Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Pyraclostrobin Encapsulated Microcapsules
2.2. Optimization of Loading Content and Encapsulation Efficiency of Pyraclostrobin
2.3. Stimuli-Responsive Release of Pyraclostrobin
2.4. Photolysis Kinetics
2.5. Acute Toxicity against Zebra Fish
3. Materials and Methods
3.1. Materials
3.2. Synthesis of CS-g-PDMAEMA
3.3. Preparation of Pyraclostrobin Microcapsule
3.4. Loading Content and Encapsulation Efficiency
3.5. Characterization
3.6. In Vitro Release
3.7. Photolysis Kinetics
3.8. Acute Toxicity of Pyraclostrobin against Zebra Fish
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ecobichon, D.J. Pesticide use in developing countries. Toxicology 2001, 160, 27–33. [Google Scholar] [CrossRef]
- Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Mogul, M.G.; Akin, H.; Hasirci, N.; Trantolo, D.J.; Gresser, J.D.; Wise, D.L. Controlled release of biologically active agents for purpose of agricultural crop management. Resour. Conserv. Recycl. 1996, 16, 289–320. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cui, H.; Wang, Y.; Sun, C.; Cui, B.; Zeng, Z. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mattos, B.D.; Tardy, B.L.; Magalhães, W.L.E.; Rojas, O.J. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release 2017, 262, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, S.N.M.; Kamari, A.; Aljafree, N.F.A. A review of materials used as carrier agents in pesticide formulations. Int. J. Environ. Sci. Technol. 2016, 13, 2977–2994. [Google Scholar] [CrossRef]
- Khandelwal, N.; Barbole, R.S.; Banerjee, S.S.; Chate, G.P.; Biradar, A.V.; Khandare, J.J.; Giri, A.P. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. J. Environ. Manag. 2016, 184, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Duttagupta, D.S.; Jadhav, V.M.; Kadam, V.J. Chitosan: A Propitious Biopolymer for Drug Delivery. Curr. Drug Deliv. 2015, 12, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. “The Good, the Bad and the Ugly” of Chitosans. Mar. Drugs 2016, 14, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, S.; Wang, Y.; Wang, X.; Wang, Q.; Chen, M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 2014, 32, 1301–1316. [Google Scholar] [CrossRef] [PubMed]
- Hamman, J. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 2010, 8, 1305–1322. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.R.; Oliveira, J.L.D.; Fraceto, L.F.; Singh, B. Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 2014, 35, 47–66. [Google Scholar] [CrossRef]
- Yi, Y.; Xu, S.; Sun, H.; Chang, D.; Yin, Y.; Zheng, H.; Xu, H.; Lou, Y. Gelation of photocrosslinkable carboxymethyl chitosan and its application in controlled release of pesticide. Carbohydr. Polym. 2011, 86, 1007–1013. [Google Scholar] [CrossRef]
- Ye, Z.; Guo, J.; Wu, D.; Tan, M.; Xiong, X.; Yin, Y.; He, G. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide. Carbohydr. Polym. 2015, 132, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; Pereira, A.E.S.; Nishisaka, C.S.; Lima, R.D.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, C.R.; Guilger, M.; Pascoli, M.; Bileshy-José, N.; Abhilash, P.C.; Fraceto, L.F.; Lima, R.D. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr. Sci. Rep. 2016, 6, 19768. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.P.; Ahmad, M.S. Development of Ca-alginate-chitosan microcapsules for encapsulation and controlled release of imidacloprid to control dengue outbreaks. J. Ind. Eng. Chem. 2017, 56, 382–393. [Google Scholar] [CrossRef]
- Pereira, A.E.S.; Sandoval-Herrera, I.E.; Zavala-Betancourt, S.A.; Oliveira, H.C.; Ledezma-Pérez, A.S.; Romero, J.; Fraceto, L.F. γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydr. Polym. 2017, 157, 1862–1873. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, W.; Li, D.; Li, P.; Zhu, Y.; Ao, M.; Li, J.; Cao, Y. Preparation and characterization of double-shelled avermectin microcapsules based on copolymer matrix of silica-glutaraldehyde-chitosan. J. Mater. Chem. B 2013, 1, 1270–1278. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials. J. Agric. Food Chem. 2013, 61, 3789–3796. [Google Scholar] [CrossRef] [PubMed]
