Barrio-Amoros, C.L.; Salazar-Valenzuela, D.; Prost, S. Real-time DNA barcoding in a remote rainforest using nanopore sequencing. bioRxiv 2017. [Google Scholar] [CrossRef]
- Srivathsan, A.; Baloğlu, B.; Wang, W.; Tan, W.X.; Bertrand, D.; Ng, A.H.Q.; Boey, E.J.H.; Koh, J.J.Y.; Nagarajan, N.; Meier, R. A MinIONTM-based pipeline for fast and cost-effective DNA barcoding. Mol. Ecol. Resour. 2018. [Google Scholar] [CrossRef] [PubMed]
Kingdom | Phylum | Acc.species | Barcoded | Rate |
---|---|---|---|---|
Animalia | Acanthocephala | 529 | 38 | 7% |
Annelida | 13,949 | 4055 | 29% | |
Arthropoda | 57,340 | 202,937 | 354% | |
Brachiopoda | 421 | 36 | 9% | |
Bryozoa | 6147 | 216 | 4% | |
Cephalorhyncha | 236 | 0 | 0% | |
Chaetognatha | 131 | 32 | 24% | |
Chordata | 22,891 | 33,226 | 145% | |
Cnidaria | 11,719 | 2046 | 17% | |
Ctenophora | 200 | 0 | 0% | |
Cycliophora | 2 | 4 | 200% | |
Dicyemida | 122 | 0 | 0% | |
Echinodermata | 7336 | 2137 | 29% | |
Entoprocta | 190 | 0 | 0% | |
Gastrotricha | 506 | 0 | 0% | |
Gnathostomulida | 101 | 9 | 9% | |
Hemichordata | 130 | 5 | 4% | |
Mollusca | 47,673 | 12,458 | 26% | |
Nematoda | 6897 | 680 | 10% | |
Nematomorpha | 5 | 0 | 0% | |
Nemertea | 1363 | 191 | 14% | |
Orthonectida | 25 | 0 | 0% | |
Phoronida | 11 | 0 | 0% | |
Placozoa | 1 | 0 | 0% | |
Platyhelminthes | 13,596 | 663 | 5% | |
Porifera | 8653 | 731 | 8% | |
Rotifera | 201 | 360 | 179% | |
Sipuncula | 156 | 67 | 43% | |
Tardigrada | 209 | 75 | 36% | |
Xenacoelomorpha | 454 | 5 | 1% | |
Plantae | Bryophyta | 11 | 1754 | 15,945% |
Charophyta | 322 | 0 | 0% | |
Chlorophyta | 3247 | 1764 | 54% | |
Glaucophyta | 4 | 0 | 0% | |
Plantae incertae sedis | 59 | 0 | 0% | |
Rhodophyta | 8173 | 3135 | 38% | |
Tracheophyta | 313 | 0 | 0% | |
Fungi | Ascomycota | 1202 | 15,779 | 1313% |
Basidiomycota | 118 | 11,725 | 9936% | |
Chytridiomycota | 33 | 75 | 227% | |
Glomeromycota | 2 | 193 | 9650% | |
Microsporidia | 270 | 0 | 0% | |
Zygomycota | 16 | 515 | 3219% | |
Protozoa | Amoebozoa | 120 | 0 | 0% |
Apusozoa | 2 | 0 | 0% | |
Choanozoa | 198 | 0 | 0% | |
Euglenozoa | 1528 | 0 | 0% | |
Loukozoa | 2 | 0 | 0% | |
Metamonada | 31 | 0 | 0% | |
Percolozoa | 25 | 0 | 0% | |
Picozoa | 1 | 0 | 0% |
Diatom | DNA Barcodes |
---|---|
Recommended DNA Barcodes | rbcL-3P 5.8S + ITS2 fragment |
Genus Sellaphora | COI [25] |
Genus Pinnularia | |
Genus Eunotia | |
Genus Tabularia | |
Class Mediophyceae | 5.8S + ITS2 fragment [26] |
Class Bacillariophyceae | |
Genus Coscinodiscus | 5.8S + ITS2 fragment [27] |
Genus Melosira | |
Genus Minutocellulus | |
Genus Chaetoceros | |
Genus Eunotia | |
Genus Nitzschia | |
Genus Pseudonitzschia | |
Genus Sellaphora | rbcL-3P [28,29] |
