Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population and Sample Collection
4.2. Urine Fractionation and Isolation of Extracellular Vesicles
4.3. miRNA Isolation and Analysis
4.4. Analysis of miRNA Expression
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Endzeliņš, E.; Melne, V.; Kalniņa, Z.; Lietuvietis, V.; Riekstiņa, U.; Llorente, A.; Linē, A. Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer: A systematic review. Mol. Cancer 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Ni, J.; Beretov, J.; Cozzi, P.; Willcox, M.; Wasinger, V.; Walsh, B.; Graham, P.; Li, Y. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit. Rev. Oncol. Hematol. 2017, 118, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Survival Rates for Prostate Cancer. Available online: https://www.cancer.org/content/cancer/en/cancer/prostate-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 16 December 2018).
- Prostate Cancer. Available online: http://uroweb.org/guideline/prostate-cancer/#5 (accessed on 16 December 2018).
- Batra, J.S.; Girdhani, S.; Hlatky, L. A Quest to Identify Prostate Cancer Circulating Biomarkers with a Bench-to-Bedside Potential. J. Biomark. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, S. PSA and beyond: Alternative prostate cancer biomarkers. Cell. Oncol. 2016, 39, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, S.; Rezaeian, S.; Ayubi, E.; Gholamaliee, B.; Pishkuhi, M.A.; Mansori, K.; Nematollahi, S.; Sani, M.; Hanis, S.M. Global prostate cancer incidence and mortality rates according to the human development index. Asian Pac. J. Cancer Prev. 2016, 17, 3791–3794. [Google Scholar]
- Zhang, K.; Bangma, C.H.; Roobol, M.J. Prostate cancer screening in Europe and Asia. Asian J. Urol. 2017, 4, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fendler, A.; Stephan, C.; Yousef, G.M.; Kristiansen, G.; Jung, K. The translational potential of microRNAs as biofluid markers of urological tumours. Nat. Rev. Urol. 2016, 13, 734–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Meo, A.; Bartlett, J.; Cheng, Y.; Pasic, M.D.; Yousef, G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer 2017, 16. [Google Scholar] [CrossRef] [PubMed]
- Martignano, F.; Rossi, L.; Maugeri, A.; Gallà, V.; Conteduca, V.; de Giorgi, U.; Casadio, V.; Schepisi, G. Urinary RNA-based biomarkers for prostate cancer detection. Clin. Chimica Acta 2017, 473, 96–105. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Ross, A.E.; Sokoll, L.J.; Partin, A.W.; Pavlovich, C.P. Urinary Biomarkers for Prostate Cancer. Urol. Clin. N. Am. 2016, 43, 17–38. [Google Scholar] [CrossRef]
- Filella, X.; Foj, L. Prostate Cancer Detection and Prognosis: From Prostate Specific Antigen (PSA) to Exosomal Biomarkers. Int. J. Mol. Sci. 2016, 17, 1784. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, R.J.; Dijkstra, S.; Janink, S.A.; Steffens, M.G.; van Oort, I.M.; Mulders, P.F.A.; Schalken, J.A. Comparative analysis of prostate cancer specific biomarkers PCA3 and ERG in whole urine, urinary sediments and exosomes. Clin. Chem. Lab. Med. 2016, 54. [Google Scholar] [CrossRef] [PubMed]