- Changerath, R.; Nair, P.D.; Mathew, S.; Nair, C.P.R. Poly(methyl methacrylate)-grafted chitosan microspheres for controlled release of ampicillin. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, Q.L.; Wu, Y. A novel chitosan-poly(lactide) copolymer and its submicron particles as imidacloprid carriers. Pest Manag. Sci. 2011, 67, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Mochalova, A.E.; Kruglova, E.N.; Yunin, P.A.; Apryatina, K.V.; Smirnova, O.N.; Smirnova, L.A. Graft and block copolymers of chitosan with vinyl monomers: Synthesis, structure, and properties. Polym. Sci. Ser. B 2015, 57, 93–105. [Google Scholar] [CrossRef]
- Ping, Y.; Liu, C.D.; Tang, G.P.; Li, J.S.; Li, J.; Yang, W.T.; Xu, F.J. Functionalization of chitosan via atom transfer radical polymerization for gene delivery. Adv. Funct. Mater. 2010, 20, 3106–3116. [Google Scholar] [CrossRef]
- Bao, H.; Hu, J.; Gan, L.H.; Li, L. Stepped association of comb-like and stimuli-responsive graft chitosan copolymer synthesized using ATRP and active ester conjugation methods. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6682–6692. [Google Scholar] [CrossRef]
- Yuan, W.; Yuan, J.; Zheng, S.; Hong, X. Synthesis, characterization, and controllable drug release of dendritic star-block copolymer by ring-opening polymerization and atom transfer radical polymerization. Polymer 2007, 48, 2585–2594. [Google Scholar] [CrossRef]
- Guo, B.; Yuan, J.; Yao, L.; Gao, Q. Preparation and release profiles of pH/temperature-responsive carboxymethyl chitosan/P(2-(dimethylamino) ethyl methacrylate) semi-IPN amphoteric hydrogel. Colloid Polym. Sci. 2006, 285, 665–671. [Google Scholar] [CrossRef]
- Shieh, Y.T.; Lin, Y.T.; Cheng, C.C. CO2-switchable behavior of chitosan-g-poly[(2-dimethylamino)ethyl methacrylate] as an emulsifier. Carbohydr. Polym. 2017, 170, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Mercader, J.V.; Suárez-Pantaleón, C.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. production and characterization of monoclonal antibodies specific to the strobilurin pesticide pyraclostrobin. J. Agric. Food Chem. 2008, 56, 7682–7690. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.A.; Mcmurry, S.T.; Smith, L.M.; Belden, J.B. Acute toxicity of pyraclostrobin and trifloxystrobin to Hyalella azteca. Environ. Toxicol. Chem. 2013, 32, 1516–1525. [Google Scholar] [PubMed]
- Willming, M.M.; Maul, J.D. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes. Environ. Pollut. 2016, 211, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ni, P.H.; Zhang, M.Z.; Yu, Z.Q. Graft copolymerization of (dimethylamino)ethyl methacrylate onto chitosan initiated by ceric ammonium nitrate. J. Macromol. Sci. A 2004, 41, 685–696. [Google Scholar] [CrossRef]
- Swamy, B.Y.; Prasad, C.V.; Prabhakar, M.N.; Rao, K.C.; Subha, M.C.S.; Chung, I. Biodegradable chitosan-g-poly(methacrylamide) microspheres for controlled release of hypertensive drug. J. Polym. Environ. 2013, 21, 1128–1134. [Google Scholar] [CrossRef]
- Prasad, C.V.; Swamy, B.Y.; Reddy, C.L.N.; Prasad, K.V.; Sudhakara, P.; Subha, M.C.S.; Jung Il, S.; Rao, K.C. Formulation and characterization of sodium alginate g-hydroxy ethylacrylate bio-degradable polymeric beads: In vitro release studies. J. Polym. Environ. 2012, 20, 344–352. [Google Scholar] [CrossRef]
- Kang, H.-M.; Cai, Y.-L.; Liu, P.-S. Synthesis, characterization and thermal sensitivity of chitosan-based graft copolymers. Carbohydr. Res. 2006, 341, 2851–2857. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Ortiz, H.I.; Peralta, R.D.; Bucio, E.; Zerrweck-Maldonado, L. Preparation of stimuli-responsive nanogels of poly[2-(dimethylamino) ethyl methacrylate] by heterophase and microemulsion polymerization using gamma radiation. Polym. Eng. Sci. 2014, 54, 1625–1631. [Google Scholar] [CrossRef]
- Cao, L.D.; Zhou, Z.L.; Niu, S.J.; Cao, C.; Li, X.H.; Shan, Y.P.; Huang, Q.L. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- OECD (Organisation for Economic Co-operation and Development). Fish, Acute Toxicity Test; OECD Guideline for Testing of Chemicals 203; OECD: Paris, France, 1992. [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. China National Standardization Managementcommittee, Part 12: Fish Acute Toxicity Test, the Test Guidelines on Environmental Safety assEssment for Chemical Pesticides (GB/T 31270.12-2014); General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2014.
