Alternative Splicing as a Target for Cancer Treatment
Abstract
:1. Introduction
2. Alternative Splicing: The Mechanism
3. Molecular and Cellular Implications of Alternative Splicing Events in Cancer
4. Small Molecules That Modulate Splicing with Potential in Cancer Treatment
5. Antisense Oligonucleotide Technology Applied to Modulate AS Events
6. Recent Approaches Targeting Alternative Splicing for Cancer Treatment
7. Conclusions
Conflicts of Interest
References
- Lander, E.S.; Linton, L.M.; Birren, B.; Chad, N.; Zody Michael, C.; Jennifer, B.; Keri, D.; Ken, D.; Michael, D.; William, F.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Tazi, J.; Bakkour, N.; Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta 2009, 1792, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Arechavala-Gomeza, V.; Khoo, B.; Aartsma-Rus, A. Splicing modulation therapy in the treatment of genetic diseases. Appl. Clin. Genet. 2014, 7, 245–252. [Google Scholar] [PubMed]
- Chabot, B. My road to alternative splicing control: From simple paths to loops and interconnections. Biochem. Cell Biol. 2015, 93, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Montiel, N.; Rosas-Murrieta, N.H.; Martínez-Montiel, M.; Gaspariano-Cholula, M.P.; Martínez-Contreras, R.D. Microbial and natural metabolites that inhibit splicing: A powerful alternative for cancer treatment. BioMed Res. Int. 2016, 2016, 3681094. [Google Scholar] [CrossRef] [PubMed]
- Jurica, M.S.; Moore, M.J. Pre-mRNA splicing: Awash in a sea of proteins. Mol. Cell 2003, 12, 5–14. [Google Scholar] [CrossRef]
- Long, J.C.; Caceres, J.F. The SR protein family of splicing factors: Master regulators of gene expression. Biochem. J. 2009, 417, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Contreras, R.; Cloutier, P.; Shkreta, L.; Fisette, J.F.; Revil, T.; Chabot, B. 8 hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 2007, 623, 123–147. [Google Scholar] [PubMed]
- Expert-Bezançon, A.; Sureau, A.; Durosay, P.; Salesse, R.; Groeneveld, H.; Lecaer, J.P.; Marie, J. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of β-tropomyosin exon 6B. J. Biol. Chem. 2004, 279, 38249–38259. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Li, Y.; Ning, J.; Sun, D.; Lin, L.; Liu, X. HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3 and affect immunomodulatory functions in human non-small cell lung cancer cells. PLoS ONE 2013, 8, e62729. [Google Scholar] [CrossRef] [PubMed]
- Matlin, A.J.; Clark, F.; Smith, C.W. Understanding alternative splicing: Towards a cellular code. Nat. Rev. Mol. Cell Biol. 2005, 6, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Hagen, R.M.; Ladomery, M.R. Role of splice variants in the metastatic progression of prostate cancer. Biochem. Soc. Trans. 2012, 40, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Oltean, S.; Bates, D.O. Hallmarks of alternative splicing in cancer. Oncogene 2013, 33, 5311–5318. [Google Scholar] [CrossRef] [PubMed]
- Ladomery, M. Aberrant Alternative splicing is another hallmark of cancer. Int. J. Cell Biol. 2013, 2013, 463786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Fu, X.-D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013, 122, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Leva, V.; Giuliano, S.; Bardoni, A.; Camerini, S.; Crescenzi, M.; Lisa, A.; Biamonti, G.; Montecucco, A. Phosphorylation of SRSF1 is modulated by replicational stress. Nucleic Acids Res. 2012, 40, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Kaneb, H.M.; Dion, P.A.; Rouleau, G.A. The FUS about arginine methylation in ALSand FTLD. EMBO J. 2012, 31, 4249–4251. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Allemand, E.; Zhang, Z.; Karni, R.; Myers, M.P.; Krainer, A.R. Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF. Mol. Cell. Biol. 2010, 30, 2762–2774. [Google Scholar] [CrossRef] [PubMed]
- Rouvière, J.O.; Geoffroy, M.-C.; Palancade, B. Multiple crosstalks between mRNA biogenesis and SUMO. Chromosoma 2013, 122, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Sanada, M.; Shiraishi, Y.; Nowak, D.; Nagata, Y.; Yamamoto, R.; Sato, Y.; Sato-Otsubo, A.; Kon, A.; Nagasaki, M.; et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011, 478, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lawrence, M.S.; Wan, Y.; Stojanov, P.; Sougnez, C.; Stevenson, K.; Werner, L.; Sivachenko, A.; DeLuca, D.S.; Zhang, L.; et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 2011, 365, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Bruscaggin, A.; Spina, V.; Rasi, S.; Khiabanian, H.; Messina, M.; Fangazio, M.; Vaisitti, T.; Monti, S.; Chiaretti, S.; et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: Association with progression and fludarabine-refractoriness. Blood 2011, 118, 6904–6908. [Google Scholar] [CrossRef] [PubMed]
- Quesada, V.; Conde, L.; Villamor, N.; Ordonez, G.R.; Jares, P.; Bassaganyas, L.; Ramsay, A.J.; Beà, S.; Pinyol, M.; Martínez-Trillos, A.; et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 2012, 44, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Harbour, J.W.; Roberson, E.D.; Anbunathan, H.; Onken, M.D.; Worley, L.A.; Bowcock, A.M. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 2013, 45, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Masshofer, L.; Temming, P.; Rahmann, S.; Metz, C.; Bornfeld, N.; van de Nes, J.; Klein-Hitpass, L.; Hinnebusch, A.G.; Horsthemke, B.; et al. Exome sequencing identifi es recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 2013, 45, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Montiel, N.; Rosas-Murrieta, N.H.; Martínez-Contreras, R. Alternative splicing regulation: Implications in cancer diagnosis and treatment. Med. Clin. 2015, 144, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Li, C.; McCoy, J.P.; Deng, C.X.; Zheng, Z.M. SRp20 is a protooncogene critical for cell proliferation and tumor induction and maintenance. Int. J. Biol. Sci. 2010, 6, 806–826. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, K.; Akaike, Y.; Masuda, K.; Kuwano, Y.; Nishida, K.; Yamagishi, N.; Kajita, K.; Tanahashi, T.; Rokutan, K. Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells. Oncogene 2013, 33, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Fiset, S.; Chabot, B. hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro. Nucleic Acids Res. 2001, 29, 2268–2275. [Google Scholar] [CrossRef] [PubMed]
- David, C.J.; Chen, M.; Assanah, M.; Canoll, P.; Manley, J.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010, 463, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Patry, C.; Bouchard, L.; Labrecque, P.; Gendron, D.; Lemieux, B.; Toutant, J.; Lapointe, E.; Wellinger, R.; Chabot, B. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res. 2003, 63, 7679–7688. [Google Scholar] [PubMed]
- Golan-Gerstl, R.; Cohen, M.; Shilo, A.; Suh, S.S.; Bakàcs, A.; Coppola, L.; Karni, R. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res. 2011, 71, 4464–4472. [Google Scholar] [CrossRef] [PubMed]
