Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification
Abstract
:1. Introduction
2. Enzymatic Oxidative Degradation of Lignin
2.1. Laccase
2.2. Manganese Peroxidase
2.3. Lignin Peroxidase
2.4. Versatile Peroxidase
2.5. Dye Peroxidase
3. Linking Oxidative Ability of Lignin-Degrading Enzymes to Organics Detoxification
3.1. Laccase
3.2. MnP
3.3. LiP
3.4. VP
3.5. DyP
4. Future Perspectives
Funding
Conflicts of interest
Abbreviations
CAZy | Carbohydrate-Active enzyme |
AA | Auxiliary Activity |
LiP | Lignin Peroxidase |
MnP | Manganese Peroxidase |
VP | Versatile Peroxidase |
DyP | Dye-decolorization Peroxidase |
GSH | Glutathione |
ABTS | 2, 2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
1-HBT | 1-Hydroxybenzotriazole |
H2O2 | Hydrogen Peroxide |
References
- Arakane, Y.; Muthukrishnan, S.; Beeman, R.W.; Kanost, M.R.; Kramer, K.J. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc. Natl. Acad. Sci. USA 2005, 102, 11337–11342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freudenberg, K. Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols: Lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure. Science 1965, 148, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, K.; Arulmani, M.; Nam, I.H.; Kim, Y.M.; Chang, Y.S.; Kalaichelvan, P.T. Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Appl. Microbiol. Biotechnol. 2006, 72, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Salony; Mishra, S.; Bisaria, V.S. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Appl. Microbiol. Biotechnol. 2006, 71, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Quaratino, D.; Federici, F.; Petruccioli, M.; Fenice, M.; D’Annibale, A. Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Antonie van Leeuwenhoek 2007, 91, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Gianfreda, L.; Xu, F.; Bollag, J.M. Laccases: A Useful Group of Oxidoreductive Enzymes. Bioremediat. J. 1999, 3, 1–26. [Google Scholar] [CrossRef]
- Kiefer-Meyer, M.C.; Gomord, V.; O’Connell, A.; Halpin, C.; Faye, L. Cloning and sequence analysis of laccase-encoding cDNA clones from tobacco. Gene 1996, 178, 205–207. [Google Scholar] [CrossRef]
- Baldrian, P. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Zhuo, R.; Sun, S.; Wan, X.; Jiang, M.; Zhang, X.; Yang, Y. Cloning and functional analysis of a new laccase gene from Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. Bioresour. Technol. 2011, 102, 3126–3137. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.M.; Solomon, E.I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 2015, 72, 869–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, M.H.; Alic, M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 1993, 57, 605–622. [Google Scholar] [PubMed]
- Glenn, J.K.; Akileswaran, L.; Gold, M.H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 1986, 251, 688–696. [Google Scholar] [CrossRef]
- Harazono, K.; Kondo, R.; Sakai, K. Bleaching of hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of MnSO4. Appl. Environ. Microbiol. 1996, 62, 913–917. [Google Scholar] [PubMed]
- Wariishi, H.; Valli, K.; Renganathan, V.; Gold, M.H. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J. Biol. Chem. 1989, 264, 14185–14191. [Google Scholar] [PubMed]
- Bao, W.; Fukushima, Y.; Jensen, K.A., Jr.; Moen, M.A.; Hammel, K.E. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 1994, 354, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.T.; Habib, A.M.; Chowdhury, D.U.; Bhuiyan, M.I.; Mostafa, K.M.; Mondol, S.; Mosleh, I.M. An insight into the lignin peroxidase of Macrophomina phaseolina. Bioinformation 2013, 9, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.; Kirk, T.K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 1983, 221, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wen, X. Expression of lignin peroxidase H2 from Phanerochaete chrysosporium by multi-copy recombinant Pichia strain. J. Environ. Sci. 2009, 21, 218–222. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990, 267, 99–102. [Google Scholar] [CrossRef]
