Frizzled Receptors as Potential Therapeutic Targets in Human Cancers
Abstract
:1. Introduction
2. Structural Features of Frizzled Receptors
3. Biological Functions and Mechanism
3.1. FZD1
3.2. FZD2
3.3. FZD3
3.4. FZD4
3.5. FZD5
3.6. FZD6
3.7. FZD7
3.8. FZD8
3.9. FZD9
3.10. FZD10
4. Clinical Relevance
5. Therapeutic Potential of FZD Receptors
6. Conclusions and Future Perspectives
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Adenomatous Polyposis Coli |
BRMS1L | Breast cancer metastasis suppressor 1 like |
CaMKII | Ca2+/calmodulin-dependent protein kinase II |
CRC | Colorectal cancer |
CRD | Cysteine-rich domain |
DKK | Dickkopf WNT signaling pathway inhibitor |
DVL | Dishevelled |
EC | Endometrial cancer |
EMT | Epithelial-mesenchymal transition |
ERG | ETS-related gene |
ESCC | Esophageal squamous cell carcinoma |
FZD | Frizzled receptors |
GPCRs | G protein-coupled receptor proteins |
HCC | Hepatocellular carcinoma |
HIG2 | Hypoxia-inducible protein-2 |
LRP5/6 | Low density lipoprotein receptor related protein 5/6 |
NB | Neuroblastoma |
NF-kB | Nuclear factor kB |
NLK | Nemo-like kinase |
NSCLC | Non-small cell lung cancer |
PCP | Planar cell polarity |
PDAC | Pancreatic ductal adenocarcinoma cells |
PPARγ | Peroxisome proliferator-activated receptor γ |
ROR2 | Receptor tyrosine kinase like orphan receptor 2 |
RYK | Receptor-like tyrosine kinase |
SACC | Salivary adenoid cystic carcinomas |
scFvs | Single chain variable fragments |
SFRP | Secreted frizzled-related protein |
sFZD7 | Soluble FZD7 |
STAT3 | Signal transducer and activator of transcription 3 |
TAK1 | TGFβ-activated kinase 1 |
TAZ | Tafazzin |
TNBC | Triple negative breast cancer |
TSCC | Tongue squamous cell carcinoma |
WIF | WNT inhibitor factor |
References
- Vinson, C.R.; Conover, S.; Adler, P.N. A drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 1989, 338, 263–264. [Google Scholar] [CrossRef] [PubMed]
- Pez, F.; Lopez, A.; Kim, M.; Wands, J.R.; Caron de Fromentel, C.; Merle, P. Wnt signaling and hepatocarcinogenesis: Molecular targets for the development of innovative anticancer drugs. J. Hepatol. 2013, 59, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Bhanot, P.; Brink, M.; Samos, C.H.; Hsieh, J.C.; Wang, Y.; Macke, J.P.; Andrew, D.; Nathans, J.; Nusse, R. A new member of the frizzled family from drosophila functions as a wingless receptor. Nature 1996, 382, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Schulte, G. International union of basic and clinical pharmacology. Lxxx. The class frizzled receptors. Pharmacol. Rev. 2010, 62, 632–667. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, D.J.; Phesse, T.J.; Barker, N.; Schwab, R.H.; Amin, N.; Malaterre, J.; Stange, D.E.; Nowell, C.J.; Currie, S.A.; Saw, J.T.; et al. Frizzled7 functions as a wnt receptor in intestinal epithelial lgr5(+) stem cells. Stem Cell Rep. 2015, 4, 759–767. [Google Scholar] [CrossRef] [PubMed]
- King, T.D.; Zhang, W.; Suto, M.J.; Li, Y. Frizzled7 as an emerging target for cancer therapy. Cell. Signal. 2012, 24, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Nile, A.H.; Mukund, S.; Stanger, K.; Wang, W.; Hannoush, R.N. Unsaturated fatty acyl recognition by frizzled receptors mediates dimerization upon wnt ligand binding. Proc. Natl. Acad. Sci. USA 2017, 114, 4147–4152. [Google Scholar] [CrossRef] [PubMed]
- Carron, C.; Pascal, A.; Djiane, A.; Boucaut, J.C.; Shi, D.L.; Umbhauer, M. Frizzled receptor dimerization is sufficient to activate the wnt/β-catenin pathway. J. Cell Sci. 2003, 116, 2541–2550. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, R.; Lagerstrom, M.C.; Lundin, L.G.; Schioth, H.B. The g-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Klein, P.S. The frizzled family: Receptors for multiple signal transduction pathways. Genome Biol. 2004, 5, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijksterhuis, J.P.; Petersen, J.; Schulte, G. Wnt/frizzled signalling: Receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: Iuphar review 3. Br. J. Pharmacol. 2014, 171, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