- Huelga, S.C.; Vu, A.Q.; Arnold, J.D.; Liang, T.Y.; Liu, P.P.; Yan, B.Y.; Donohue, J.P.; Shiue, L.; Hoon, S.; Brenner, S.; et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 2012, 1, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Christofk, H.R.; Vander Heiden, M.G.; Harris, M.H.; Ramanathan, A.; Gerszten, R.E.; Wei, R.; Fleming, M.D.; Schreiber, S.L.; Cantley, L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Izaguirre, D.I.; Zhu, W.; Hai, T.; Cheung, H.C.; Krahe, R.; Cote, G.J. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol. Carcinog. 2012, 51, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, F.; Saya, H.; Bruner, J.M.; Morrison, R.S. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc. Natl. Acad. Sci. USA 1994, 91, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Mulherkar, N.; Prasad, K.V.; Prabhakar, B.S. MADD/DENN splice variant of the IG20 gene is a negative regulator of caspase-8 activation. Knockdown enhances TRAIL-induced apoptosis of cancer cells. J. Biol. Chem. 2007, 282, 11715–11721. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, J.; Harvey, S.E.; Hu, X.; Cheng, C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev. 2017, 31, 2296–2309. [Google Scholar] [CrossRef] [PubMed]
- Düchler, M. G-quadruplexes: Targets and tools in anticancer drug design. J. Drug Target 2012, 20, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Karni, R.; de Stanchina, E.; Lowe, S.W.; Sinha, R.; Mu, D.; Krainer, A.R. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 2007, 14, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Huang, B.; Shi, Z.; Han, J.; Wu, W. SRSF1 and SRSF9 RNA binding proteins promote Wnt signalling-mediated tumorigenesis by enhancing-catenin biosynthesis. EMBO Mol. Med. 2013, 5, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Lefave, C.V.; Squatrito, M.; Vorlova, S.; Rocco, G.L.; Brennan, C.W.; Holland, E.C.; Pan, Y.X.; Cartegni, L. Splicing factor hnRNP H drives an oncogenic splicing switch in gliomas. EMBO J. 2011, 30, 4084–4097. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, K.E.; Diehl, J.A.; Haiman, C.A.; Knudsen, E.S. Cyclin D1, Polymorphism, aberrant splicing and cancer risk. Oncogene 2006, 25, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Betticher, D.C.; Thatcher, N.; Altermatt, H.J.; Hoban, P.; Ryder, W.D.; Heighway, J. Alternate splicing produces a novel cyclin D1 transcript. Oncogene 1995, 11, 1005–1011. [Google Scholar] [PubMed]
- Burd, C.J.; Petre, C.E.; Morey, L.M.; Wang, Y.; Revelo, M.P.; Haiman, C.A.; Lu, S.; Fenoglio-Preiser, C.M.; Li, J.; Knudsen, E.S.; et al. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc. Natl. Acad. Sci. USA 2006, 103, 2190–2195. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dean, J.L.; Millar, E.K.; Tran, T.H.; McNeil, C.M.; Burd, C.J.; Henshall, S.M.; Utama, F.E.; Witkiewicz, A.; Rui, H.; et al. Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res. 2008, 68, 5628–5638. [Google Scholar] [CrossRef] [PubMed]
- Alt, J.R.; Cleveland, J.L.; Hannink, M.; Diehl, J.A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000, 14, 3102–3114. [Google Scholar] [CrossRef] [PubMed]
- Comstock, C.E.; Augello, M.A.; Benito, R.P.; Karch, J.; Tran, T.H.; Utama, F.E.; Tindall, E.A.; Wang, Y.; Burd, C.J.; Groh, E.M.; et al. Cyclin D1 splice variants: Polymorphism, risk, and isoformspecific regulation in prostate cancer. Clin. Cancer Res. 2009, 15, 5338–5349. [Google Scholar] [CrossRef] [PubMed]
- Paronetto, M.P.; Cappellari, M.; Busa, R.; Pedrotti, S.; Vitali, R.; Comstock, C.; Hyslop, T.; Knudsen, K.E.; Sette, C. Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 2010, 70, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Olshavsky, N.A.; Comstock, C.E.; Schiewer, M.J.; Augello, M.A. Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res. 2010, 70, 3975–8394. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Fry, E.A. Aberrant splicing of the DMP1-INK4a/ARF-MDM2-p53 pathway in cancer. Int. J. Cancer 2016, 139, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Park, J.W.; Bebee, T.W.; Warzecha, C.C.; Guo, Y.; Shang, X.; Xing, Y.; Carstens, R.P. Determination of a comprehensive alternative splicing regulatory network and combinatorial regulation by key factors during the epithelial-to-mesenchymal transition. Mol. Cell. Biol. 2016, 36, 1704–1719. [Google Scholar] [CrossRef] [PubMed]
- David, C.J.; Manley, J.L. Alternative pre-mRNA splicing regulation in cancer: Pathways and programs unhinged. Genes Dev. 2010, 24, 2343–2364. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Weiss, W.A. Alternative splicing in cancer: Implications for biology and therapy. Oncogene 2015, 34, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Prokic, I.; Cowling, B.S.; Laporte, J. Amphiphysin 2 (BIN1) in physiology and diseases. J. Mol. Med. 2014, 92, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Ge, K.; Duhadaway, J.; Du, W.; Herlyn, M.; Rodeck, U.; Prendergast, G.C. Mechanism for elimination of a tumor suppressor: Aberrant splicing of a brain-specific exon causes loss of function of BIN1 in melanoma. Proc. Natl. Acad. Sci. USA 1999, 96, 9689–9694. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, G.C.; Muller, A.J.; Ramalingam, A.; Chang, M.Y. BARthe door: Cancer suppression by amphiphysin-like gene. Biochim. Biophys. Acta 2009, 1795, 25–36. [Google Scholar] [PubMed]
- Ram, D.R.; Ilyukha, V.; Volkova, T.; Buzdin, A.; Tai, A.; Smirnova, I.; Poltorak, A. Balance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA 2016, 113, 1606–1611. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Sheng, J.R.; Mulherkar, N.; Prabhakar, B.S.; Meriggioli, M.N. Regulation of apoptosis and caspase-8 expression in neuroblastoma cells by isoforms of the IG20 gene. Cancer Res. 2008, 68, 7352–7361. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, F.J.; Pajares, M.J.; Martínez-Terroba, E.; Ajona, D.; Morales, X.; Sharma, R.D.; Pardo, F.J.; Rouzaut, A.; Rubio, A.; Montuenga, L.M.; et al. A large-scale analysis of alternative splicing reveals a key role of QKI in lung cancer. Mol. Oncol. 2016, 10, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Bria, E.; Di Modugno, F.; Sperduti, I.; Iapicca, P.; Visca, P.; Alessandrini, G.; Antoniani, B.; Pilotto, S.; Ludovini, V.; Vannucci, J.; et al. Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer. Oncotarget 2014, 5, 11054–11063. [Google Scholar] [CrossRef] [PubMed]
- Avci, N.; Deligonul, A.; Tolunay, S.; Cubukcu, E.; Fatih Olmez, O.; Ulas, A.; Hartavi, M.; Kurt, E.; Evrensel, T. Neoadjuvant chemotherapy-induced changes in immunohistochemical expression of estrogen receptor, progesterone receptor, HER2, and Ki-67 in patients with breast cancer. J. BUON 2015, 20, 45–49. [Google Scholar] [PubMed]