- Pollegioni, L.; Tonin, F.; Rosini, E. Lignin-degrading enzymes. FEBS J. 2015, 282, 1190–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinfling, A.; Ruiz-Duenas, F.J.; Martinez, M.J.; Bergbauer, M.; Szewzyk, U.; Martinez, A.T. A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 1998, 428, 141–146. [Google Scholar] [CrossRef]
- Perez-Boada, M.; Ruiz-Duenas, F.J.; Pogni, R.; Basosi, R.; Choinowski, T.; Martinez, M.J.; Piontek, K.; Martinez, A.T. Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J. Mol. Biol. 2005, 354, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Knop, D.; Levinson, D.; Makovitzki, A.; Agami, A.; Lerer, E.; Mimran, A.; Yarden, O.; Hadar, Y. Limits of Versatility of Versatile Peroxidase. Appl. Environ. Microbiol. 2016, 82, 4070–4080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busse, N.; Wagne, D.; Kraume, M.; Czermak, P. Reaction kinetics of versatile peroxidase for the degradation of lignin compounds. Am. J. Biochem. Biotechnol. 2013, 9, 365–394. [Google Scholar] [CrossRef]
- Ruiz-Duenas, F.J.; Martínez, A.T. Biocatalysts Based on Heme Peroxidases; Springer: Berlin/Heidelberg, Germany, 2010; pp. 37–59. [Google Scholar]
- Colpa, D.I.; Fraaije, M.W.; van Bloois, E. DyP-type peroxidases: A promising and versatile class of enzymes. J. Ind. Microbiol. Biotechnol. 2014, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sugano, Y. DyP-type peroxidases comprise a novel heme peroxidase family. Cell. Mol. Life Sci. 2009, 66, 1387–1403. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Ishikawa, K.; Hirai, M.; Shoda, M. Characteristics of a newly isolated fungus, Geotrichum candidum Dec-1, which decolorizes various dyes. J. Ferment. Bioeng. 1995, 79, 601–607. [Google Scholar] [CrossRef]
- Kim, S.J.; Shoda, M. Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 1999, 65, 1029–1035. [Google Scholar] [PubMed]
- Singh, R.; Grigg, J.C.; Qin, W.; Kadla, J.F.; Murphy, M.E.; Eltis, L.D. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chem. Biol. 2013, 8, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Rahmanpour, R.; Bugg, T.D.H. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B. Arch. Biochem. Biophys. 2015, 574, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fueyo, E.; Linde, D.; Almendral, D.; Lopez-Lucendo, M.F.; Ruiz-Duenas, F.J.; Martinez, A.T. Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II). Appl. Microbiol. Biotechnol. 2015, 99, 8927–8942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Eltis, L.D. The multihued palette of dye-decolorizing peroxidases. Arch. Biochem. Biophys. 2015, 574, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, E.; Liers, C.; Ullrich, R.; Wachter, S.; Hofrichter, M.; Plattner, D.A.; Piontek, K. First crystal structure of a fungal high-redox potential dye-decolorizing Peroxidase: Substrate interaction sites and long-range electron transfer. J. Biol. Chem. 2013, 288, 4095–4102. [Google Scholar] [CrossRef] [PubMed]
- Pizzul, L.; del Pilar Castillo, M.; Stenström, J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 2009, 20, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Means, J.C.; Wood, S.G.; Hassett, J.J.; Banwart, W.L. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 1980, 14, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.C.; Miller, J.A. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 1981, 47, 2327–2345. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, Z.; Ni, H.; Yang, X.; Li, Q.; Li, L. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb. Cell Fact. 2012, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Tripathy, M. A Critical Review of the Treatments for Decolourization of Textile Effluent. Colourage 1993, 40, 35–38. [Google Scholar]