- Flahaut, M.; Meier, R.; Coulon, A.; Nardou, K.A.; Niggli, F.K.; Martinet, D.; Beckmann, J.S.; Joseph, J.M.; Muhlethaler-Mottet, A.; Gross, N. The wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the wnt/β-catenin pathway. Oncogene 2009, 28, 2245–2256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, X.; Wu, X.; Li, W.; Su, P.; Cheng, H.; Xiang, L.; Gao, P.; Zhou, G. Interference of frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the wnt/β-catenin pathway. Cancer Lett. 2012, 323, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jing, X.; Wu, X.; Hu, J.; Zhang, X.; Wang, X.; Su, P.; Li, W.; Zhou, G. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs 2015, 26, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Mo, Y.; Wu, F.; Guo, K.; Li, J.; Luo, Y.; Ye, H.; Guo, H.; Li, D.; Yang, Z. miR-135b reverses chemoresistance of non-small cell lung cancer cells by downregulation of FZD1. Biomed. Pharmacother. 2016, 84, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, E.; Boyer, A.; Rico, C.; Paquet, M.; Franco, H.L.; Gossen, J.; DeMayo, F.J.; Richards, J.S.; Boerboom, D. FZD1 regulates cumulus expansion genes and is required for normal female fertility in mice. Biol. Reprod. 2012, 87, 104. [Google Scholar] [CrossRef] [PubMed]
- Gujral, T.S.; Chan, M.; Peshkin, L.; Sorger, P.K.; Kirschner, M.W.; MacBeath, G. A noncanonical frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 2014, 159, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Li, Z.; Xu, Z.; Duan, W.; Sun, C.; Lu, L. Frizzled2 mediates the migration and invasion of human oral squamous cell carcinoma cells through the regulation of the signal transducer and activator of transcription-3 signaling pathway. Oncol. Rep. 2015, 34, 3061–3067. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Chang, X.; Liao, Y.; Wang, J.; Li, Y.; Wang, K.; Wan, X. Promotion of epithelial-mesenchymal transition by frizzled2 is involved in the metastasis of endometrial cancer. Oncol. Rep. 2016, 36, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Zins, K.; Schafer, R.; Paulus, P.; Dobler, S.; Fakhari, N.; Sioud, M.; Aharinejad, S.; Abraham, D. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β-catenin-dependent and β-catenin-independent signaling pathways. Oncotarget 2016, 7, 46187–46202. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.C.; Huang, X.Y.; Zheng, F.F.; Xie, J.; She, L.; Feng, Y.; Su, B.H.; Zheng, D.L.; Lu, Y.G. FZD2 inhibits the cell growth and migration of salivary adenoid cystic carcinomas. Oncol. Rep. 2016, 35, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Kadzik, R.S.; Cohen, E.D.; Morley, M.P.; Stewart, K.M.; Lu, M.M.; Morrisey, E.E. Wnt ligand/frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape. Proc. Natl. Acad. Sci. USA 2014, 111, 12444–12449. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.; Howlin, J.; Tengholm, A.; Dyachok, O.; Vogel, W.F.; Nairn, A.C.; Greengard, P.; Andersson, T. Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J. Biol. Chem. 2009, 284, 27533–27543. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Beauchamp, E.; Woods, D.; Taylor, W.G.; Toretsky, J.A.; Uren, A.; Rubin, J.S. Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in ewing tumor cells via a frizzled3- and c-jun N-terminal kinase-dependent mechanism. Mol. Cell. Biol. 2008, 28, 2368–2379. [Google Scholar] [CrossRef] [PubMed]