- Wan, J.; Sazani, P.; Kole, R. Modification of HER2 pre-mRNA alternative splicing and its effects on breast cancer cells. Int. J. Cancer 2009, 124, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Gautrey, H.; Jackson, C.; Dittrich, A.L.; Browell, D.; Lennard, T. Tyson-Capper A SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells. RNA Biol. 2015, 12, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Fry, E.A. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer. Genet. Epigenet. 2015, 7, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Panwar, B.; Eksi, R.; Kleer, C.; Guan, Y.; Omenn, G.S. Computational inferences of the functions of alternative/noncanonical splice isoforms specific to HER2+/ER−/PR-breast cancers, a chromosome 17 C-HPP study. J. Proteome Res. 2015, 14, 3519–3529. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.C.; Knowles, M.A. Altered splicing of FGFR1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF1 in bladder cancer. Am. J. Pathol. 2010, 177, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Kotzsch, M.; Sieuwerts, A.M.; Grosser, M.; Meye, A.; Fuessel, S.; Meijer-van Gelder, M.E.; Smid, M.; Schmitt, M.; Baretton, G.; Luther, T.; et al. Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: Identification of rab31 as an independent prognostic factor. Breast Cancer Res. Treat. 2008, 111, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, K.L.; Sun, Y.; Yang, Y.; Chen, X.Y.; Kong, Q.Y.; Wu, M.L.; Liu, J.; Li, H. Frequent S100A4 Expression with unique splicing pattern in gastric cancers: A hypomethylation event paralleled with E-cadherin reduction and wnt activation. Transl. Oncol. 2008, 1, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Krisenko, M.O.; Geahlen, R.L. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochim. Biophys. Acta 2015, 1853, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Prinos, P.; Garneau, D.; Lucier, J.F.; Gendrom, D.; Couture, S.; Boivin, M.; Brosseau, J.P.; Lapoiinte, E.; Thibault, P.; Durand, M.; et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol. 2011, 18, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Sebestyen, E.; Zawisza, M.; Eyras, E. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res. 2015, 43, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Hori, Y.; Terano, H.; Okuhara, M.; Manda, T.; Matsumoto, S.; Shimomura, K. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. 1996, 49, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Sato, B.; Fujita, T.; Takase, S.; Terano, H.; Okuhara, M. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 1996, 49, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Kaida, D.; Motoyoshi, H.; Tashiro, E.; Nojima, T.; Hagiwara, M.; Ishigami, K.; Watanabe, H.; Kitahara, T.; Yoshida, T.; Nakajima, H.; et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 2007, 3, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Osman, S.; Albert, B.J.; Wang, Y.; Li, M.; Czaicki, N.L.; Koide, K. Structural requirements for the antiproliferative activity of pre-mRNA splicing inhibitor FR901464. Chemistry 2011, 17, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.F.; Jamison, T.F.; Jacobsen, E.N. FR901464, total synthesis, proof of structure, and evaluation of synthetic analogues. J. Am. Chem. Soc. 2001, 123, 9974–9983. [Google Scholar] [CrossRef] [PubMed]
- Motoyoshi, H.; Horigome, M.; Ishigami, K.; Yoshida, T.; Horinouchi, S.; Yoshida, M.; Watanabe, H.; Kitahara, T. Structure-activity relationship for FR901464, a versatile method for the conversion and preparation of biologically active biotinylated probes. Biosci. Biotechnol. Biochem. 2004, 68, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Corrionero, A.; Miñana, B.; Valcárcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011, 25, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Lagisetti, C.; Pourpak, A.; Goronga, T.; Jiang, Q.; Cui, X.; Hyle, J.; Lahti, J.M.; Morris, S.W.; Webb, T.R. Synthetic mRNA splicing modulator compounds with in vivo antitumor activity. J. Med. Chem. 2009, 52, 6979–6990. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.W.; Kaida, D.; Nishimura, S.; Matsuyama, A.; Yashiroda, Y.; Taoka, H.; Ishigami, K.; Watanabe, H.; Nakajima, H.; Tani, T.; et al. Inhibition of splicing and nuclear retention of pre-mRNA by spliceostatin A in fission yeast. Biochem. Biophys. Res. Commun. 2007, 364, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Chen, Z.H. Enantioselective syntheses of FR901464 and spliceostatin A: Potent inhibitors of spliceosome. Org. Lett. 2013, 15, 5088–5091. [Google Scholar] [CrossRef] [PubMed]
- Roybal, G.A.; Jurica, M.S. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res. 2010, 38, 6664–6672. [Google Scholar] [CrossRef] [PubMed]
- Jurica, M.S. Searching for a wrench to throw into the splicing machine. Nat. Chem. Biol. 2008, 4, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Albert, B.J.; Sivaramakrishnan, A.; Naka, T.; Czaicki, N.L.; Koide, K. Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J. Am. Chem. Soc. 2007, 129, 2648–2659. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Koide, K. Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem. Biol. 2013, 8, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.J.; Wang, Q.; Kennedy, C.J.; Silver, P.A. An alternative splicing network links cell-cycle control to apoptosis. Cell 2010, 142, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Albert, B.J.; McPherson, P.A.; O’Brien, K.; Czaicki, N.L.; Destefino, V.; Osman, S.; Li, M.; Day, B.W.; Grabowski, P.J.; Moore, M.J.; et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol. Cancer Ther. 2009, 8, 2308–2318. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.O.; Shin, S.; Lee, H.J.; Chun, H.K.; Chung, A.S. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression. Mol. Cancer Ther. 2006, 5, 2666–2675. [Google Scholar] [CrossRef] [PubMed]
- Pederiva, C.; Böhm, S.; Julner, A.; Farnebo, M. Splicing controls the ubiquitin response during DNA double-strand break repair. Cell Death Differ. 2016, 23, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Matlin, A.J.; Lowell, A.M.; Moore, M.J. The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. J. Biol. Chem. 2008, 283, 33147–33154. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.M.; Harmin, D.A.; Boswell, S.A.; Cloonan, N.; Mullen, T.E.; Ling, J.J.; Miller, N.; Kuersten, S.; Ma, Y.C.; McCarroll, S.A.; et al. SnapShot-Seq: A method for extracting genome-wide, in vivo mRNA dynamics from a single total RNA sample. PLoS ONE 2014, 9, e89673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizui, Y.; Sakai, T.; Iwata, M.; Uenaka, T.; Okamoto, K.; Shimizu, H.; Yamori, T.; Yoshimatsu, K.; Asada, M. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J. Antibiot. 2004, 57, 188–1896. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, A.; Kotake, Y.; Takahashi, K.; Kadowaki, T.; Matsumoto, Y.; Minoshima, Y.; Sugi, N.H.; Sagane, K.; Hamaguchi, M.; Iwata, M.; et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 2011, 278, 4870–4880. [Google Scholar] [CrossRef] [PubMed]