- Balacescu, O.; Petrut, B.; Tudoran, O.; Feflea, D.; Balacescu, L.; Anghel, A.; Sirbu, I.O.; Seclaman, E.; Marian, C. Urinary microRNAs for prostate cancer diagnosis, prognosis, and treatment response: Are we there yet? Wiley Interdiscip. Rev. RNA 2017, 8, e1438. [Google Scholar] [CrossRef] [PubMed]
- Massillo, C.; Dalton, G.N.; Farré, P.L.; de Luca, P.; de Siervi, A. Implications of microRNA dysregulation in the development of prostate cancer. Reproduction 2017, 154, R81–R97. [Google Scholar] [CrossRef] [Green Version]
- Kanwal, R.; Plaga, A.R.; Liu, X.; Shukla, G.C.; Gupta, S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett. 2017, 407, 9–20. [Google Scholar] [CrossRef]
- Vanacore, D.; Boccellino, M.; Rossetti, S.; Cavaliere, C.; D’Aniello, C.; di Franco, R.; Romano, F.J.; Montanari, M.; La Mantia, E.; Piscitelli, R. MicroRNAs in prostate cancer: An overview. Oncotarget 2017, 8, 50240. [Google Scholar] [CrossRef]
- Zhou, H.; Yuen, P.S.T.; Pisitkun, T.; Gonzales, P.A.; Yasuda, H.; Dear, J.W.; Gross, P.; Knepper, M.A.; Star, R.A. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006, 69, 1471–1476. [Google Scholar] [CrossRef]
- Boeri, M.; Verri, C.; Conte, D.; Roz, L.; Modena, P.; Facchinetti, F.; Calabrò, E.; Croce, C.M.; Pastorino, U.; Sozzi, G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3713–3718. [Google Scholar] [CrossRef] [Green Version]
- Landoni, E.; Miceli, R.; Callari, M.; Tiberio, P.; Appierto, V.; Angeloni, V.; Mariani, L.; Daidone, M.G. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinforma. 2015, 16. [Google Scholar] [CrossRef]
- Zaporozhchenko, I.A.; Bryzgunova, O.E.; Lekchnov, E.A.; Osipov, I.D.; Zaripov, M.M.; Yurchenko, Y.B.; Yarmoschuk, S.V.; Pashkovskaya, O.A.; Rykova, E.Y.; Zheravin, A.A.; et al. Representation Analysis of miRNA in Urine Microvesicles and Cell-Free Urine in Prostate Diseases. Biochem. (Moscow) Suppl. Ser. B Biomed. Chem. 2018, 12, 156–163. [Google Scholar] [CrossRef]
- Bryant, R.J.; Pawlowski, T.; Catto, J.W.F.; Marsden, G.; Vessella, R.L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F.C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer 2012, 106, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanova-Salas, I.; Rubio-Briones, J.; Calatrava, A.; Mancarella, C.; Masiá, E.; Casanova, J.; Fernández-Serra, A.; Rubio, L.; Ramírez-Backhaus, M.; Armiñán, A.; et al. Identification of miR-187 and miR-182 as Biomarkers of Early Diagnosis and Prognosis in Patients with Prostate Cancer Treated with Radical Prostatectomy. J. Urol. 2014, 192, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Lewis, H.; Lance, R.; Troyer, D.; Beydoun, H.; Hadley, M.; Orians, J.; Benzine, T.; Madric, K.; Semmes, O.J.; Drake, R.; et al. miR-888 is an expressed prostatic secretions-derived microRNA that promotes prostate cell growth and migration. Cell Cycle 2014, 13, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Stephan, C.; Ralla, B.; Jung, K. Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochim. Biophys. Acta (BBA) Rev. Cancer 2014, 1846, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Egidi, M.G.; Cochetti, G.; Guelfi, G.; Zampini, D.; Diverio, S.; Poli, G.; Mearini, E. Stability Assessment of Candidate Reference Genes in Urine Sediment of Prostate Cancer Patients for miRNA Applications. Dis. Markers 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Goldberger, H.; Dimtchev, A.; Ramalinga, M.; Chijioke, J.; Marian, C.; Oermann, E.K.; Uhm, S.; Kim, J.S.; Chen, L.N.; et al. MicroRNA Profiling in Prostate Cancer—The Diagnostic Potential of Urinary miR-205 and miR-214. PLoS ONE 2013, 8, e76994. [Google Scholar] [CrossRef] [PubMed]
- Korzeniewski, N.; Tosev, G.; Pahernik, S.; Hadaschik, B.; Hohenfellner, M.; Duensing, S. Identification of cell-free microRNAs in the urine of patients with prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 16.e17–16.e22. [Google Scholar] [CrossRef]
- Sapre, N.; Hong, M.K.H.; Macintyre, G.; Lewis, H.; Kowalczyk, A.; Costello, A.J.; Corcoran, N.M.; Hovens, C.M. Curated MicroRNAs in Urine and Blood Fail to Validate as Predictive Biomarkers for High-Risk Prostate Cancer. PLoS ONE 2014, 9, e91729. [Google Scholar] [CrossRef]
- Haj-Ahmad, T.A.; Abdalla, M.A.; Haj-Ahmad, Y. Potential Urinary miRNA Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J. Cancer 2014, 5, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Salido-Guadarrama, A.I.; Morales-Montor, J.G.; Rangel-EscareñO, C.; Langley, E.; Peralta-Zaragoza, O.; Colin, J.L.C.; Rodriguez-Dorantes, M. Urinary microRNA-based signature improves accuracy of detection of clinically relevant prostate cancer within the prostate-specific antigen grey zone. Mol. Med. Rep. 2016, 13, 4549–4560. [Google Scholar] [CrossRef] [Green Version]
- Stuopelyte, K.; Daniunaite, K.; Bakavicius, A.; Lazutka, J.R.; Jankevicius, F.; Jarmalaite, S. The utility of urine-circulating miRNAs for detection of prostate cancer. Br. J. Cancer 2016, 115, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryzgunova, O.E.; Zaripov, M.M.; Skvortsova, T.E.; Lekchnov, E.A.; Grigor’eva, A.E.; Zaporozhchenko, I.A.; Morozkin, E.S.; Ryabchikova, E.I.; Yurchenko, Y.B.; Voitsitskiy, V.E.; et al. Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients. PLoS ONE 2016, 11, e0157566. [Google Scholar] [CrossRef] [PubMed]