- Ilse, D.; Pieter, S.; Mieke, U. Literature review: Impact of climate change on pesticide use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- McCauley, L.A.; Anger, W.K.; Keifer, M.; Langley, R.; Robson, M.G.; Rohlman, D. Studying health outcomes in farmworker populations exposed to pesticides. Environ. Health Perspect. 2006, 114, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Husain, Q.; Qayyum, S. Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: A review. Crit. Rev. Biotechnol. 2013, 33, 260–292. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I. Toxigenic fungi and mycotoxins. Br. Med. Bull. 2000, 56, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabe, K.; Nakajima, H. Enzyme reactions and genes in aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 2004, 64, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Müncnerová, D.; Augustin, J. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: A review. Bioresour. Technol. 1994, 48, 97–106. [Google Scholar] [CrossRef]
- Cripps, C.; Bumpus, J.A.; Aust, S.D. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1990, 56, 1114–1118. [Google Scholar] [PubMed]
- Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; RodrÍguez-Vázquez, R.; Delgado-Boadae, J.M. Fungal laccases. Fungal Biol. Rev. 2013, 27, 67–82. [Google Scholar] [CrossRef]
- Senthivelan, T.; Kanagaraj, J.; Panda, R.C. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach—A review. Biotechnol. Bioprocess Eng. 2016, 21, 19–38. [Google Scholar] [CrossRef]
- Diamantidis, G.; Effosse, A.; Potier, P.; Bally, R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 2000, 32, 919–927. [Google Scholar] [CrossRef]
- Majumdar, S.; Lukk, T.; Solbiati, J.O.; Bauer, S.; Nair, S.K.; Cronan, J.E.; Gerlt, J.A. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 2014, 53, 4047–4058. [Google Scholar] [CrossRef] [PubMed]
- Reiss, R.; Ihssen, J.; Thony-Meyer, L. Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 2011, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Telke, A.A.; Kalyani, D.C.; Jadhav, U.U.; Parshetti, G.K.; Govindwar, S.P. Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J. Mol. Catal. B Enzym. 2009, 61, 252–260. [Google Scholar] [CrossRef]
- Bollag, J.M.; Shuttleworth, K.L.; Anderson, D.H. Laccase-mediated detoxification of phenolic compounds. Appl. Environ. Microbiol. 1988, 54, 3086–3091. [Google Scholar] [PubMed]
- Chivukula, M.; Renganathan, V. Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl. Environ. Microbiol. 1995, 61, 4374–4377. [Google Scholar] [PubMed]
- Collins, P.J.; Kotterman, M.; Field, J.A.; Dobson, A. Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl. Environ. Microbiol. 1996, 62, 4563–4567. [Google Scholar] [PubMed]
- Alberts, J.F.; Gelderblom, W.C.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B(1) by fungal laccase enzymes. Int. J. Food Microbiol. 2009, 135, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Trovaslet-Leroy, M.; Jolivalt, C.; Froment, M.T.; Brasme, B.; Lefebvre, B.; Daveloose, D.; Nachon, F.; Masson, P. Application of laccase-mediator system (LMS) for the degradation of organophosphorus compounds. Chem. Biol. Interact. 2010, 187, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Torres-Duarte, C.; Roman, R.; Tinoco, R.; Vazquez-Duhalt, R. Halogenated pesticide transformation by a laccase-mediator system. Chemosphere 2009, 77, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Canas, A.I.; Alcalde, M.; Plou, F.; Martinez, M.J.; Martinez, A.T.; Camarero, S. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol. 2007, 41, 2964–2971. [Google Scholar] [CrossRef] [PubMed]
- Jonas, U.; Hammer, E.; Schauer, F.; Bollag, J.-M. Transformation of 2-hydroxydibenzofuran by laccases of the white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products. Biodegradation 1997, 8, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.A.; Bedford, C.T.; Evans, C.S. Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl. Microbiol. Biotechnol. 2000, 53, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Iimura, Y.; Hartikainen, P.; Tatsumi, K. Dechlorination of tetrachloroguaiacol by laccase of white-rot basidiomycete Coriolus versicolor. Appl. Microbiol. Biotechnol. 1996, 45, 434–439. [Google Scholar] [CrossRef]