Class Mediophyceae | rbcL-3P with 5.8S + ITS2 fragment [4] |
Class Bacillariophyceae |
Mollusca | DNA Barcodes |
---|---|
Recommended DNA Barcodes | COI |
Order Neogastropoda | COI [30,31] |
Genus Nassarius | COI [31] |
Nassarius nitidus Nassarius reticulatus | COI [17] |
Genus Reticunassa | COI and 28S rDNA [32] |
Cnidaria | DNA Barcodes |
---|---|
Recommended DNA Barcodes | Nuclear DNA barcoding (ITS, 18S rDNA, and 28S rDNA) |
Family Eudendriidae | 16S rRNA [33] |
Family Lafoeidae | |
Family Haleciidae | |
Family Sertulariidae | |
Family Plumulariidae | |
Family Aglaopheniidae | |
Family Catostylidae | COI [34] |
Family Cassiopeidae | |
Family Cepheidae | |
Family Lychnorhizidae | |
Family Rhizostomatidae | |
Family Cyaneidae | |
Family Pelagiidae | |
Family Ulmaridae | |
Class Scyphozoa | 18S rDNA [35] |
Genus Ovabunda | mtMutS, COI, ND2 and ITS, 28S rDNA, ATPSα, ATPSβ [36] |
Class Staurozoa | COI, 16S rDNA and ITS, 18S rDNA, 28S rDNA [37] |
Pufferfish | DNA Barcodes |
---|---|
Recommended DNA Barcodes | COI, cytb |
Family Triodontidae | COI [34] |
Family Diodontidae | |
Family Tetraodontidae | |
Genus Takifugu | cytb [38] |
Genus Lagocephalus | |
Genus Sphoeroides | |
Lagocephalus spp. | Full and mini COI [39] |
Lagocephalus sceleratus | cytb [40] |
Lagocephalus spadiceus |
Scombridae | DNA Barcodes |
---|---|
Recommended DNA Barcodes | COI, d-loop |
Genus Thunnus | d-loop + ITS1 [41] |
Thunnus albacares | d-loop [42] |
Thunnus obesus | |
Auxis thazard | d-loop [19] |
Euthynnus affinis | |
Katsuwonus pelamis | |
Thunnus tonggol | |
Thunnus albacares | |
Thunnus alalonga | COI [43] |
Thunnus thynnus | |
Euthynnus alletteratus | |
Auxis rochei | |
Katsuwonus pelamis | |
Sarda sarda | |
Scomber colias | |
Scomber scombrus | |
Scomberomorus commerson |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, S.; Ding, Y.; Wang, Y.; Jiang, G.; Zhu, C. Advances in DNA Barcoding of Toxic Marine Organisms. Int. J. Mol. Sci. 2018, 19, 2931. https://doi.org/10.3390/ijms19102931
Gong S, Ding Y, Wang Y, Jiang G, Zhu C. Advances in DNA Barcoding of Toxic Marine Organisms. International Journal of Molecular Sciences. 2018; 19(10):2931. https://doi.org/10.3390/ijms19102931
Chicago/Turabian StyleGong, Shaohua, Yanfei Ding, Yi Wang, Guangze Jiang, and Cheng Zhu. 2018. "Advances in DNA Barcoding of Toxic Marine Organisms" International Journal of Molecular Sciences 19, no. 10: 2931. https://doi.org/10.3390/ijms19102931
APA StyleGong, S., Ding, Y., Wang, Y., Jiang, G., & Zhu, C. (2018). Advances in DNA Barcoding of Toxic Marine Organisms. International Journal of Molecular Sciences, 19(10), 2931. https://doi.org/10.3390/ijms19102931