- Morello, F.; Prasad, A.A.; Rehberg, K.; Vieira de Sa, R.; Anton-Bolanos, N.; Leyva-Diaz, E.; Adolfs, Y.; Tissir, F.; Lopez-Bendito, G.; Pasterkamp, R.J. Frizzled3 controls axonal polarity and intermediate target entry during striatal pathway development. J. Neurosci. 2015, 35, 14205–14219. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.L.; Smallwood, P.M.; Nathans, J. Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons. Elife 2013, 2, e01482. [Google Scholar] [CrossRef] [PubMed]
- Tickenbrock, L.; Hehn, S.; Sargin, B.; Choudhary, C.; Baumer, N.; Buerger, H.; Schulte, B.; Muller, O.; Berdel, W.E.; Muller-Tidow, C.; et al. Activation of wnt signalling in acute myeloid leukemia by induction of frizzled-4. Int. J. Oncol. 2008, 33, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Iljin, K.; Sara, H.; Mpindi, J.P.; Mirtti, T.; Vainio, P.; Rantala, J.; Alanen, K.; Nees, M.; Kallioniemi, O. FZD4 as a mediator of erg oncogene-induced wnt signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010, 70, 6735–6745. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Jeon, H.Y.; Joo, K.M.; Kim, J.K.; Jin, J.; Kim, S.H.; Kang, B.G.; Beck, S.; Lee, S.J.; Kim, J.K.; et al. Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. Cancer Res. 2011, 71, 3066–3075. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Hirata, H.; Majid, S.; Yamamura, S.; Shahryari, V.; Tabatabai, Z.L.; Hinoda, Y.; Dahiya, R. Tumor suppressor microrna-493 decreases cell motility and migration ability in human bladder cancer cells by downregulating rhoc and fzd4. Mol. Cancer Ther. 2012, 11, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xu, B.; Husaiyin, S.; Wang, L.; Wusainahong, K.; Ma, J.; Zhu, K.; Niyazi, M. Microrna-505 predicts prognosis and acts as tumor inhibitor in cervical carcinoma with inverse association with fzd4. Biomed. Pharmacother. 2017, 92, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, Y.; Dabdoub, A.; Smallwood, P.M.; Williams, J.; Woods, C.; Kelley, M.W.; Jiang, L.; Tasman, W.; Zhang, K.; et al. Vascular development in the retina and inner ear: Control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 2004, 116, 883–895. [Google Scholar] [CrossRef]
- Bobbs, A.; Gellerman, K.; Hallas, W.M.; Joseph, S.; Yang, C.; Kurkewich, J.; Cowden Dahl, K.D. ARID3B directly regulates ovarian cancer promoting genes. PLoS ONE 2015, 10, e0131961. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.Z.; Du, Y.F.; Liu, X.G.; Li, X.; He, D.L. miR-124 represses FZD5 to attenuate P-glycoprotein-mediated chemo-resistance in renal cell carcinoma. Tumor Biol. 2015, 36, 7017–7026. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, Y.; Shen, J.; Zhang, G.; Han, J. Microrna-224 inhibits proliferation and migration of breast cancer cells by down-regulating fizzled 5 expression. Oncotarget 2016, 7, 49130–49142. [Google Scholar] [PubMed]
- Steinhart, Z.; Pavlovic, Z.; Chandrashekhar, M.; Hart, T.; Wang, X.; Zhang, X.; Robitaille, M.; Brown, K.R.; Jaksani, S.; Overmeer, R.; et al. Genome-wide CRISPR screens reveal a wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat. Med. 2017, 23, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Burns, C.J.; Zhang, J.; Brown, E.C.; Van Bibber, A.M.; Van Es, J.; Clevers, H.; Ishikawa, T.O.; Taketo, M.M.; Vetter, M.L.; Fuhrmann, S. Investigation of frizzled-5 during embryonic neural development in mouse. Dev. Dyn. 2008, 237, 1614–1626. [Google Scholar] [CrossRef] [PubMed]
- Cantilena, S.; Pastorino, F.; Pezzolo, A.; Chayka, O.; Pistoia, V.; Ponzoni, M.; Sala, A. Frizzled receptor 6 marks rare, highly tumourigenic stem-like cells in mouse and human neuroblastomas. Oncotarget 2011, 2, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Piga, R.; van Dartel, D.; Bunschoten, A.; van der Stelt, I.; Keijer, J. Role of frizzled6 in the molecular mechanism of β-carotene action in the lung. Toxicology 2014, 320, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Yoo, H.I.; Kim, I.; Park, J.; Kim Yoon, S. FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer. BMB Rep. 2015, 48, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, T.; Zhou, X.; Dang, Y.; Yin, C.; Zhang, G. FZD6, targeted by miR-21, represses gastric cancer cell proliferation and migration via activating non-canonical wnt pathway. Am. J. Transl. Res. 2016, 8, 2354–2364. [Google Scholar] [PubMed]