- Fang, Z.M.; Li, T.L.; Chang, F.; Zhou, P.; Fang, W.; Hong, Y.Z.; Zhang, X.C.; Peng, H.; Xiao, Y.Z. A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour. Technol. 2012, 111, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Si, J.; Peng, F.; Cui, B. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour. Technol. 2018, 128, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Balcázar-López, E.; Méndez-Lorenzo, L.H.; Batista-García, R.A.; Esquivel-Naranjo, U.; Ayala, M.; Kumar, V.V.; Savary, O.; Cabana, H.; Herrera-Estrella, A.; Folch-Mallol, J.L. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride. PLoS ONE 2016, 11, e0147997. [Google Scholar] [CrossRef] [PubMed]
- Cabana, H.; Alexandre, C.; Agathos, S.N.; Jones, J.P. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour. Technol. 2009, 100, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Lloret, L.; Eibes, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports. J. Biotechnol. 2012, 162, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Lugaro, G.; Carrea, G.; Cremonesi, P.; Casellato, M.M.; Antonini, E. The oxidation of steroid hormones by fungal laccase in emulsion of water and organic solvents. Arch. Biochem. Biophys. 1973, 159, 1–6. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Zucca, P.; Liuzzi, V.C.; Quintieri, L.; Cimmarusti, M.T.; Monaci, L.; Haidukowski, M.; Logrieco, A.F.; Sanjust, E.; et al. Aflatoxin B1 and M1 Degradation by Lac2 from Pleurotus pulmonarius and Redox Mediators. Toxins 2016, 8, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mtibaà, R.; de Eugenio, L.; Ghariani, B.; Louati, I.; Belbahri, L.; Nasri, M.; Mechichi, T. A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. 3 Biotech 2017, 7, 329. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakova, N.N.; Rodakiewicz-Nowak, J.; Turkovskaya, O.V.; Haber, J. Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzym. Microb. Technol. 2006, 39, 1242–1249. [Google Scholar] [CrossRef]
- Wang, S.N.; Chen, Q.J.; Zhu, M.J.; Xue, F.Y.; Li, W.C.; Zhao, T.J.; Li, G.D.; Zhang, G.Q. An extracellular yellow laccase from white rot fungus Trametes sp. F1635 and its mediator systems for dye decolorization. Biochimie 2018, 148, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Yu, X.; Zhu, G.; Zheng, Z.; Feng, F.; Zhang, Z. Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation. Sci. Rep. 2016, 6, 35787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.C.; Yi, X.Y.; Zhang, M.; Liu, L.; Ma, W.J. Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int. J. Environ. Sci. Technol. 2010, 7, 359–366. [Google Scholar] [CrossRef]
- Shengquan, Z.; Xueli, Q.; Liming, X. Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem. Eng. J. 2017, 119, 92–100. [Google Scholar] [CrossRef]
- Canas, A.I.; Camarero, S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv. 2010, 28, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Khlifi, R.; Mechichi, T.; Sayadi, S.; Dhouib, A. Effect of natural mediators on the stability of Trametes trogii laccase during the decolourization of textile wastewaters. J. Microbiol. 2012, 50, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Hofrichter, M.; Scheibner, K.; Schneegass, I.; Fritsche, W. Enzymatic Combustion of Aromatic and Aliphatic Compounds by Manganese Peroxidase from Nematoloma frowardii. Appl. Environ. Microbiol. 1998, 64, 399–404. [Google Scholar] [PubMed]
- Yang, X.T.; Zheng, J.Z.; Lu, Y.M.; Jia, R. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Environ. Sci. Pollut. Res. 2016, 23, 9585–9597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, S.; He, F.; Qin, X.; Zhang, X.Y.; Yang, Y. Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2016, 320, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhang, J.; Zhang, X.Y.; Yang, Y. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, T.; Palvannan, T.; Kim, D.H.; Park, S.M. Manganese peroxidase H4 isozyme mediated degradation and detoxification of triarylmethane dye malachite green: Optimization of decolorization by response surface methodology. Appl. Biochem. Biotechnol. 2013, 171, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Masaphy, S.; Henis, Y.; Levanon, D. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl. Environ. Microbiol. 1996, 62, 3587–3593. [Google Scholar] [PubMed]