- Kim Guisbert, K.S.; Guisbert, E. SF3B1 is a stress-sensitive splicing factor that regulates both HSF1 concentration and activity. PLoS ONE 2017, 12, e0176382. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Muguruma, N.; Nakagawa, T.; Okamoto, K.; Kimura, T.; Kitamura, S.; Yano, H.; Sannomiya, K.; Goji, T.; Miyamoto, H.; et al. High antitumor activity of pladienolide B and its derivative in gastric cancer. Cancer Sci. 2014, 105, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Seki-Asano, M.; Okazaki, T.; Yamagishi, M.; Sakai, N.; Takayama, Y.; Hanada, K.; Morimoto, S.; Takatsuki, A.; Mizoue, K. Isolation and characterization of a new 12-membered macrolide FD-895. J. Antibiot. 1994, 47, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, M.K.; Kumar, D.; Villa, R.; La Clair, J.J.; Benner, C.; Sasik, R.; Jones, H.; Ghia, E.M.; Rassenti, L.Z.; Kipps, T.J.; et al. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica 2015, 100, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Lagisetti, C.; Pourpak, A.; Jiang, Q.; Cui, X.; Goronga, T.; Morris, S.W.; Webb, T.R. Antitumor compounds based on a natural product consensus pharmacophore. J. Med. Chem. 2008, 51, 6220–6224. [Google Scholar] [CrossRef] [PubMed]
- Lagisetti, C.; Yermolina, M.V.; Sharma, L.K.; Palacios, G.; Prigaro, B.J.; Webb, T.R. Pre-mRNA splicing-modulatory pharmacophores: The total synthesis of herboxidiene, a pladienolide-herboxidiene hybrid analog and related derivatives. ACS Chem. Biol. 2014, 9, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Vogt, A.; Forsyth, C.J.; Koide, K. Comparison of splicing factor 3b inhibitors in human cells. Chembiochem 2013, 14, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Lv, K.; Ma, N.; Cárdenas, E.L.; Effenberger, K.A.; Jurica, M.S. Design, synthesis and in vitro splicing inhibition of desmethyl and carba-derivatives of herboxidiene. Org. Biomol. Chem. 2016, 14, 5263–5271. [Google Scholar] [CrossRef] [PubMed]
- Xargay-Torrent, S.; López-Guerra, M.; Rosich, L.; Montraveta, A.; Roldán, J.; Rodríguez, V.; Villamor, N.; Aymerich, M.; Lagisetti, C.; Webb, T.R.; et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget 2015, 6, 22734–22749. [Google Scholar] [CrossRef] [PubMed]
- Convertini, P.; Shen, M.; Potter, P.M.; Palacios, G.; Lagisetti, C.; de la Grange, P.; Horbinski, C.; Fondufe-Mittendorf, Y.N.; Webb, T.R.; Stamm, S. Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Res. 2014, 42, 4947–4961. [Google Scholar] [CrossRef] [PubMed]
- Lagisetti, C.; Palacios, G.; Goronga, T.; Freeman, B.; Caufield, W.; Webb, T.R. Optimization of antitumor modulators of pre-mRNA splicing. J. Med. Chem. 2013, 56, 10033–10044. [Google Scholar] [CrossRef] [PubMed]
- Thurman, M.; van Doorn, J.; Danzer, B.; Webb, T.R.; Stamm, S. Changes in Alternative Splicing as Pharmacodynamic Markers for Sudemycin D6. Biomark. Insights 2017, 12, 1177271917730557. [Google Scholar] [CrossRef] [PubMed]
- Makowski, K.; Vigevani, L.; Albericio, F.; Valcárcel, J.; Álvarez, M. Sudemycin K: A Synthetic Antitumor Splicing Inhibitor Variant with Improved Activity and Versatile Chemistry. ACS Chem. Biol. 2017, 2, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Biswas, S.; Berg, M.G.; Antapli, C.M.; Xie, F.; Wang, Q.; Tang, M.C.; Tang, G.L.; Zhang, L.; Dreyfuss, G.; et al. Genomics-guided discovery of thailanstatins A, B, and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J. Nat. Prod. 2013, 76, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, H.; Biswas, S.; Cheng, Y.Q. Improved production of cytotoxic thailanstatins A and D through metabolic engineering of Burkholderia thailandensis MSMB43 and pilot scale fermentation. Synth. Syst. Biotechnol. 2016, 1, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Chang, W.H.; Chang, Y.S.; Liu, T.Y.; Chen, Y.C.; Wu, Y.C.; Chang, J.G. 4β-hydroxywithanolide E modulates alternative splicing of apoptotic genes in human hepatocellular carcinoma Huh-7 cells. Sci. Rep. 2017, 7, 7290. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.Y.; Chiu, C.C.; Chang, F.R.; Chen, J.Y.; Hwang, C.C.; Hseu, Y.C.; Yang, H.L.; Lee, A.Y.; Tsai, M.T.; Guo, Z.L.; et al. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest. BMC Cancer 2010, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Chon, H.J.; Bae, K.J.; Lee, Y.; Kim, J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front. Pharmacol. 2015, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Choi, K.; Kang, H.; Lee, S.Y.; Chi, S.W.; Lee, M.S.; Song, J.; Im, D.; Choi, Y.; Cho, S. Identification of a novel function of CX-4945 as a splicing regulator. PLoS ONE 2014, 9, e94978. [Google Scholar] [CrossRef] [PubMed]
- Masłyk, M.; Janeczko, M.; Martyna, A.; Kubiński, K. CX-4945, the protein kinase CK2 inhibitor and anti-cancer drug shows anti-fungal activity. Mol. Cell. Biochem. 2017, 435, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.; Kageyama, R.; Naruse, N.; Tsukahara, N.; Funahashi, Y.; Kitoh, K.; Watanabe, Y. Borrelidin is an angiogenesis inhibitor; disruption of angiogenic capillary vessels in a rat aorta matrix culture model. J. Antibiot. 1997, 50, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Habibi, D.; Ogloff, N.; Jalili, R.B.; Yost, A.; Weng, A.P.; Ghahary, A.; Ong, C.J. Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Investig. New Drugs 2012, 30, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Woolard, J.; Vousden, W.; Moss, S.J.; Krishnakumar, A.; Gammons, M.V.; Nowak, D.G.; Dixon, N.; Micklefield, J.; Spannhoff, A.; Bedford, M.T.; et al. Borrelidin modulates the alternative splicing of VEGF in favour of anti-angiogenic isoforms. Chem. Sci. 2011, 2011, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Younis, I.; Berg, M.; Kaida, D.; Dittmar, K.; Wang, C.; Dreyfuss, G. Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol. Cell. Biol. 2010, 30, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Pawellek, A.; McElroy, S.; Samatov, T.; Mitchell, L.; Woodland, A.; Ryder, U.; Gray, D.; Lührmann, R.; Lamond, A.I. Identification of small molecule inhibitors of pre-mRNA splicing. J. Biol. Chem. 2014, 289, 34683–34698. [Google Scholar] [CrossRef] [PubMed]
- Dominski, Z.; Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 1993, 90, 8673–8677. [Google Scholar] [CrossRef] [PubMed]
- Suwanmanee, T.; Sierakowska, H.; Lacerra, G.; Svasti, S.; Kirby, S.; Walsh, C.; Fucharoen, S.; Kole, R. Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol. Pharmacol. 2002, 62, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Svasti, S.; Suwanmanee, T.; Fucharoen, S.; Moulton, H.M.; Nelson, M.H.; Maeda, N.; Smithies, O.; Kole, R. RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc. Natl. Acad. Sci. USA 2009, 106, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Blanco, M.A.; Baraniak, A.P.; Lasda, E.L. Alternative splicing in disease and therapy. Nat. Biotechnol. 2004, 22, 535–546. [Google Scholar] [PubMed]