Entry | CS-g-DMAEMA (g) | Pesticide (g) | Glutaraldehyde (mL) | LC (%) a | EE (%) a |
---|---|---|---|---|---|
1 | 0.2 | 0.2 | 0.6 | 17.09 ± 1.18 | 41.01 ± 2.83 |
2 | 0.2 | 0.2 | 0.8 | 19.22 ± 0.30 | 47.57 ± 0.78 |
3 | 0.2 | 0.2 | 1.0 | 18.79 ± 0.41 | 64.51 ± 1.38 |
4 | 0.2 | 0.3 | 1.0 | 20.52 ± 0.49 | 54.72 ± 1.30 |
5 | 0.2 | 0.1 | 1.0 | 9.20 ± 1.15 | 48.40 ± 6.04 |
Analytes a | First-Order Kinetic Equation | |||
---|---|---|---|---|
Ct = C0e−kt | k (h−1) | R² | t1/2 (h) | |
95% Pyr TC | y = 21.13e−0.22x | 0.22 | 0.915 | 3.2 |
Pyr@CS-g-PDMAEMA | y = 15.84e−0.03x | 0.03 | 0.918 | 23.1 |
Analytes | Exposure Time (h) | LC50 (mg/L) | 95% Confidence Interval | R² | Equation |
---|---|---|---|---|---|
95% Pyr TC | 24 | 0.0642 | 0.0587–0.0775 | 0.9024 | y = 15.4958 + 8.8019x |
48 | 0.0618 | 0.0566–0.0694 | 0.8828 | y = 16.8795 + 9.8240x | |
72 | 0.0597 | 0.0558–0.0635 | 0.9931 | y = 22.8589 + 14.5894x | |
96 | 0.0596 | 0.0560–0.0651 | 0.9899 | y = 23.3577 + 14.9872x | |
25% Pyr SC | 24 | 0.0663 | 0.0594–0.0770 | 0.9782 | y = 14.0210 + 7.6539x |
48 | 0.0612 | 0.0540–0.0688 | 0.9648 | y = 14.3705 + 7.7241x | |
72 | 0.0586 | 0.0519–0.0643 | 0.9717 | y = 16.5114 + 9.3429x | |
96 | 0.0568 | 0.0494–0.0624 | 0.9678 | y = 16.3531 + 9.1147x | |
Pyr@CS-g-PDMAEMA | 24 | 0.1020 | 0.0865–0.1747 | 0.7266 | y = 9.7209 + 4.7611x |
48 | 0.0895 | 0.0670–0.0962 | 0.9716 | y = 8.1220 + 2.9785x | |
72 | 0.0674 | 0.0321–0.0786 | 0.9278 | y = 11.5447 + 5.5876x | |
96 | 0.0674 | 0.0321–0.0786 | 0.9278 | y = 11.5447 + 5.5876x |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Cao, L.; Zhao, P.; Zhou, Z.; Cao, C.; Zhu, F.; Li, F.; Huang, Q. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release. Int. J. Mol. Sci. 2018, 19, 854. https://doi.org/10.3390/ijms19030854
Xu C, Cao L, Zhao P, Zhou Z, Cao C, Zhu F, Li F, Huang Q. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release. International Journal of Molecular Sciences. 2018; 19(3):854. https://doi.org/10.3390/ijms19030854
Chicago/Turabian StyleXu, Chunli, Lidong Cao, Pengyue Zhao, Zhaolu Zhou, Chong Cao, Feng Zhu, Fengmin Li, and Qiliang Huang. 2018. "Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release" International Journal of Molecular Sciences 19, no. 3: 854. https://doi.org/10.3390/ijms19030854
APA StyleXu, C., Cao, L., Zhao, P., Zhou, Z., Cao, C., Zhu, F., Li, F., & Huang, Q. (2018). Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release. International Journal of Molecular Sciences, 19(3), 854. https://doi.org/10.3390/ijms19030854