- Corda, G.; Sala, G.; Lattanzio, R.; Iezzi, M.; Sallese, M.; Fragassi, G.; Lamolinara, A.; Mirza, H.; Barcaroli, D.; Ermler, S.; et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J. Pathol. 2017, 241, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Alvarez, A.A.; Pangeni, R.P.; Horbinski, C.M.; Lu, S.; Kim, S.H.; James, C.D.; Raizer, J.J.; Kessler, J.A.; Brenann, C.W.; et al. A regulatory circuit of miR-125b/miR-20b and wnt signalling controls glioblastoma phenotypes through fzd6-modulated pathways. Nat. Commun. 2016, 7, 12885. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.Y.; Klar, J.; Georgii-Heming, P.; Frojmark, A.S.; Baig, S.M.; Schlessinger, D.; Dahl, N. Frizzled6 deficiency disrupts the differentiation process of nail development. J. Investig. Dermatol. 2013, 133, 1990–1997. [Google Scholar] [CrossRef] [PubMed]
- Nile, A.H.; de Sousa, E.M.F.; Mukund, S.; Piskol, R.; Hansen, S.; Zhou, L.; Zhang, Y.; Fu, Y.; Gogol, E.B.; Komuves, L.G.; et al. A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nat. Chem. Biol. 2018, 14, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, R.; Wei, Y.; Hwang, J.; Hang, X.; Andres Blanco, M.; Choudhury, A.; Tiede, B.; Romano, R.A.; DeCoste, C.; Mercatali, L.; et al. Deltanp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing FZD7 expression and wnt signalling. Nat. Cell Biol. 2014, 16, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.L.; Fan, S.; Zhang, S.Y.; Chen, W.X.; Li, Q.X.; Pan, G.K.; Zhang, H.Q.; Wang, W.W.; Weng, B.; Zhang, Z.; et al. SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the wnt/β-catenin pathway. Int. J. Cancer 2018, 142, 1252–1265. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.O.; Mak, W.N.; Kai, A.K.; Chan, K.S.; Lee, T.K.; Ng, I.O.; Lo, R.C. SOX9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated wnt/β-catenin signaling. Oncotarget 2016, 7, 29371–29386. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, T.; Cao, Y.W.; Ding, X.Q. Antitumor effect of miR-27b-3p on lung cancer cells via targeting FZD7. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4113–4123. [Google Scholar] [PubMed]
- Deng, B.; Zhang, Y.; Zhang, S.; Wen, F.; Miao, Y.; Guo, K. Microrna-142-3p inhibits cell proliferation and invasion of cervical cancer cells by targeting FZD7. Tumor Biol. 2015, 36, 8065–8073. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.T.; Xiang, D.; Liu, B.L.; Huang, T.X.; Tan, B.B.; Zeng, C.M.; Wang, Z.Y.; Ming, X.Y.; Zhang, L.Y.; Jin, G.; et al. FZD7 is a novel prognostic marker and promotes tumor metastasis via wnt and EMT signaling pathways in esophageal squamous cell carcinoma. Oncotarget 2017, 8, 65957–65968. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, Y.; Ma, W.; Wu, S. Knockdown of frizzled-7 inhibits cell growth and metastasis and promotes chemosensitivity of esophageal squamous cell carcinoma cells by inhibiting wnt signaling. Biochem. Biophys. Res. Commun. 2017, 490, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Jiao, J.; Li, Y.; Tian, T. Overexpression of FZD7 promotes glioma cell proliferation by upregulating taz. Oncotarget 2016, 7, 85987–85999. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Wong, M.K.; Tan, T.Z.; Choolani, M.; Low, J.; Mori, S.; Virshup, D.; Thiery, J.P.; Huang, R.Y. FZD7 drives in vitro aggressiveness in stem-a subtype of ovarian cancer via regulation of non-canonical wnt/pcp pathway. Cell Death Dis. 2014, 5, e1346. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhang, S.; Miao, Y.; Zhang, Y.; Wen, F.; Guo, K. Down-regulation of frizzled-7 expression inhibits migration, invasion, and epithelial-mesenchymal transition of cervical cancer cell lines. Med. Oncol. 