- Faustino, N.A.; Cooper, T.A. Pre-mRNA splicing and human disease. Genes Dev. 2003, 17, 419–437. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Sahashi, K.; Hung, G.; Rigo, F.; Passini, M.A.; Bennett, C.F.; Krainer, A.R. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010, 24, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Donahue, C.P.; Muratore, C.; Wu, J.Y.; Kosik, K.S.; Wolfe, M.S. Stabilization of the tau exon 10 stem loop alters pre-mRNA splicing. J. Biol. Chem. 2006, 281, 23302–23306. [Google Scholar] [CrossRef] [PubMed]
- Kalbfuss, B.; Mabon, S.A.; Misteli, T. Correction of alternative splicing of Tau in front temporal dementia and parkinsonism linked to chromosome 17. J. Biol. Chem. 2001, 276, 42986–42993. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.L.; Rabinowitz, A.; Chen, Y.C.; Yokota, T.; Yin, H.; Alter, J.; Jadoon, A.; Bou-Gharios, G.; Partridge, T. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc. Natl. Acad. Sci. USA 2005, 102, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Goyenvalle, A.; Babbs, A.; Powell, D.; Kole, R.; Fletcher, S.; Wilton, S.D.; Davies, K.E. Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol. Ther. 2010, 18, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Mercatante, D.R.; Bortner, C.D.; Cidlowski, J.A.; Kole, R. Modification of alternative splicing of bcl-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J. Biol. Chem. 2001, 276, 16411–16417. [Google Scholar] [CrossRef] [PubMed]
- Mercatante, D.R.; Mohler, J.L.; Kole, R. Cellular response to an antisense-mediated shift of bcl-x pre-mRNA splicing and antineoplastic agents. J. Biol. Chem. 2002, 277, 49374–49382. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.K.; Zhang, Q.Q.; Wyatt, J.R.; Dean, N.M. Induction of endogenous bcl-xS through the control of bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 1999, 17, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.A.; Li, S.D.; Yang, A.; Huang, L.; Kole, R. Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res. 2010, 38, 8348–8356. [Google Scholar] [CrossRef] [PubMed]
- Bruno, I.G.; Jin, W.; Cote, G.J. Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum. Mol. Genet. 2004, 13, 2409–2420. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Pollard, J.M.; Gatti, R.A. Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc. Natl. Acad. Sci. USA 2007, 104, 6007–6012. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Kole, R. Analysis of prostate-specific membrane antigen splice variants in LNCap cells. Oligonucleotides 2006, 16, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Sanford, J.R.; Ellis, J.; Caceres, J.F. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem. Soc. Trans. 2005, 33, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Cartegni, L.; Krainer, A.R. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol. 2003, 10, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Wilusz, J.E.; Devanney, S.C.; Caputi, M. Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Res. 2005, 33, 6547–6554. [Google Scholar] [CrossRef] [PubMed]
- Villemaire, J.; Dion, I.; Elela, S.A.; Chabot, B. Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J. Biol. Chem. 2003, 278, 50031–50039. [Google Scholar] [CrossRef] [PubMed]
- Sazani, P.; Kole, R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Investig. 2003, 112, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.K.; Roth, C.M. Antisense technology in molecular and cellular bioengineering. Curr. Opin. Biotechnol. 2003, 14, 505–511. [Google Scholar] [CrossRef]
- Stahel, R.A.; Zangemeister-Wittke, U. Antisense oligonucleotides for cancer therapy-an overview. Lung Cancer 2003, 41, S81–S88. [Google Scholar] [CrossRef]
- Gleave, M.E.; Monia, B.P. Antisense therapy for cancer. Nat. Rev. Cancer 2005, 5, 468. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Montiel, N.; Rosas-Murrieta, N.; Martínez-Contreras, R. Peptidic tools applied to redirect alternative splicing events. Peptides 2015, 67, 1–11. [Google Scholar]
- De Smet, M.D.; Meenken, C.; van den Horn, G.J. Fomivirsen—A phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 1999, 7, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Dermot, R.; Neely, G.; Bassendine, M.F. Antisense technology to lower LDL cholesterol. Lancet 2010, 375, 959–961. [Google Scholar]
- Mendell, J.R.; Rodino-Klapac, L.R.; Sahenk, Z.; Roush, K.; Bird, L.; Lowes, L.P.; Alfano, L.; Gomez, A.M.; Lewis, S.; Kota, J.; et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 2013, 74, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Corey, D.R. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat. Neurosci. 2017, 20, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Paton, D.M. Nusinersen: Antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today 2017, 53, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Haferkamp, B.; Zhang, H.; Lin, Y.; Yeap, X.; Bunce, A.; Sharpe, J.; Xiang, J. BaxΔ2 is a novel bax isoform unique to microsatellite unstable tumors. J. Biol. Chem. 2012, 287, 34722–34729. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Harada, M.; Shimozato, O.; Souda, H.; Takiguchi, N.; Nabeya, Y.; Kamijo, T.; Akita, H.; Anzai, N.; Chiba, K.; et al. Cancer-type OATP1B3 mRNA has the potential to become a detection and prognostic biomarker for human colorectal cancer. Biomark. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Aljada, A.; Doria, J.; Saleh, A.M.; Al-Matar, S.H.; AlGabbani, S.; Shamsa, H.B.; Ahmed, A.A. Lamin A/C splice variant expression as a possible diagnostic marker in breast cancer. Cell. Oncol. 2016, 39, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.D.; Ceniccola, K.; Hwang, S.; Andrawis, R.; Horvath, A.; Freedman, J.A.; Olender, J.; Knapp, S.; Ching, T.; Garmire, L.; et al. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nat. Commun. 2017, 8, 15921. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Kane, V.D.; Morré, D.M.; Morré, D.J. hnRNP F directs formation of an exon 4 minus variant of tumor-associated NADH oxidase (ENOX2). Mol. Cell. Biochem. 2011, 357, 55–63. [Google Scholar] [CrossRef] [PubMed]
Gene | Description | AS Event | Role in Cancer | References |
---|---|---|---|---|
BIN1 | This gene encodes several isoforms of a nucleocytoplasmic adaptor protein, one of which was initially identified as a Myc-interacting protein with features of a tumor suppressor. | Alternative exclusion/inclusion of the cassette exon 7. This shorter variant is also called IId and S1/R3-6 and binds dynamin, synaptojanin, and clathrin. | Caspase-independent apoptotic activation is impaired when aberrant isoforms are expressed. | [55,56 ,57] |
CASP8 | Member of the caspase family, which may interact with Fas-interacting protein FADD. | Alternative exclusion/inclusion of the cassette exon 4. | This protein is involved in apoptosis induced by Fas and various apoptotic stimuli. | [58,59] |