- Koppers-Lalic, D.; Hackenberg, M.; de Menezes, R.; Misovic, B.; Wachalska, M.; Geldof, A.; Zini, N.; de Reijke, T.; Wurdinger, T.; Vis, A.; et al. Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Foj, L.; Ferrer, F.; Serra, M.; Arévalo, A.; Gavagnach, M.; Giménez, N.; Filella, X. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis: Urinary miRNAs in Prostate Cancer. Prostate 2017, 77, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, J.-Q.; Liu, J.; Tian, L. Exosomes in tumor microenvironment: novel transporters and biomarkers. J. Transl. Med. 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Sun, X.; Scicluna, B.J.; Coleman, B.M.; Hill, A.F. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014, 86, 433–444. [Google Scholar] [CrossRef]
- Fernández-Llama, P.; Khositseth, S.; Gonzales, P.A.; Star, R.A.; Pisitkun, T.; Knepper, M.A. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 2010, 77, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Wachalska, M.; Koppers-Lalic, D.; van Eijndhoven, M.; Pegtel, M.; Geldof, A.A.; Lipinska, A.D.; van Moorselaar, R.J.; Bijnsdorp, I.V. Protein Complexes in Urine Interfere with Extracellular Vesicle Biomarker Studies. J. Circ. Biomark. 2016, 5, 4. [Google Scholar] [CrossRef]
- Occhipinti, G.; Giulietti, M.; Principato, G.; Piva, F. The choice of endogenous controls in exosomal microRNA assessments from biofluids. Tumor Biol. 2016, 37, 11657–11665. [Google Scholar] [CrossRef]
- Bryzgunova, O.E.; Konoshenko, M.Y.; Laktionov, P.P. MicroRNA-guided gene expression in prostate cancer: Literature and database overview. J. Gene Med. 2018, 20, e3016. [Google Scholar] [CrossRef]
- Takayama, K.; Misawa, A.; Inoue, S. Significance of microRNAs in Androgen Signaling and Prostate Cancer Progression. Cancers 2017, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, D.G.; Cooner, W.H.; Denis, L.; Jones, G.W.; Scardino, P.T.; Murphy, G.P. The association of benign prostatic hyperplasia and cancer of the prostate. Cancer 1992, 70, 291–301. [Google Scholar] [CrossRef]
- Karube, K. Study of latent carcinoma of the prostate in the Japanese based on necropsy material. Tohoku J. Exp. Med. 1961, 74, 265–285. [Google Scholar] [CrossRef] [PubMed]
- Guess, H.A. Benign prostatic hyperplasia and prostate cancer. Epidemiol. Rev. 2001, 23, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Miah, S.; Catto, J. BPH and prostate cancer risk. Indian J. Urol. 2014, 30, 214. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Kramer, G.; Marberger, M.; Montironi, R.; Nelson, W.; Schröder, F.; Sciarra, A.; Tubaro, A. The Controversial Relationship Between Benign Prostatic Hyperplasia and Prostate Cancer: The Role of Inflammation. Eur. Urol. 2011, 60, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Lekchnov, E.A.; Zaporozhchenko, I.A.; Morozkin, E.S.; Bryzgunova, O.E.; Vlassov, V.V.; Laktionov, P.P. Protocol for miRNA isolation from biofluids. Anal. Biochem. 2016, 499, 78–84. [Google Scholar] [CrossRef]