2015, 32, 102. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Su, Q.; Liu, H.; Wang, D.; Zhang, W.; Lu, Z.; Chen, Y.; Huang, X.; Li, W.; Zhang, C.; et al. Frizzled7 promotes epithelial-to-mesenchymal transition and stemness via activating canonical wnt/β-catenin pathway in gastric cancer. Int. J. Biol. Sci. 2018, 14, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, X.; Wang, Y.; Zhang, K.; Wu, J.; Yuan, Y.C.; Deng, X.; Chen, L.; Kim, C.C.; Lau, S.; et al. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 2011, 30, 4437–4446. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Hazama, S.; Mitomori, S.; Nishioka, M.; Suehiro, Y.; Hirata, H.; Oka, M.; Imai, K.; Dahiya, R.; Hinoda, Y. Down-regulation of frizzled-7 expression decreases survival, invasion and metastatic capabilities of colon cancer cells. Br. J. Cancer 2009, 101, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, S.; Xu, L. Correction: Frizzled7 is required for tumor inititation and metastatic growth of melanoma cells. PLoS ONE 2017, 12, e0187388. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Lu, X.; Wu, X.; Xue, L.; Wang, X.; Xu, J. Microrna-27b suppresses helicobacter pylori-induced gastric tumorigenesis through negatively regulating frizzled7. Oncol. Rep. 2016, 35, 2441–2450. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ye, L.; Zhang, X.; Wang, M.; Lin, C.; Huang, S.; Guo, W.; Lai, Y.; Du, H.; Li, J.; et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical wnt/β-catenin signaling. Cancer Lett. 2017, 402, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Bravo, D.T.; Yang, Y.L.; Kuchenbecker, K.; Hung, M.S.; Xu, Z.; Jablons, D.M.; You, L. Frizzled-8 receptor is activated by the wnt-2 ligand in non-small cell lung cancer. BMC Cancer 2013, 13, 316. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, H.; Liu, C.; Hu, B.; Li, T.; Wang, Y. Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting frizzled-8 and suppressing wnt/β-catenin signaling pathway. OncoTargets Ther. 2016, 9, 3815–3827. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; He, M.; Guan, S.; Ma, M.; Wu, H.; Yu, Z.; Jiang, L.; Wang, Y.; Zong, X.; Jin, F.; et al. Microrna-100 suppresses the migration and invasion of breast cancer cells by targeting fzd-8 and inhibiting wnt/β-catenin signaling pathway. Tumor Biol. 2016, 37, 5001–5011. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pang, W.; Zuo, Z.; Zhang, W.; He, W. Microrna-520b suppresses proliferation, migration, and invasion of spinal osteosarcoma cells via downregulation of frizzled-8. Oncol. Res. 2017, 25, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, S.; Duan, S.Z.; Zhang, L.; Zhou, H.; Hu, Y.; Zhou, X.; Shi, C.; Zhou, R.; Zhang, Z. Targeting the c-met/fzd8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res. 2014, 74, 7546–7559. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Xu, L.; Bonfil, R.D.; Banerjee, S.; Sarkar, F.H.; Sethi, S.; Reddy, K.B. Tumor-initiating cells and fzd8 play a major role in drug resistance in triple-negative breast cancer. Mol. Cancer Ther. 2013, 12, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.T.; Holderfield, M.; Galeas, J.; Delrosario, R.; To, M.D.; Balmain, A.; McCormick, F. K-Ras promotes tumorigenicity through suppression of non-canonical wnt signaling. Cell 2015, 163, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Q.; Xu, M.L.; Ma, J.; Zhang, Y.; Xie, C.H. Frizzled-8 as a putative therapeutic target in human lung cancer. Biochem. Biophys. Res. Commun. 2012, 417, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schittenhelm, J.; Guo, K.; Buhring, H.J.; Trautmann, K.; Meyermann, R.; Schluesener, H.J. Upregulation of frizzled 9 in astrocytomas. Neuropathol. Appl. Neurobiol. 2006, 32, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, H.; Wang, Q.; Zhou, F.; Liu, Y.; Zhang, Y.; Ding, H.; Yuan, M.; Li, F.; Chen, Y. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS ONE 2017, 12, e0180558. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T.; Tomizawa, M.; Yokosuka, O. Sirna of frizzled-9 suppresses proliferation and motility of hepatoma cells. Int. J. Oncol. 2009, 35, 861–866. [Google Scholar] [PubMed]
