Antioxidative Effect of Quetiapine on Acute Ultraviolet-B-Induced Skin and HaCaT Cell Damage
Abstract
:1. Introduction
2. Results
2.1. Quetiapine Protects Skin from UVB-Induced Damage
2.2. Effects of Quetiapine on Antioxidants Following UVB Irradiation
2.3. The Treatment of Quetiapine Reduced the Inflammation
2.4. Quetiapine Increases the Viability of UVB-Treated HaCaT Cells and Protects Cells from ROS-Induced Damage
2.5. Quetiapine Resists UV Damage through Antioxidant Stress and May Regulate through the p38 MAPK Pathway
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Quetiapine
4.3. UVB Irradiation
4.4. Cell Culture and UVB Irradiation
4.5. Cytotoxicity Assay
4.6. Measurement of SOD, GSH-Px, and MDA Levels on HaCaT Cells
4.7. Hematoxylin and Eosin (H&E) and Masson’s Trichrome Staining
4.8. F4/80 Immunohistochemistry
4.9. Measurement of SOD, GSH-Px, and MDA Levels on Skin
4.10. Western Blot
4.11. Statistical Analyses
Acknowledgments
Author Contributions
Conflict of interest
Abbreviations
UVB | Ultraviolet-B |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
GSH-Px | Glutathione peroxidase |
MDA | Malondialdehyde |
PC12 | Pheochromocytoma |
References
- Schuch, A.P.; Moreno, N.C.; Schuch, N.J.; Menck, C.F.M.; Garcia, C.C.M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic. Biol. Med. 2017, 107, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Koulu, L. UV radiation, tanning and DNA damage. Duodecim 2014, 130, 637–641. [Google Scholar] [PubMed]
- Cadet, J.; Douki, T.; Ravanat, J.L. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem. Photobiol. 2015, 91, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Baron, E.D.; Suggs, A.K. Introduction to photobiology. Dermatol. Clin. 2014, 32, 255–266, vii. [Google Scholar] [CrossRef] [PubMed]
- Seckin, H.Y.; Kalkan, G.; Bas, Y.; Akbas, A.; Onder, Y.; Ozyurt, H.; Sahin, M. Oxidative stress status in patients with melasma. Cutan. Ocul. Toxicol. 2014, 33, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Bai, O.; Richardson, J.S.; Mousseau, D.D.; Li, X.M. Olanzapine protects PC12 cells from oxidative stress induced by hydrogen peroxide. J. Neurosci. Res. 2003, 73, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bocchio Chiavetto, L.; Bignotti, S.; Battisa Tura, G.; Pioli, R.; Boin, F.; Kenis, G.; Bosmans, E.; de Jongh, R.; Aihua Lin, A.; et al. Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2000, 10, 119–124. [Google Scholar] [CrossRef]
- Harvey, P.D.; Hassman, H.; Mao, L.; Gharabawi, G.M.; Mahmoud, R.A.; Engelhart, L.M. Cognitive functioning and acute sedative effects of risperidone and quetiapine in patients with stable bipolar I disorder: a randomized, double-blind, crossover study. J. Clin. Psychiatry 2007, 68, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Zhornitsky, S.; Wee Yong, V.; Koch, M.W.; Mackie, A.; Potvin, S.; Patten, S.B.; Metz, L.M. Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. CNS Neurosci. Ther. 2013, 19, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Rola, R.C.; Marins, L.F.; Nery, L.E.; da Rosa, C.E.; Sandrini, J.Z. Responses to ROS inducer agents in zebrafish cell line: Differences between copper and UV-B radiation. Fish Physiol. Biochem. 2014, 40, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Hildesheim, J.; Awwad, R.T.; Fornace, A.J., Jr. p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses. J. Investig. Dermatol. 2004, 122, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Wehrli, P.; Viard, I.; Bullani, R.; Tschopp, J.; French, L.E. Death receptors in cutaneous biology and disease. J. Investig. Dermatol. 2000, 115, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.A.; Hwang, J.S.; Kang, E.S.; Yoo, T.; Lim, H.H.; Lee, W.J.; Paek, K.S.; Seo, H.G. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species. Biosci. Biotechnol. Biochem. 