- Zaporozhchenko, I.A.; Morozkin, E.S.; Skvortsova, T.E.; Bryzgunova, O.E.; Bondar, A.A.; Loseva, E.M.; Vlassov, V.V.; Laktionov, P.P. A phenol-free method for isolation of microRNA from biological fluids. Anal. Biochem. 2015, 479, 43–47. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 16 December 2018).
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Springer US: Boston, MA, USA, 1993; p. 436. ISBN 978-0-412-04231-7. [Google Scholar]
No. | miRNA Pairs | Frequency, % | Median Distance (95% CI) | AUC | p | padj |
---|---|---|---|---|---|---|
h–c comparison, 1770 pairs | ||||||
1 | miR-107-miR-26b.5p | 74.8 | −0.74 [−1.94;−0.33] | 0.93 | 0.0012 | 0.0237 |
2 | miR-93.5p-miR-29b.3p | 36.3 | −0.54 [−1.31;−0.26] | 0.92 | 0.0019 | 0.0212 |
3 | miR-22.3p-miR-30e.5p | 36.0 | −0.76 [−1.95;−0.23] | 0.86 | 0.0065 | 0.0256 |
4 | miR-375-miR-26b.5p | 6.2 | −1.71 [−3.92;−0.17] | 0.83 | 0.0143 | 0.0249 |
5 | miR-29b.3p-miR-205.5p | 4.6 | 1.92 [0.25;2.81] | 0.88 | 0.0041 | 0.0202 |
6 | miR-331.3p-miR-205.5p | 0.3 | 1.72 [0.24;3.06] | 0.79 | 0.0018 | 0.0373 |
7 | miR-205.5p-miR-26b.5p | 15.2 | −1.4 [−3.17;−0.55] | 0.88 | 0.0041 | 0.0237 |
8 | miR-29a.3p-miR-205.5p | 10.3 | 1.69 [0.57;2.74] | 0.83 | 0.0126 | 0.0252 |
9 | miR-151a.5p-miR-205.5p | 6.3 | 1.18 [0.43;3.29] | 0.84 | 0.0102 | 0.0252 |
10 | let-7e.5p-miR-23b.3p | 15.8 | 0.88 [0.27;1.35] | 0.92 | 0.0019 | 0.0237 |
h–b comparison, 254 pairs | ||||||
1 | miR-30a.5p-let-7g.5p | 98.5 | 0.57 [0.28;1.09] | 0.83 | 0.0143 | 0.0429 |
2 | miR-200a.3p-let-7a.5p | 3.9 | 0.53 [0.03;1.34] | 0.7 | 0.0054 | 0.1416 |
3 | miR-205.5p-let-7a.5p | 0.2 | 0.86 [0.06;2.71] | 0.78 | 0.0412 | 0.0618 |
b–c comparison, 254 pairs | ||||||
1 | miR-103a.3p-miR-30c.5p | 28.6 | 1.03 [0.03;1.45] | 0.79 | 0.0338 | 0.0495 |
2 | hsa-miR-30c.5p-miR-30e.5p | 21.8 | −0.43 [−1.13;−0.17] | 0.83 | 0.0143 | 0.0429 |
3 | miR-100.5p-miR-30e.3p | 18.9 | 0.73 [0.02;1.02] | 0.77 | 0.05 | 0.05 |
4 | miR-30c.5p-miR-16.5p | 15.2 | −0.74 [−1.36;−0.01] | 0.84 | 0.0114 | 0.0429 |
5 | miR-23b.3p-miR-103a.3p | 8.8 | −0.41 [−0.99;−0.03] | 0.78 | 0.0412 | 0.0495 |
6 | miR-100.5p-miR-30a.5p | 7.2 | 0.52 [0.09;1.39] | 0.79 | 0.0338 | 0.0495 |
hm–cm comparison, 849 pairs | ||||||
1 | miR-20a.5p-miR-16.5p | 50.3 | 0.39 [0.17;0.8] | 0.89 | 0.0032 | 0.0245 |
2 | miR-24.3p-miR-200b.3p | 12.0 | 0.47 [0.13;1.08] | 0.88 | 0.0055 | 0.0245 |
3 | miR-101.3p-miR-30e.5p | 11.8 | −0.28 [−0.46;−0.09] | 0.82 | 0.0179 | 0.0268 |
4 | miR-24.3p-miR-16.5p | 5.3 | 0.45 [0.09;0.95] | 0.85 | 0.0082 | 0.0245 |
5 | miR-99b.5p-miR-24.3p | 3.5 | −0.25 [−0.86;−0.06] | 0.76 | 0.0102 | 0.0494 |
6 | miR-30b.5p-miR-125b.5p | 3.3 | 0.32 [0.06;0.91] | 0.8 | 0.0233 | 0.03 |
7 | miR-31.5p-miR-16.5p | 1.7 | 0.77 [0.08;1.23] | 0.85 | 0.0118 | 0.0267 |
8 | miR-30c.5p-miR-16.5p | 0.3 | 0.42 [0;0.9] | 0.82 | 0.0156 | 0.0268 |
9 | miR-30b.5p-miR-16.5p | 0.1 | 0.85 [0.08;1.5] | 0.79 | 0.0284 | 0.0319 |
hm–bm comparison, 849 pairs | ||||||