- Zhang, Y.; Jiang, Q.; Kong, X.; Yang, L.; Hu, W.; Lv, C.; Li, Y. Methylation status of the promoter region of the human frizzled 9 gene in acute myeloid leukemia. Mol. Med. Rep. 2016, 14, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Winn, R.A.; Marek, L.; Han, S.Y.; Rodriguez, K.; Rodriguez, N.; Hammond, M.; Van Scoyk, M.; Acosta, H.; Mirus, J.; Barry, N.; et al. Restoration of wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J. Biol. Chem. 2005, 280, 19625–19634. [Google Scholar] [CrossRef] [PubMed]
- Winn, R.A.; Van Scoyk, M.; Hammond, M.; Rodriguez, K.; Crossno, J.T., Jr.; Heasley, L.E.; Nemenoff, R.A. Antitumorigenic effect of wnt 7a and fzd9 in non-small cell lung cancer cells is mediated through erk-5-dependent activation of peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 2006, 281, 26943–26950. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Aviles, C.; Abel, R.A.; Almli, C.R.; McQuillen, P.; Pleasure, S.J. Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the williams syndrome deletion interval. Development 2005, 132, 2917–2927. [Google Scholar] [CrossRef] [PubMed]
- Ranheim, E.A.; Kwan, H.C.; Reya, T.; Wang, Y.K.; Weissman, I.L.; Francke, U. Frizzled 9 knock-out mice have abnormal b-cell development. Blood 2005, 105, 2487–2494. [Google Scholar] [CrossRef] [PubMed]
- Fukukawa, C.; Nagayama, S.; Tsunoda, T.; Toguchida, J.; Nakamura, Y.; Katagiri, T. Activation of the non-canonical Dvl-Rac1-JNK pathway by frizzled homologue 10 in human synovial sarcoma. Oncogene 2009, 28, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, S.; Fukuta, M.; Sekiguchi, K.; Jin, Y.; Nagata, S.; Hayakawa, K.; Hineno, S.; Okamoto, T.; Watanabe, M.; Woltjen, K.; et al. SS18-SSX, the oncogenic fusion protein in synovial sarcoma, is a cellular context-dependent epigenetic modifier. PLoS ONE 2015, 10, e0142991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagayama, S.; Yamada, E.; Kohno, Y.; Aoyama, T.; Fukukawa, C.; Kubo, H.; Watanabe, G.; Katagiri, T.; Nakamura, Y.; Sakai, Y.; et al. Inverse correlation of the up-regulation of FZD10 expression and the activation of β-catenin in synchronous colorectal tumors. Cancer Sci. 2009, 100, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Qu, S.; Lv, X.B.; Liu, B.; Tan, W.; Nie, Y.; Su, F.; Liu, Q.; Yao, H.; Song, E. Brms1l suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat. Commun. 2014, 5, 5406. [Google Scholar] [CrossRef] [PubMed]
- Togashi, A.; Katagiri, T.; Ashida, S.; Fujioka, T.; Maruyama, O.; Wakumoto, Y.; Sakamoto, Y.; Fujime, M.; Kawachi, Y.; Shuin, T.; et al. Hypoxia-inducible protein 2 (hig2), a novel diagnostic marker for renal cell carcinoma and potential target for molecular therapy. Cancer Res. 2005, 65, 4817–4826. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.; He, C.W.; Chan, C.M.; Chan, A.K.; Wong, H.T.; Cheung, M.T.; Luk, L.L.; Au, T.C.; Chiu, M.K.; Ma, B.B.; et al. Clinical significance of frizzled homolog 3 protein in colorectal cancer patients. PLoS ONE 2013, 8, e79481. [Google Scholar] [CrossRef] [PubMed]
- Thiele, S.; Gobel, A.; Rachner, T.D.; Fuessel, S.; Froehner, M.; Muders, M.H.; Baretton, G.B.; Bernhardt, R.; Jakob, F.; Gluer, C.C.; et al. WNT5A has anti-prostate cancer effects in vitro and reduces tumor growth in the skeleton in vivo. J. Bone Miner. Res. 2015, 30, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, S.; Fukukawa, C.; Katagiri, T.; Okamoto, T.; Aoyama, T.; Oyaizu, N.; Imamura, M.; Toguchida, J.; Nakamura, Y. Therapeutic potential of antibodies against FZD10, a cell-surface protein, for synovial sarcomas. Oncogene 2005, 24, 6201–6212. [Google Scholar] [CrossRef] [PubMed]