ENAH | Response factor to mitogenic stimuli, such as EGF that triggers MAPK activation. | Alternative exclusion/inclusion of the cassette exon 12. | Functional role of hMena + 11a in breast cancer cell proliferation. | [60,61] |
ERBB2 | Member of the epidermal growth factor (EGF) receptor family of receptor tyrosine kinases that lacks the binding domain for growth factors. However, it can heterodimerize with other ligand-bound EGF receptor family members, enhancing kinase-mediated activation of downstream signaling pathways, such as those involving MAPK and IP3K. | Alternative start site, where isoform a corresponds to the full length, while isoform b shows a shorter N-terminus. Alternative exclusion/inclusion of the cassette exon 5. | Amplification and/or overexpression of this gene has been reported in numerous cancers, including breast and ovarian tumors. | [62,63, 64,65,66] |
FGFR1 | Member of a family of trans-membranous receptors that possess an extracellular domain composed of three Ig-like domains, a single transmembrane helix-domain and an intracellular domain with tyrosine kinase activity. | Alternative site at the 5′ UTR, that generates the use of an alternative promoter, the inclusion of an alternate exon, the use of an alternate translation start site, and uses an alternate in-frame splice site, lacking two internal segments. | Key roles in proliferation, differentiation, and tumorigenesis. | [67] |
PLAUR | uPAR was originally identified on the monocyte-like human cell line U937 as the membrane receptor for the serine protease urokinase-type plasminogen activator (uPA). | Alternative exclusion/inclusion of the cassette exon 5, which partially covers domain II of the receptor. The short splice variant lacking exon 5 has prognostic relevance in breast cancer. | Implicated in cancer invasion and metastasis. | [68] |
S100A4 | The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. | Variant 1 has an alternate 5′ UTR, compared to variant 2. Both variants 1 and 2 encode the same isoform. | Involved in the regulation of several cellular processes such as cell cycle progression and differentiation. | [69] |
SYK | Member of the family of non-receptor type Tyr protein kinases. Widely expressed in hematopoietic cells and involved in coupling activated immunoreceptors to downstream signaling events that mediate diverse cellular responses. | The short isoform lacks the alternative in-frame exon 7, resulting in isoform Syk (S). The longest isoform Syk (L) corresponds to the full-length transcript. | Involved in proliferation, differentiation, and phagocytosis, it is considered a modulator of epithelial cell growth and a potential tumor suppressor in human breast carcinomas. | [70,71] |
Gene | Chr | Cancer Type * | No. Mut | Position | Ref Allele | New Base |
---|---|---|---|---|---|---|
APC | 5 | CRC | 10 | 112128143, 112116601, 112173251, 112128143, 112128143, 112128143, 112128143, 112136975, 112128143, 112128143 | C, G, C, C, C, C, C, G, C, C | T, A, T, T, T, T, T, A, T, T |
LUAD | 3 | 112170646, 112170864, 112111325 | A, T, G | G, C, T | ||
ARID1A | 1 | BRCA | 1 | 27099478 | G | A |
ESO | 1 | 27100207 | C | T | ||
LUAD | 1 | 27102066 | A | G | ||
LUSC | 3 | 27100389, 27092947, 27092948 | G, G, G | A, C, T | ||
UCEC | 6 | 27100207, 27088642, 27057642, 27100207, 27100207, 27100207 | C, G, G, C, C, C | T, T, T, T, T, T | ||
ATM | 11 | BLCA | 1 | 108196036 | G | A |
BRCA | 4 | 108151895, 108202170, 108160511, 108186737 | G, G, TCACTATATCAACCAAAGGTAAATAACA, G | A, A, -, A | ||
CLL | 2 | 108172374, 108200943 | G. A | T, C | ||
CRC | 1 | 108218092 | G | C | ||
DLBCL | 1 | 108190784 | A | G | ||
ESO | 1 | 108202170 | G | A | ||
HNSC | 3 | 108141873, 108121428, 108236053 | C, G, G | T, C, A | ||
KIRC | 2 | 108141874, 108206572 | G, G | A, C | ||
LUAD | 4 | 108199966, 108175579, 108205695, 108119829 | G, G, G, G | A, T, T, T | ||
LUSC | 1 | 108098502 | G | A | ||
MEL | 1 | 108106398 | A | G | ||
UCEC | 4 | 108186548, 108198485, 108158326, 108175401 | A, G, G, G | G, T, T, A | ||
BIN1 | 2 | LUAD | 1 | 127811020 | G | C |
BLCA | 1 | 127834283 | C | T | ||
BRAF | 7 | LUAD | 4 | 140453193, 140453193, 140508693, 140494268 | T, T, C, C | C, C, A, A |
LUSC | 1 | 140449220 | T | C | ||
MM | 1 | 140453193 | T | C | ||
OV | 1 | 140453193 | T | C | ||
CASP8 | 2 | HNSC | 1 | 202151181 | G | C |
LUAD | 1 | 202137501 | T | G | ||
UCEC | 4 | 202137666, 202150039, 202137500, 202137360 | G, C, G, G | A, T, A, T | ||
HNSC | 3 | 202137620, 202137359, 202150039 | G, A, C | C, G, T | ||
CDKN2A | 9 | BLCA | 1 | 21971209 | T | A |
CRC | 1 | 21970974 | C | T | ||
HNSC | 9 | 21971208, 21971209, 21968242, 21968242, 21971208, 21968243, 21968242, 21970900, 21970900 | C, T, C, C, C, T, C, CC, C | T, A, T, T, T, C, T, TT, A | ||
KIRC | 1 | 21970901 | C | T | ||
LUAD | 3 | 21968242, 21971208, 21971209 | C, C, T | A, A, A | ||
LUSC | 4 | 21968243, 21994137, 21994138, 21970901 | T, CC, C, C | A, GA, A, T | ||
CREBBP | 16 | BRCA | 2 | 3790551, 3827658 | C, T | A, C |
DLBCL | 3 | 3808853, 3817719, 3807288 | A, A, C | G, C, A | ||
HNSC | 2 | 3786204, 3820572 | C, G | A, C | ||
KIRC | 1 | 3843626 | G | A | ||
OV | 1 | 3789724 | A | C | ||
EGFR | 7 | GBM | 1 | 55268881 | G | A |
LUAD | 2 | 55231427, 55220240 | G, G | C, T | ||
LUSC | 1 | 55220237 | A | G | ||
MM | 1 | 55221845 | C | A | ||
NB | 1 | 55240678 | C | A | ||
ENAH | 1 | LUAD | 1 | 225702299 | C | T |
CRC | 1 | 225692754 | G | A | ||
UCEC | 1 | 225695652 | C | T | ||
ERBB2 | 17 | ESO | 2 | 37880261, 37880261 | G, G | T, T |
MEL | 1 | 37872858 | G | A | ||
LUAD | 1 | 37876038 | A | T | ||
LUSC | 1 | 37866733 | C | T | ||
KIRC | 1 | 37876087 | G | C | ||
FAT1 | 4 | HNSC | 4 | 187531171, 187535344, 187524190, 187534263 | T, C, T, C | A, T, C, T |
KIRC | 1 | 187521052 | C | T | ||
LUAD | 2 | 187510374, 187527368 | C, C | A, G | ||
LUSC | 1 | 187535499 | C | G | ||
UCEC | 3 | 187521515, 187530956, 187530956 | C, G, G | G, A, A | ||
FBXW7 | 4 | CRC | 3 | 153249361, 153258955, 153332456 | T, T, T | 1-, A, G |
HNSC | 1 | 153251878 | AGTTACCTT | - | ||
UCEC | 2 | 153303342, 153253747 | C, C | T, - | ||
FGFR1 | 8 | MEL | 1 | 38282218 | C | T |
CRC | 2 | 38285864, 38285864 | G, G | A, A | ||
KRAS | 12 | CRC | 1 | 25378706 | C | A |
MLL2 | 12 | BLCA | 3 | 49433217, 49433004, 49446856 | CC, C, C | AA, A, T |
GBM | 1 | 49416373 | C | G | ||
HNSC | 6 | 49446208, 49435775, 49428364, 49448535, 49428450, 49446699 | C, T, C, C, C, T | A, C, T, T, G, C | ||
LUSC | 7 | 49415826, 49443464, 49444670, 49436428, 49446494, 49442443, 49448310 | C, C, T, C, T, T, C | G, A, A, -, A, C, T | ||
UCEC | 1 | 49433506 | C | T | ||
MLL3 | 7 | BLCA | 3 | 151919766, 151891214, 151864230 | A, C, C | G, G, T |
BRCA | 5 | 152012424, 151904386, 151859199, 151859200, 152012425 | C, T, -, A, T | A, C, A, -, G | ||
GBM | 2 | 151962124, 151892993 | T, T | C, C | ||