- Inoue, S.; Igarashi, Y.; Yoneda, Y.; Kawai, S.; Okamura, H.; Nishida, T. Elimination and detoxification of fungicide miconazole and antidepressant sertraline by manganese peroxidase-dependent lipid peroxidation system. Int. Biodeterior. Biodegrad. 2015, 100, 79–84. [Google Scholar] [CrossRef]
- Acevedo, F.; Pizzul, L.; Castillo, M.D.; Gonzalez, M.E.; Cea, M.; Gianfreda, L.; Diez, M.C. Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere 2010, 80, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Steffen, K.T.; Hatakka, A.; Hofrichter, M. Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: Role of manganese peroxidase. Appl. Environ. Microbiol. 2003, 69, 3957–3964. [Google Scholar] [CrossRef] [PubMed]
- Yehia, R.S. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz. J. Microbiol. 2014, 45, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ogata, M.; Hirai, H.; Kawagishi, H. Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol. Lett. 2011, 314, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, Y.; Haneda, T.; Nishida, T. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 2001, 42, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Van Aken, B.; Hofrichter, M.; Scheibner, K.; Hatakka, A.I.; Naveau, H.; Agathos, S.N. Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 1999, 10, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, N.; Okamura, H.; Hirai, H.; Nishida, T. Degradation of the antifouling compound Irgarol 1051 by manganese peroxidase from the white rot fungus Phanerochaete chrysosporium. Chemosphere 2004, 55, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Harazono, K.; Watanabe, Y.; Nakamura, K. Decolorization of azo dye by the white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J. Biosci. Bioeng. 2003, 95, 455–459. [Google Scholar] [CrossRef]
- Baborová, P.; Möder, M.; Baldrian, P.; Cajthamlová, K.; Cajthaml, T. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res. Microbiol. 2006, 157, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Muhammad Nasir Iqbal, H.; Asgher, M. Decolorization applicability of sol-gel matrix immobilized manganese peroxidase produced from an indigenous white rot fungal strain Ganoderma lucidum. BMC Biotechnol. 2013, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, X.; Yao, J.; Zhou, Y.; Jia, R. Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP. J. Microbiol. Biotechnol. 2015, 25, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Asgher, M.; Shahid, M.; Bhatti, H.N. Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Int. J. Biol. Macromol. 2016, 86, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.T.; Palma, C.; Mielgo, I.; Feijoo, G.; Lema, J.M. In vitro degradation of a polymeric dye (Poly R-478) by manganese peroxidase. Biotechnol. Bioeng. 2001, 75, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Sun, X.; Huang, H.; Bai, Y.; Wang, Y.; Luo, H.; Yao, B.; Zhang, X.; Su, X. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: Evidence for implication of carboxylate and radicals. Biotechnol. Biofuels 2017, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Mielgo, I.; Lopez, C.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnol. Prog. 2003, 19, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Champagne, P.P.; Ramsay, J.A. Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Appl. Microbiol. Biotechnol. 2005, 69, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, D.; Hofer, C. Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl. Environ. Microbiol. 2002, 68, 3514–3521. [Google Scholar] [CrossRef] [PubMed]
- Susla, M.; Novotny, C.; Erbanova, P.; Svobodova, K. Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase. Folia Microbiol. 2008, 53, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Sarkanen, S.; Razal, R.A.; Piccariello, T.; Yamamoto, E.; Lewis, N.G. Lignin peroxidase: Toward a clarification of its role in vivo. J. Biol. Chem. 1991, 266, 3636–3643. [Google Scholar] [PubMed]