1 | miR-107-miR-31.5p | 95.3 | −0.73 [−1.95;−0.27] | 0.87 | 0.0071 | 0.0141 |
2 | miR-31.5p-miR-16.5p | 61.5 | 0.79 [0.31;1.25] | 0.89 | 0.0043 | 0.0141 |
3 | miR-31.5p-miR-30e.3p | 43.8 | 0.69 [0.15;1.5] | 0.88 | 0.0055 | 0.0141 |
4 | miR-31.5p-miR-200b.3p | 23.9 | 0.58 [0.18;1.3] | 0.88 | 0.0055 | 0.0141 |
5 | miR-31.5p-miR-660-5p | 22.1 | 0.74 [0.08;1.79] | 0.84 | 0.0023 | 0.0142 |
6 | miR-29a.3p-miR-660.5p | 20.4 | 0.65 [0.38;1.06] | 0.86 | 0.009 | 0.0142 |
7 | miR-31.5p-miR-200c.3p | 17.3 | 0.63 [0.25;1.24] | 0.83 | 0.0143 | 0.0159 |
8 | miR-107-miR-141.3p | 5.6 | −0.79 [−1.95;−0.09] | 0.78 | 0.0412 | 0.0412 |
9 | miR-29a.3p-miR-30e.3p | 1.6 | 0.82 [0.04;1.16] | 0.84 | 0.0114 | 0.0142 |
10 | miR-660.5p-miR-24.3p | 0.8 | −0.58 [−1.16;−0.05] | 0.87 | 0.0071 | 0.0141 |
bm–cm comparison, 254 pairs | ||||||
1 | miR-191.5p-miR-31.5p | 22.7 | 0.41 [0.16;1.09] | 0.91 | 0.0025 | 0.0143 |
2 | miR-100.5p-miR-30d.5p | 11.1 | 0.32 [0.15;1.27] | 0.84 | 0.0114 | 0.0177 |
3 | miR-106b.5p-miR-191.5p | 7.4 | −0.71 [−1.34;−0.29] | 0.88 | 0.0041 | 0.0143 |
4 | miR-93.5p-miR-22.3p | 2.9 | −0.4 [−0.75;−0.02] | 0.78 | 0.0034 | 0.0412 |
5 | miR-191.5p-miR-200b.3p | 0.3 | 0.54 [0.02;1.21] | 0.83 | 0.0126 | 0.0177 |
6 | miR-22.3p-miR-92a.3p | 0.1 | 0.44 [0.12;0.89] | 0.78 | 0.0412 | 0.0412 |
7 | miR-191.5p-miR-200a.3p | 0.1 | 0.69 [0.17;1.13] | 0.83 | 0.0126 | 0.0177 |
miRNAs | h–c | h–b | b–c | hm–cm | hm–bm | bm–cm |
---|---|---|---|---|---|---|
miR-16.5p | ? | ● | ● | ● | ||
miR-22.3p | ● | ● | ||||
miR-24.3p | ● | ● | ||||
miR-23b.3p | ● | ● | ||||
miR-29a.3p | ● | ● | ||||
miR-30a.5p | ● | ● | ||||
miR-30c.5p | ● | ● | ||||
miR-30e.5p | ● | ● | ● | ● | ||
miR-31.5p | ● | ● | ● | |||
miR-93.5 | ● | ● | ||||
miR-100.5p | ● | ● | ||||
miR-107 | ● | ● | ||||
miR-200a.3p | ● | ● | ||||
miR-200b.3p | ● | ● | ● | |||
miR-205.5p | ● | ● |
Group Comparison | miRNA | The Occurrence of miRNA within the Comparison Group, % | The Total Number of miRNA Pairs in the Comparison Group |
---|---|---|---|
h–c | miR-205.5p | 50 | 10 |
miR-26b.5p | 40 | ||
miR-29b.3p | 20 | ||
h–b | miR-30c.5p | 100 | 3 |
b–c | miR-30c.5p | 50 | 6 |
miR-30e.5p | 33.34 | ||
miR-100.5p | 33.34 | ||
miR-103a.3p | 33.34 | ||
hm–cm | miR-16.5p | 55.56 | 9 |
miR-24.3p | 33.34 | ||
miR-30b.5p | 22.23 | ||
hm–bm | miR-31.5p | 60 | 10 |
miR-660.5p | 30 | ||
miR-107 | 20 | ||
miR-30e.3p | 20 | ||
miR-29a.3p | 20 | ||
bm–cm | miR-191.5p | 57.15 | 7 |
miR-22.3p | 28.58 |
Group Comparison | miRNA Pairs | AUC | Threshold | 95% CI | Sensitivity% | Specificity% |
---|---|---|---|---|---|---|
h–c | miR-205.5p-miR-26b.5p | 0.88 | <−3.365 | 0.7212–1.039 | 30 | 100 |
miR-107-miR-26b.5p | 0.93 | <−0.4896 | 0.8074–1.053 | 80 | 100 | |
miR-375-miR-26b.5p | 0.83 | <−0.6851 | 0.6293–1.037 | 70 | 100 | |
miR-151a.5p-miR-205.5p | 0.84 | >3.152 | 0.6506–1.029 | 30 | 100 | |
miR-29b.3p-miR-205.5p | 0.88 | >2.034 | 0.7278–1.032 | 50 | 100 | |