HNSC | 2 | 151884562, 151891214 | C, C | A, G | ||
KIRC | 1 | 151848093 | C | G | ||
LUAD | 4 | 151871326, 151933018, 151850040, 151944986 | A, C, C, C | C, A, G, A | ||
LUSC | 1 | 151842380 | G | T | ||
MEL | 1 | 151871216 | C | T | ||
UCEC | 3 | 151866334, 152009030, 151896364 | C, C, C | A, A, T | ||
MTOR | 1 | GBM | 1 | 11188183 | C | T |
HNSC | 1 | 11206848 | C | A | ||
LUAD | 2 | 11270872, 11292494 | T, T | A, A | ||
MEL | 1 | 11264758 | G | A | ||
NF1 | 17 | BRCA | 3 | 29508508, 29670148, 29588873 | 1-, TAAAAGG, TAGG | T, -, - |
DLBCL | 1 | 29560018 | A | G | ||
ESO | 1 | 29554309 | G | C | ||
GBM | 7 | 29586049, 29685497, 29508439, 29684388, 29663349, 29508438, 29556484 | G, G, G, GTAA, A, A, G | A, -, A, -, G, G, A | ||
HNSC | 2 | 29548868, 29528502 | G, A | T, T | ||
KIRC | 1 | 29508512 | G | T | ||
LUAD | 11 | 29576138, 29562791, 29556992, 29585520, 29562627, 29548866, 29657518, 29557278, 29553702, 29665721, 29559717 | G, G, G, G, A, A, T, G, G, G, G | A, T, T, C, T, T, A, T, T, C, T | ||
LUSC | 2 | 29670025, 29663350 | A, G | G, T | ||
MEL | 1 | 29559899 | GG | AA | ||
MM | 1 | 29657517 | G | A | ||
OV | 1 | 29509525 | G | T | ||
UCEC | 3 | 29548949, 29654857, 29483145 | T, G, G | C, A, A | ||
NOTCH1 | 9 | HNSC | 9 | 139409741, 139413277, 139412204, 139397633, 139412204, 139407990, 139401756, 139392011, 139409935 | C, C, C, C, C, C, C, C, - | G, A, T, T, A, T, T, T, TG, |
LUAD | 1 | 139405257 | C | A | ||
LUSC | 2 | 139401756, 139401757 | C, C | A, A | ||
UCEC | 2 | 139401758, 139438554 | C, C | A, A | ||
PBRM1 | 3 | HNSC | 1 | 52595783 | C | T |
KIRC | 20 | 52685756, 52676059, 52661388, 52643328, 52676063, 52692333, 52678806, 52582081, 52702514, 52702660, 52696148, 52682360, 52662911, 52702662, 52661288, 52610715, 52663052, 52682459, 52677265, 52712615 | A, T, T, C, T, T, C, A, C, T, C, CTT, T, C, C, C, C, C, G, T | G, -, A, T, A, A, T, -, T, A, A, -, -, T, A, G, A, T, -, C | ||
LUSC | 2 | 52621527, 52623085 | C, C | T, G | ||
UCEC | 2 | 52643330, V | G, C | A, T | ||
PIK3CA | 3 | BRCA | 6 | 178917478, 178917478, 178928219, 178917478, 178942489, 178938775 | G, G, -, G, C, T | A, A, ATA, A, T, A |
GBM | 4 | 178916614, 178917478, 178952152, 178916614 | A, G, A, A | G, A, G, G | ||
HNSC | 1 | 178917478 | G | A | ||
LUSC | 1 | 178917478 | G | A | ||
UCEC | 8 | 178917478, 178916537, 178917478, 178917478, 178916614, 178917478, 178917478, 178917478 | G, G, G, G, A, G, G, G | A, T, A, A, G, A, A, A | ||
PIK3R1 | 5 | GBM | 5 | 67591246, 67591152, 67591246, 67591247, 67575431 | A, T, A, GGT, - | G, -, G, -, A |
LUAD | 1 | 67588928 | G | T | ||
OV | 1 | 67588086 | G | C | ||
PRAD | 1 | 67591246 | A | G | ||
UCEC | 9 | 67591154, 67591153, 67591246, 67588927, 67588927, 67591246, 67590504, 67591246, 67569842 | T, G, TCAAAACTGTTTTTCAGGTGGTTGACTC, -, -, A, A, A, GTGA | 1-, -, -, G, G, G, G, G, - | ||
PLAUR | 19 | LUSC | 1 | 44159726 | C | T |
PTEN | 10 | BRCA | 5 | 89653784, 89711873, 89685316, 89712018, 89692976 | A, A, T, T, TTCTATGGGGAAGTAAGGACCAGAGACAAAAAGGTAAG | T, G, -, C, - |
CRC | 1 | 89711876 | G | A | ||
GBM | 9 | 89653779, 89725042, 89690846, 89685315, 89685314, 89720650, 89693009, 89720650, 89692768 | 1-, A, G, GTAA, T, G, G, G, A | AGAT, G, T, -, A, A, T, A, C | ||
HNSC | 1 | 89712017 | G | A | ||
KIRC | 3 | 89712017, 89725043, 89725042 | G, G, A | A, A, G | ||
LUAD | 2 | 89720650, 89685269 | G, G | A, T | ||
PRAD | 1 | 89711874 | G | A | ||
UCEC | 21 | 89717609, 89685315, 89653780, 89685314, 89725043, 89717778, 89690801, 89725043, 89711875, 89725043, 89711875, 89720875, 89717609, 89712016, 89725042, 89720650, 89720876, 89711875, 89624305, 89690802, 89712017 | G, GTAA, A, TG, G, T, A, G, G, G, G, G, G, AGTA, AATTTTCTTTCTCTAGGTGAAGCT, G, G, G, T, G, G | T, -, C, -, A, C, G, A, A, T, A, T, C, -, -, A, A, A, G, A, T | ||
RB1 | 13 | BLCA | 4 | 48947629, 48947629, 49027248, 48947629 | G, G, G, G | T, C, A, A |
CRC | 1 | 49037867 | A | T | ||
GBM | 9 | 49039505, 49033823, 48953730, 49030485, 48953730, 48947629, 48916734, 48953730, 48951053 | G, G, C, G, C, G, G, C, G | T, T, T, C, T, A, A, T, C | ||
HNSC | 4 | 49033970, 48954379, 48955580, 48947540 | G, T, G, G | T, G, A, A | ||
KIRC | 1 | 49030485 | G | A | ||
LUAD | 7 | 49037972, 49027127, 48941739, 48916851, 48954377, 48939032, 48934152 | G, A, G, G, A, -, G | A, G, T, T, T, A, - | ||
LUSC | 5 | 48916733, 48916852, 48881542, 48916850, 48953728 | A, T, G, G, A | G, G, T, T, G | ||
MEL | 2 | 49030485, 48954300 | G, G | A, A | ||
OV | 1 | 48951053 | G | C | ||
UCEC | 2 | 49039506, 48947629 | T, G | A, A | ||
SETD2 | 3 | BLCA | 2 | 47142947, 47155366 | C, G | T, A |
GBM | 1 | 47147485 | A | G | ||
KIRC | 7 | 47079269, 47143045, 47155365, 47155365, 47059128, 47079155, 47161671 | T, A, C, C, C, C, C | A, T, A, T, T, G, G | ||
LUAD | 2 | 47129738, 47205413 | C, A | T, G | ||
OV | 1 | 47125871 | A | T | ||
UCEC | 1 | 47127805 | C | A | ||
SMARCA4 | 19 | ESO | 1 | 11113703 | A | G |
KIRC | 1 | 11129632 | G | A | ||
LUAD | 4 | 11141570, 11169565, 11107221, 11136097 | G, G, G, G | T, T, T, T | ||
LUSC | 1 | 11096082 | G | T | ||
SPEN | 1 | BLCA | 2 | 16265921, 16247478 | G, G | A, T |
SYK | 9 | MEL | 1 | 93607874 | C | T |
LUSC | 1 | 93636955 | C | A | ||
KIRC | 1 | 93624627 | G | A | ||
UCEC | 1 | 93641235 | G | T | ||
TP53 | 17 | AML | 4 | 7577609, 7579312, 7590694, 7578555 | C, C, C, C | T, T, T, T |
BLCA | 29 | 7573010, 7578555, 7578291, 7577610, 7577498, 7579311, 7577609, 7578370, 7579311, 7578175, 7578175, 7577610, 7578556, 7578555, 7577498, 7579312, 7577018, 7576852, 7578290, 7579312, 7578371, 7578553, 7578290, 7576851, 7576852, 7578554, 7579591, 7578556 | T, C, T, T, C, C, C, C, C, -, A, T, T, C, C, C, C, C, C, C, C, T, T, C, A, C, A, C, T | C, G, A, C, T, A, T, A, T, CCTC, T, C, C, T, T, G, T, A, T, G, T, C, C, G, C, T, T, G, G | ||
CLL | 2 | 7578370, 7572928 | C, C | T, A | ||
CRC | 6 | 7578290, 7576853, 7579313, 7579312, 7579590, 7579313 | C, C, G, C, -, G | T, G, A, T, CT, A | ||
ESO | 4 | 7579591, 7579311, 7579312, 7578554 | C, C, C, A | T, T, T, C | ||
GBM | 7 | 7576926, 7578555, 7577610, 7579312, 7579699, 7577609, 7578555 | GC, C, T, C, C, C, C | AT, T, C, T, T, G, T | ||
HNSC | 38 | 7578290, 7579311, 7577156, 7576927, 7576928, 7573010, 7578176, 7577017, 7577610, 7579310, 7579591, 7576853, 7578555, 7579312, 7578553, 7574034, 7578177, 7577498, 7576853, 7579698, 7576927, 7576852, 7573009, 7579698, 7577153, 7576852, 7578177, 7577018, 7579912, 7576853, 7576928, 7576840, 7577609, 7578553, 7579312, 7577153, 7578369, 7574034 | C C, C, C, T, T, C, A, T, A, C, C, C, C, T, C, C, C, C, A, C, C, C, -, C, C, C, C, T, C, T, CAAGACTTAGTA, C, T, C, C, A, C | T, A, A, A, C, A, G, C, C, T, T, T, T, A, G, A, A, T, A, C, G, T, T, CC, A, T, T, A, C, T, C, -, T, C, A, A, C, A | ||
KIRC | 1 | 7577498 | C | A | ||