2015, 79, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Juzeniene, A.; Grigalavicius, M.; Ma, L.W.; Juraleviciute, M. Folic acid and its photoproducts, 6-formylpterin and pterin-6-carboxylic acid, as generators of reactive oxygen species in skin cells during UVA exposure. J. Photochem. Photobiol. B 2016, 155, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Perez-Sanchez, A.; Barrajon-Catalan, E.; Herranz-Lopez, M.; Castillo, J.; Micol, V. Lemon balm extract (Melissa officinalis L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model. J. Dermatol. Sci. 2016, 84, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Petruk, G.; Illiano, A.; Del Giudice, R.; Raiola, A.; Amoresano, A.; Rigano, M.M.; Piccoli, R.; MariaMonti, D. Malvidin and cyanidin derivatives from acai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J. Photochem. Photobiol. B 2017, 172, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Li, W.; Son, Y.O.; Sun, L.; Lu, J.; Kim, D.; Wang, X.; Yao, H.; Wang, L.; Pratheeshkumar, P.; et al. Quercitrin protects skin from UVB-induced oxidative damage. Toxicol. Appl. Pharmacol. 2013, 269, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Tepe Cam, S.; Polat, M.; Esmekaya, M.A.; Canseven, A.G.; Seyhan, N. Tea extracts protect normal lymphocytes but not leukemia cells from UV radiation-induced ROS production: An EPR spin trap study. Int. J. Radiat. Biol. 2015, 91, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.L.; Vande Griend, J.P. Quetiapine for insomnia: A review of the literature. Am. J. Health Syst. Pharm. 2014, 71, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Vatsalya, V.; Pandey, A.; Schwandt, M.L.; Cave, M.C.; Barve, S.S.; Ramchandani, V.A.; McClain, C.J. Safety Assessment of Liver Injury with Quetiapine Fumarate XR Management in Very Heavy Drinking Alcohol-Dependent Patients. Clin. Drug Investig. 2016, 36, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, H.R.; Mazurier, F.; Cario-Andre, M.; Pain, C.; Ged, C.; Taieb, A.; de Verneuil, H. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes. J. Biol. Chem. 2006, 281, 17999–18007. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [PubMed]
- Miodovnik, M.; Koren, R.; Ziv, E.; Ravid, A. The inflammatory response of keratinocytes and its modulation by vitamin D: The role of MAPK signaling pathways. J. Cell. Physiol. 2012, 227, 2175–2183. [Google Scholar] [CrossRef] [PubMed]
- Jeayeng, S.; Wongkajornsilp, A.; Slominski, A.T.; Jirawatnotai, S.; Sampattavanich, S.; Panich, U. Nrf2 in keratinocytes modulates UVB-induced DNA damage and apoptosis in melanocytes through MAPK signaling. Free Rad. Biol. Med. 2017, 108, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Chernyavsky, A.I.; Arredondo, J.; Karlsson, E.; Wessler, I.; Grando, S.A. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J. Biol. Chem. 2005, 280, 39220–39228. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.H.; Kuo, T.C.; Chang, K.C.; Chang, C.H.; Chu, C.Y. Gefitinib-induced epidermal growth factor receptor-independent keratinocyte apoptosis is mediated by the JNK activation pathway. Br. J. Dermatol. 2011, 164, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Frankart, A.; Poumay, Y. p38 MAPK-regulated EGFR internalization takes place in keratinocyte monolayer during stress conditions. Arch. Dermatol. Res. 2010, 302, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Rauhala, L.; Hamalainen, L.; Salonen, P.; Bart, G.; Tammi, M.; Pasonen-Seppanen, S.; Tammi, R. Low Dose Ultraviolet B Irradiation Increases Hyaluronan Synthesis in Epidermal Keratinocytes via Sequential Induction of Hyaluronan Synthases Has1-3 Mediated by p38 and Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) Signaling. J. Biol. Chem. 2013, 288, 17999–18012. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Widlund, H.R.; Feige, E.; Lin, J.Y.; Wilensky, D.L.; Igras, V.E.; D’Orazio, J.; Fung, C.Y.; Schanbacher, C.F.; Granter, S.R.; et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 2007, 128, 853–864. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Zhang, M.; Wang, X.; Yan, Y.; Chen, Y.; Wu, W.; Zhang, L.; Zhang, L. Antioxidative Effect of Quetiapine on Acute Ultraviolet-B-Induced Skin and HaCaT Cell Damage. Int. J. Mol. Sci. 2018, 19, 953. https://doi.org/10.3390/ijms19040953
Xu P, Zhang M, Wang X, Yan Y, Chen Y, Wu W, Zhang L, Zhang L. Antioxidative Effect of Quetiapine on Acute Ultraviolet-B-Induced Skin and HaCaT Cell Damage. International Journal of Molecular Sciences. 2018; 19(4):953. https://doi.org/10.3390/ijms19040953
Chicago/Turabian StyleXu, Pengcheng, Min Zhang, Xueer Wang, Yuan Yan, Yinghua Chen, Wei Wu, Lu Zhang, and Lin Zhang. 2018. "Antioxidative Effect of Quetiapine on Acute Ultraviolet-B-Induced Skin and HaCaT Cell Damage" International Journal of Molecular Sciences 19, no. 4: 953. https://doi.org/10.3390/ijms19040953