- Bholay, A.D.; Borkhataria, B.V.; Jadhav, P.U.; Palekar, K.S.; Dhalkari, M.V.; Nalawade, P.M. Bacterial lignin peroxidase: A tool for biobleaching and biodegradation of industrial effluents. Univ. J. Environ. Res. Technol. 2012, 2, 58–64. [Google Scholar]
- Blanquez, P.; Caminal, G.; Sarra, M.; Vicent, M.T.; Gabarrell, X. Olive oil mill waste waters decoloration and detoxification in a bioreactor by the white rot fungus Phanerochaete flavido-alba. Biotechnol. Prog. 2002, 18, 660–662. [Google Scholar] [CrossRef] [PubMed]
- Ward, G.; Belinky, P.A.; Hadar, Y.; Bilkis, I.; Dosoretz, C.G. The influence of non-phenolic mediators and phenolic co-substrates on the oxidation of 4-bromophenol by lignin peroxidase. Enzym. Microb. Technol. 2002, 30, 490–498. [Google Scholar] [CrossRef]
- Ward, G.; Hadar, Y.; Dosoretz, C.G. Lignin peroxidase-catalyzed polymerization and detoxification of toxic halogenated phenols. J. Chem. Technol. Biotechnol. 2003, 78, 1239–1245. [Google Scholar] [CrossRef]
- Sayadi, S.; Ellouz, R. Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl. Environ. Microbiol. 1995, 61, 1098–1103. [Google Scholar] [PubMed]
- Chandel, A.K.; Silva, S.S.D.; Singh, O.V. Detoxification of lignocellulosic hydrolysates for improved bioethanol production. Biofuel Prod. Recent Dev. Prospects 2011. [Google Scholar] [CrossRef]
- Wang, J.Q.; Majima, N.; Hirai, H.; Kawagishi, H. Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624. Curr. Microbiol. 2012, 64, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Alam, Z.; Mansor, M.F.; Jalal, K.C.A. Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. J. Hazard. Mater. 2009, 162, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Rekik, H.; Nadia, Z.J.; Bejar, W.; Kourdali, S.; Belhoul, M.; Hmidi, M.; Benkiar, A.; Badis, A.; Sallem, N.; Bejar, S.; et al. Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9. Int. J. Biol. Macromol. 2015, 73, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, R.; Asgher, M.; Hussain, F.; Bhatti, H.N. Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties. Int. J. Biol. Macromol. 2017, 103, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ollikka, P.; Alhonmäki, K.; Leppänen, V.M.; Glumoff, T.; Raijola, T.; Suominen, I. Decolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1993, 59, 4010–4016. [Google Scholar] [PubMed]
- Field, J.A.; Vledder, R.H.; Van Zelst, J.G.; Rulkens, W.H. The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent: Water mixtures. Enzym. Microb. Technol. 1996, 18, 300–308. [Google Scholar] [CrossRef]
- Castillo, M.d.P.; Wirén-Lehr, S.v.; Scheunert, I.; Torstensson, L. Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium. Biol. Fertil. Soils 2001, 33, 521–528. [Google Scholar] [CrossRef]
- Michels, J.; Gottschalk, G. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 1994, 60, 187–194. [Google Scholar] [PubMed]
- Rodriguez, E.; Nuero, O.; Guillen, F.; Martinez, A.T.; Martinez, M.J. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: The role of laccase and versatile peroxidase. Soil Biol. Biochem. 2004, 36, 909–916. [Google Scholar] [CrossRef]
- Imami, A.; Riemer, S.; Schulze, M.; Amelung, F.; Gorshkov, V.; Ruhl, M.; Ammenn, J.; Zorn, H. Depolymerization of lignosulfonates by submerged cultures of the basidiomycete Irpex consors and cloning of a putative versatile peroxidase. Enzym. Microb. Technol. 2015, 81, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakova, N.; Makarov, O.; Chernyshova, M.; Turkovskaya, O.; Jarosz-Wilkolazka, A. Versatile peroxidase of Bjerkandera fumosa: Substrate and inhibitor specificity. Enzyme Microb. Technol. 2013, 52, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Davila-Vazquez, G.; Tinoco, R.; Pickard, M.A.; Vazquez-Duhalt, R. Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzym. Microb. Technol. 2005, 36, 223–231. [Google Scholar] [CrossRef]