miR-29a.3p-miR-205.5p | 0.83 | > 3.344 | 0.6368–1.023 | 20 | 100 | |
miR-331.3p-miR-205.5p | 0.79 | >5.651 | 0.5624–1.015 | 10 | 100 | |
h–b | miR-30a.5p-let-7g.5p | 0.83 | <−2.323 | 0.6107–1.056 | 33 | 100 |
b–c | miR-30c.5p-miR-30e.5p | 0.83 | >−0.7914 | 0.6351–1.032 | 20 | 100 |
miR-103a.3p-miR-30c.5p | 0.79 | <1.153 | 0.5727–1.005 | 60 | 100 | |
hm–cm | miR-20a.5p-miR-16.5p | 0.85 | <0.7185 | 0.6502–1.047 | 56 | 100 |
miR-30b.5p-miR-16.5p | 0.83 | <−2.959 | 0.6355–1.021 | 22 | 100 | |
miR-31.5p-miR-16.5p | 0.79 | <1.833 | 0.5630–1.012 | 37.5 | 100 | |
miR-24.3p-miR-200b.3p | 0.93 | <1.307 | 0.8231–1.044 | 67 | 100 | |
hm–bm | miR-31.5p-miR-200c.3p | 0.83 | <3.063 | 0.6356–1.031 | 60 | 100 |
miR-31.5p-miR-16.5p | 0.89 | <2.256 | 0.7312–1.047 | 80 | 100 | |
miR-107-miR-141.3p | 0.78 | >5.213 | 0.5454–1.010 | 10 | 100 | |
miR-31.5p-miR-200b.3p | 0.88 | <3.104 | 0.7168–1.039 | 70 | 100 | |
miR-31.5p-miR-30e.3p | 0.88 | <1.252 | 0.7067–1.049 | 80 | 100 | |
miR-29a.3p-miR-30e.3p | 0.84 | <−0.1366 | 0.6625–1.026 | 40 | 100 | |
miR-31.5p-miR-660.5p | 0.84 | <0.5698 | 0.6630–1.026 | 70 | 100 | |
miR-29a.3p-miR-660.5p | 0.86 | <−0.7334 | 0.6679–1.043 | 20 | 100 | |
miR-20a.5p-miR-16.5p | 0.73 | <0.8182 | 0.4669–0.9931 | 70 | 100 | |
miR-107-miR-31.5p | 0.87 | >1.324 | 0.6716–1.062 | 10 | 100 | |
bm–cm | miR-191.5p-miR-200a.3p | 0.83 | <2.595 | 0.6479–1.012 | 40 | 100 |
miR-191.5p-miR-31.5p | 0.91 | <0.07563 | 0.7707–1.052 | 33 | 100 | |
let-7i.5p-let-7a.5p | 0.83 | <4.612 | 0.6117–1.039 | 57.14 | 100 | |
miR-100.5p-miR-200b.3p | 0.81 | <3.867 | 0.6002–1.022 | 55.56 | 100 | |
miR-106b.5p-miR-191.5p | 0.88 | >0.3940 | 0.7234–1.037 | 30 | 100 |
miRNA | miRNA Function | Sum Effect | Direct Targets |
---|---|---|---|
miR-16.5p | Reduce cell proliferation | Tumor-suppressive | FGF2 |
Inhibit tumor growth | FGFR1 | ||
miR-20a.5p | Increase cell proliferation | Oncogenic | CX43 |
Increase colony formation | |||
miR-23b.3p | Inhibit cell proliferation | Tumor-suppressive | |
Inhibit colony formation | |||
Inhibit cell migration | |||
Inhibit cell invasion | SRC | ||
Induce cell cycle G0/G1 arrest | AKT1 | ||
Induce apoptosis | |||
Inhibit epithelial-mesenchymal transition | |||
miR-26b.5p | Inhibit cell proliferation | Tumor-suppressive | |
miR-29a.3p | Inhibit cell growth | TRIM68 | |
Inhibit cell invasion | |||
miR-29b.3p | Inhibit wound healing | Tumor-suppressive | |
Inhibit cell invasion | |||
Inhibit colony formation | |||
miR-30d.5p | Promote cell proliferation | Oncogenic | SOCS1 |
Promote cell invasion | |||
miR-101.3p | Inhibit cell growth | Tumor-suppressive | COX2 |
Inhibit tumor growth | |||
miR-106b.5p | Increase cell adhesion | Oncogenic | CASP7 |
Promote cell growth | |||
miR-125b.5p | Promote tumor growth, reduce drug sensitivity | Oncogenic | TP53 BBC3BAK1 |
miR-141.3p | Enhance cell growth | Oncogenic | |