- Fukukawa, C.; Hanaoka, H.; Nagayama, S.; Tsunoda, T.; Toguchida, J.; Endo, K.; Nakamura, Y.; Katagiri, T. Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10. Cancer Sci. 2008, 99, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Pode-Shakked, N.; Harari-Steinberg, O.; Haberman-Ziv, Y.; Rom-Gross, E.; Bahar, S.; Omer, D.; Metsuyanim, S.; Buzhor, E.; Jacob-Hirsch, J.; Goldstein, R.S.; et al. Resistance or sensitivity of wilms’ tumor to anti-FZD7 antibody highlights the wnt pathway as a possible therapeutic target. Oncogene 2011, 30, 1664–1680. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.S.; Day, E.S. Frizzled7 antibody-functionalized nanoshells enable multivalent binding for wnt signaling inhibition in triple negative breast cancer cells. Small 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Nickho, H.; Younesi, V.; Aghebati-Maleki, L.; Motallebnezhad, M.; Majidi Zolbanin, J.; Movassagh Pour, A.; Yousefi, M. Developing and characterization of single chain variable fragment (scfv) antibody against frizzled 7 (FZD7) receptor. Bioengineered 2017, 8, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Zarei, N.; Fazeli, M.; Mohammadi, M.; Nejatollahi, F. Cell growth inhibition and apoptosis in breast cancer cells induced by anti-FZD7 scfvs: Involvement of bioinformatics-based design of novel epitopes. Breast Cancer Res. Treat. 2018, 169, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Gurney, A.; Axelrod, F.; Bond, C.J.; Cain, J.; Chartier, C.; Donigan, L.; Fischer, M.; Chaudhari, A.; Ji, M.; Kapoun, A.M.; et al. Wnt pathway inhibition via the targeting of frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 11717–11722. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M.; Katoh, M. Molecular genetics and targeted therapy of wnt-related human diseases (review). Int. J. Mol. Med. 2017, 40, 587–606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lu, W.; Ananthan, S.; Suto, M.J.; Li, Y. Discovery of novel frizzled-7 inhibitors by targeting the receptor’s transmembrane domain. Oncotarget 2017, 8, 91459–91470. [Google Scholar] [PubMed]
- Nambotin, S.B.; Lefrancois, L.; Sainsily, X.; Berthillon, P.; Kim, M.; Wands, J.R.; Chevallier, M.; Jalinot, P.; Scoazec, J.Y.; Trepo, C.; et al. Pharmacological inhibition of frizzled-7 displays anti-tumor properties in hepatocellular carcinoma. J. Hepatol. 2011, 54, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Fujii, N.; You, L.; Xu, Z.; Uematsu, K.; Shan, J.; He, B.; Mikami, I.; Edmondson, L.R.; Neale, G.; Zheng, J.; et al. An antagonist of dishevelled protein-protein interaction suppresses β-catenin-dependent tumor cell growth. Cancer Res. 2007, 67, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Le, P.N.; McDermott, J.D.; Jimeno, A. Targeting the wnt pathway in human cancers: Therapeutic targeting with a focus on omp-54f28. Pharmacol. Ther. 2015, 146, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Amerizadeh, F.; ShahidSales, S.; Khazaei, M.; Ghayour-Mobarhan, M.; Sadeghnia, H.R.; Maftouh, M.; Hassanian, S.M.; Avan, A. Therapeutic potential of targeting wnt/β-catenin pathway in treatment of colorectal cancer: Rational and progress. J. Cell. Biochem. 2017, 118, 1979–1983. [Google Scholar] [CrossRef] [PubMed]
- Jimeno, A.; Gordon, M.; Chugh, R.; Messersmith, W.; Mendelson, D.; Dupont, J.; Stagg, R.; Kapoun, A.M.; Xu, L.; Uttamsingh, S.; et al. A first-in-human phase I study of the anticancer stem cell agent ipafricept (omp-54f28), a decoy receptor for wnt ligands, in patients with advanced solid tumors. Clin. Cancer Res. 2017, 23, 7490–7497. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Chua, M.S.; Grepper, S.; So, S.K. Soluble frizzled-7 receptor inhibits wnt signaling and sensitizes hepatocellular carcinoma cells towards doxorubicin. Mol. Cancer 2011, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Kypta, R. Secreted antagonists of the wnt signalling pathway. J. Cell Sci. 2003, 116, 2627–2634. [Google Scholar] [CrossRef] [PubMed]