- Salame, T.M.; Knop, D.; Levinson, D.; Mabjeesh, S.J.; Yarden, O.; Hadar, Y. Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2+ Repression Enhances Anthropogenic and Natural Substrate Degradation. PLoS ONE 2012, 7, e52446. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Puig, R.; Eibes, G.; Lloret, L.; Lu-Chau, T.A.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds. N. Biotechnol. 2016, 33, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Eibes, G.; Debernardi, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation 2011, 22, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Hernández, J.E.; Eibes, G.; Arca-Ramos, A.; Lú-Chau, T.A.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Continuous removal of nonylphenol by versatile peroxidase in a two-stage membrane bioreactor. Appl. Biochem. Biotechnol. 2015, 175, 3038–3047. [Google Scholar] [CrossRef] [PubMed]
- Baratto, M.C.; Juarez-Moreno, K.; Pogni, R.; Basosi, R.; Vazquez-Duhalt, R. EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. Environ. Sci. Pollut. Res. Int. 2015, 22, 8683–8692. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.S.; Ertan, H.; Charlton, T.; Poljak, A.; Khaled, A.K.D.; Yang, X.X.; Marshall, G.; Cavicchioli, R. Versatile peroxidase degradation of humic substances: Use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes. J. Biotechnol. 2014, 178, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vishnu, D.; Neeraj, G.; Swaroopini, R.; Shobana, R.; Kumar, V.V.; Cabana, H. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. 2017, 24, 17993–18009. [Google Scholar] [CrossRef] [PubMed]
- Loncar, N.; Colpa, D.I.; Fraaije, M.W. Exploring the biocatalytic potential of a DyP-type peroxidase by profiling the substrate acceptance of Thermobifida fusca DyP peroxidase. Tetrahedron 2016, 72, 7276–7281. [Google Scholar] [CrossRef]
- Duan, Z.; Shen, R.; Liu, B.; Yao, M.; Jia, R. Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete. AMB Express 2018, 8, 119. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Sasaki, M.; Tanaka, Y.; Ishimori, K. A Dye-Decolorizing Peroxidase from Vibrio cholerae. Biochemistry 2015, 54, 6610–6621. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Liu, W.; Huang, H.; Zheng, F.; Wang, X.; Wu, Y.; Li, K.; Xie, X.; Jin, Y. Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PLoS ONE 2014, 9, e110319. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Sugano, Y.; Shoda, M. Stable repeated-batch production of recombinant dye-decolorizing peroxidase (rDyP) from Aspergillus oryzae. J. Biosci. Bioeng. 2008, 105, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Gong, G.; Woo, H.M.; Kim, Y.; Um, Y. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and b-ether lignin dimer. Sci. Rep. 2015, 5, 8245. [Google Scholar] [CrossRef] [PubMed]
- TÜnde, M.; Ming, T. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeterior. Biodegrad. 2000, 46, 51–59. [Google Scholar] [CrossRef]
- Eggert, C.; Temp, U.; Dean, J.; Eriksson, K. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 1996, 391, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Xing, Q.; Xiaoyun, S.; Huiying, L.; Rui, M.; Bin, Y.; Fuying, M. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnol. Biofuels 2018, 11, 58. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yao, B.; Su, X. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. Int. J. Mol. Sci. 2018, 19, 3373. https://doi.org/10.3390/ijms19113373
Wang X, Yao B, Su X. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. International Journal of Molecular Sciences. 2018; 19(11):3373. https://doi.org/10.3390/ijms19113373
Chicago/Turabian StyleWang, Xiaolu, Bin Yao, and Xiaoyun Su. 2018. "Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification" International Journal of Molecular Sciences 19, no. 11: 3373. https://doi.org/10.3390/ijms19113373
APA StyleWang, X., Yao, B., & Su, X. (2018). Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. International Journal of Molecular Sciences, 19(11), 3373. https://doi.org/10.3390/ijms19113373