miR-200a.3p | Inhibit cell invasion | Tumor-suppressive | GNA13 |
miR-200b.3p | Inhibit cell migration | Tumor-suppressive | |
Inhibit cell invasion | |||
Reduce cell adhesion | |||
Reduce cell detachment | |||
miR-200c.3p | Increase adhesion | Tumor-suppressive | |
Reduce cell invasion | |||
Reduce cell migration | |||
miR-205.5p | Increase adhesion | Tumor-suppressive | ZEB1 |
Reduce cell invasion | |||
Reduce cell migration | |||
Inhibit epithelial-mesenchymal transition | VIM | ||
Inhibit cell migration | |||
miR-31.5p | Inhibit cell proliferation | Tumor-suppressive | |
Inhibit cell invasion | |||
Inhibit cell migration | |||
miR-99b.5p | Tumor-suppressive | SMARCA5 | |
Inhibit cell growth | SMARCD1 | ||
MTOR | |||
miR-100.5p | Tumor-suppressive | SMARCA5 | |
Inhibit cell growth | SMARCD1 | ||
MTOR | |||
miR-331.3p | Inhibit cell proliferation | Tumor-suppressive | DOHH |
Donor Characteristics | HD | BPH | PCa |
---|---|---|---|
n = 10 | n = 10 | n = 10 | |
Age | |||
Average | 57.5 | 68 | 70.5 |
Median [1;3 quartile] | 57 [52;64] | 66 [61;78] | 74 [65;76] |
Range | 48–66 | 53–81 | 56–82 |
Total PCA, ng/mL | |||
Average | 0.817 | 11.6 | 16.3 |
Median [1;3 quartile] | 0.91 [0.4;1.1] | 8.5 [5;10.9] | 14 [11.2;21.3] |
Range | 0.13–1.54 | 1.97–41.5 | 9.24–26.4 |
PCa stage | T2-3NxMx | ||
T2 | 5 (50%) | ||
T3 | 5 (50%) | ||
Nx | 10 (100%) | ||
Mx | 10 (100%) | ||
Gleason score 6 | 5 (50%) | ||
Gleason score 7 | 5 (50%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekchnov, E.A.; Amelina, E.V.; Bryzgunova, O.E.; Zaporozhchenko, I.A.; Konoshenko, M.Y.; Yarmoschuk, S.V.; Murashov, I.S.; Pashkovskaya, O.A.; Gorizkii, A.M.; Zheravin, A.A.; et al. Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. Int. J. Mol. Sci. 2018, 19, 4088. https://doi.org/10.3390/ijms19124088
Lekchnov EA, Amelina EV, Bryzgunova OE, Zaporozhchenko IA, Konoshenko MY, Yarmoschuk SV, Murashov IS, Pashkovskaya OA, Gorizkii AM, Zheravin AA, et al. Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. International Journal of Molecular Sciences. 2018; 19(12):4088. https://doi.org/10.3390/ijms19124088
Chicago/Turabian StyleLekchnov, Evgeniy A., Evgeniya V. Amelina, Olga E. Bryzgunova, Ivan A. Zaporozhchenko, Mariya Yu. Konoshenko, Sergey V. Yarmoschuk, Ivan S. Murashov, Oxana A. Pashkovskaya, Anton M. Gorizkii, Aleksandr A. Zheravin, and et al. 2018. "Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression" International Journal of Molecular Sciences 19, no. 12: 4088. https://doi.org/10.3390/ijms19124088
APA StyleLekchnov, E. A., Amelina, E. V., Bryzgunova, O. E., Zaporozhchenko, I. A., Konoshenko, M. Y., Yarmoschuk, S. V., Murashov, I. S., Pashkovskaya, O. A., Gorizkii, A. M., Zheravin, A. A., & Laktionov, P. P. (2018). Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. International Journal of Molecular Sciences, 19(12), 4088. https://doi.org/10.3390/ijms19124088