LUAD | 24 | 7579699, 7578290, 7577156, 7578290, 7579312, 7577498, 7577609, 7577156, 7579312, 7578555, 7579312, 7577156, 7578175, 7578175, 7578556, 7576928, 7574034, 7579312, 7577153, 7578290, 7578370, 7577609, 7578177, 7577610 | C, C, C, C, C, C, C, C, C, CT, C, C, A, A, T, T, C, C, C, C, C, C, C, T | A, A, A, G, A, T, A, T, A, AA, T, -, T, G, A, C, A, A, A, A, A, G, A, C | ||
LUSC | 18 | 7579312, 7577609, 7579312, 7578177, 7578556, 7578177, 7579311, 7576928, 7579312, 7579312, 7578176, 7576853, 7576851, 7577156, 7574035, 7579311, 7578177, 7578370 | C, C, C, C, T, C, C, T, C, C, C, C, A, C, T, C, C, C | A, A, A, G, C, T, A, A, A, A, A, G, T, A, C, A, T, A | ||
MEL | 2 | 7576855, 7578555 | G, C | A, A | ||
MM | 1 | 7578555 | C | G | ||
OV | 36 | 7577609, 7578555, 7578556, 7578290, 7578555, 7576852, 7578266, 7578290, 7576852, 7579312, 7578555, 7577498, 7578369, 7579311, 7577498, 7578370, 7574034, 7576852, 7578290, 7577018, 7576852, 7576927, 7578556, 7579592, 7578370, 7576927, 7578370, 7577610, 7578555, 7579311, 7578177, 7578176, 7578176, 7578176, 7576852, 7577019 | C, C, T, C, C, C, TAAGATGCTGAGGAGGGGCCAGACC, C, C, C, C, C, A, C, C, C, C, C, C, C, C, C, T, T, C, C, C, T, C, C, C, C, C, C, C, CT | T, T, C, T, A, T, -, G, A, A, A, T, C, A, A, A, T, T, T, T, G, T, C, A, A, T, T, C, T, A, T, A, T, A, A, - | ||
UCEC | 1 | 7574034 | C | G | ||
VHL | 3 | KIRC | 27 | 10188321, 10183872, 10183872, 10183873, 10188197, 10188321, 10191470, 10188197, 10191470, 10191469, 10191470, 10188197, 10191470, 10191469, 10188196, 10191469, 10188321, 10183871, 10183871, 10183871, 10188321, 10183872, 10188190, 10188320, 10191648, 10188322, 10188319 | G, G, G, T, G, G, G, G, G, A, G, G, G, A, A, A, G, G, G, G, G, G, CCCGATA, GGTAC, G, T, AGGTACTGACGTTTTACTTTTTAAAA | C, A, C, C, T, T, A, C, A, G, C, T, T, G, T, G, T, C, -, C, T, A, -, -, T, C, - |
MEL | 1 | 10188320 | G | A |
Patent ID | Institution | Cancer | Observation | Patent | Reference |
---|---|---|---|---|---|
US20170108504A1 | Mumetel | Colon cancer cell lines (LS174T, LoVo adn HCT116 cell lines). | They describe a new Bax isoform, BaxΔ2. The BaxΔ2 isoform resulted from combination of Bax microsatellite mutation and alternative splicing Bax exon 2. It is also discovered that BaxΔ2 only exists in the Bax mutated cells and renders cancer cells sensitive to certain chemotherapeutic drugs that target caspase 8. | The patent claims a method for detection the expression of the BaxΔ2 protein in a cancer cell isolated from the patient. The detection can use an antibody having specificity to the BaxΔ2 protein, or alternatively by detecting a RNA sequence encoding the BaxΔ2 protein. | [153] |
US2016333426A1 | Chiba University | colon cancer cell line (LS180), human colorectal cancer cell line (HCT116) and human pancreatic cancer cell line (PK45p) [2]. | OATP1B3 is a transporter expressed on the cell membrane that is involved in uptake of various compounds comprising anti-cancer drugs into a cell. Has been reported that the expression and the function of OATP1B3 affect patient's survival rate in breast cancer and prostate cancer. | Describes a method for measuring an alternative splicing variant of organic anion transporting polypeptide 1B3 (OATP1B3) mRNA in a sample of cancer patient. | [154] |
US20160208337A1 | International Medical Researchg Cancer | breast tissue samples. | Lamin A mRNA ratio is increased in breast cancer and this mRNA ratio may be of diagnostic use in all clinical stages of breast cancer. | Describes a method for detecting cancer by determining ratios of alternatively spliced Lamin A/C gene mRNAs especially an increased. | [155] |
US2014364483A1 | George Washington University | Prostate cancer. | Study of alternative splicing variants for genes in the oncogenic signaling pathways, such as PIK3CD, FGFR3, TSC2, FGFR2, PDGFRA, ITGA4, MET, EPHA3, NF1, RASGRP2, CTNNB1, TSC2 , ATM, CDK4, and RB1. These novel splicing variants are particularly useful for the detection due to the importance of these genes in oncogenic signaling pathways. | Describes a method for quantitative analysis of the expression profiles of PIK3CD, FGFR3, TSC2, RASGRP2, ITGA4, MET, NF1 and BAK1 in prostate samples confirm differential splicing between the African Americans (AA) and Caucasian American (CA) patients. | [156] |
US20060292577 | Purdue Research Foundation | MCF-10A (mammary non-cancer), BT-20 (mammary cancer), and HeLa (cervical cancer) cells. | Describes a cancer-specific alternatively spliced tumor-specific plasma membrane NADH oxidase/thiol interchange protein transcript termed E4mtNOX herein. | Method for silencing exon 4 in E4mtNOX2 | [157] |
Study Title | Conditions | Interventions | Locations |
---|---|---|---|
Daunorubicin Hydrochloride, Cytarabine and Oblimersen Sodium in Treating Patients with Previously Untreated Acute Myeloid Leukemia |
|
|
|
Dacarbazine With or Without Oblimersen (G3139) in Treating Patients with Advanced Malignant Melanoma |
|
|
|
Dexamethasone with or without Oblimersen in Treating Patients with Relapsed or Refractory Multiple Myeloma |
|
|
|
Fludarabine and Cyclophosphamide with or without Oblimersen in Treating Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia |
|
|
|
Carboplatin and Paclitaxel with or Without ISIS 3521 in Treating Patients with Non-Small Cell Lung Cancer |
|
|
|
Pharmacokinetics of G3139 in Subjects with Advanced Melanoma, Including Those with Normal Hepatic Function and Those with Moderate Hepatic Impairment |
|
| |
Docetaxel with or Without Oblimersen in Treating Patients with Non-Small Cell Lung Cancer |
|
|
|
A Study Evaluating the Pain Palliation Benefit of Adding Custirsen to Docetaxel Retreatment or Cabazitaxel as Second Line Therapy in Men with Metastatic Castrate Resistant Prostate Cancer (mCRPC) |
|
|
|
Trial of Dacarbazine with or without Genasense in Advanced Melanoma |
|
|
|
Efficacy and Safety of AP 12009 in Patients with Recurrent or Refractory Anaplastic Astrocytoma or Secondary Glioblastoma |
|
|
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Montiel, N.; Rosas-Murrieta, N.H.; Anaya Ruiz, M.; Monjaraz-Guzman, E.; Martinez-Contreras, R. Alternative Splicing as a Target for Cancer Treatment. Int. J. Mol. Sci. 2018, 19, 545. https://doi.org/10.3390/ijms19020545
Martinez-Montiel N, Rosas-Murrieta NH, Anaya Ruiz M, Monjaraz-Guzman E, Martinez-Contreras R. Alternative Splicing as a Target for Cancer Treatment. International Journal of Molecular Sciences. 2018; 19(2):545. https://doi.org/10.3390/ijms19020545
Chicago/Turabian StyleMartinez-Montiel, Nancy, Nora Hilda Rosas-Murrieta, Maricruz Anaya Ruiz, Eduardo Monjaraz-Guzman, and Rebeca Martinez-Contreras. 2018. "Alternative Splicing as a Target for Cancer Treatment" International Journal of Molecular Sciences 19, no. 2: 545. https://doi.org/10.3390/ijms19020545
APA StyleMartinez-Montiel, N., Rosas-Murrieta, N. H., Anaya Ruiz, M., Monjaraz-Guzman, E., & Martinez-Contreras, R. (2018). Alternative Splicing as a Target for Cancer Treatment. International Journal of Molecular Sciences, 19(2), 545. https://doi.org/10.3390/ijms19020545