- Nathke, I.S.; Adams, C.L.; Polakis, P.; Sellin, J.H.; Nelson, W.J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 1996, 134, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Saito-Diaz, K.; Benchabane, H.; Tiwari, A.; Tian, A.; Li, B.; Thompson, J.J.; Hyde, A.S.; Sawyer, L.M.; Jodoin, J.N.; Santos, E.; et al. APC inhibits ligand-independent wnt signaling by the clathrin endocytic pathway. Dev. Cell 2018, 44, 566–581.e568. [Google Scholar] [CrossRef] [PubMed]
- Hulsken, J.; Birchmeier, W.; Behrens, J. E-cadherin and APC compete for the interaction with β-catenin and the cytoskeleton. J. Cell Biol. 1994, 127, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Kimoto, N.; Shimoyama, Y.; Hirohashi, S.; Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 1992, 70, 293–301. [Google Scholar] [CrossRef]
- Chen, B.; Dodge, M.E.; Tang, W.; Lu, J.; Ma, Z.; Fan, C.W.; Wei, S.; Hao, W.; Kilgore, J.; Williams, N.S.; et al. Small molecule-mediated disruption of wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 2009, 5, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.M.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; et al. Tankyrase inhibition stabilizes axin and antagonizes wnt signalling. Nature 2009, 461, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Lehtio, L.; Chi, N.W.; Krauss, S. Tankyrases as drug targets. FEBS J. 2013, 280, 3576–3593. [Google Scholar] [CrossRef] [PubMed]
- Takada, R.; Satomi, Y.; Kurata, T.; Ueno, N.; Norioka, S.; Kondoh, H.; Takao, T.; Takada, S. Monounsaturated fatty acid modification of wnt protein: Its role in wnt secretion. Dev. Cell 2006, 11, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.; Huggins, I.J.; Perna, L.; Brafman, D.; Lu, D.; Yao, S.; Gaasterland, T.; Carson, D.A.; Willert, K. The wnt receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proc. Natl. Acad. Sci. USA 2014, 111, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
Gene | Cancer | Clinical Relevance | Ref. |
---|---|---|---|
FZD1 | Neuroblastoma | Patients with neuroblastoma who relapsed after chemotherapy showed a significant increase of FZD1 expression, but no significant increase was observed in the non-relapsed group of patients. | [12] |
FZD2 | Liver or lung | FZD2 mRNA expression was found to be significantly increased in late stages of primary liver and lung cancers compared with normal tissue and early stage cancer. | [17] |
Endometrial | FZD2 was overexpressed in endometrial cancer tissues compared with the level in normal tissues. Moreover, the expression of FZD2 was positively correlated with markers of mesenchymal cells, such as vimentin and N-cadherin. | [19] | |
Salivary adenoid cystic carcinoma | FZD2 expression was downregulated in the samples with metastasis and recurrence when compared to the samples without metastasis. | [21] | |
FZD3 | Colorectal | FZD3 protein expression was highly correlated with colorectal carcinogenesis and progression, indicating that it may potentially serve as a prognostic marker. | [83] |
FZD4 | Acute myeloid leukemia | FZD4 protein was expressed in about 80% samples from acute myeloid leukemia patients but rarely expressed in normal bone marrow. | [27] |
Prostate | FZD4 was highly correlated with ERG[Erythroblast transformation-specific (ETS)-related gene] in clinical prostate samples. Higher FZD4 protein expression was often detected in ERG-positive tumors compared with ERG-negative samples. | [28] | |
Cervical | FZD4 mRNA expression level in cervical carcinomas was much higher than that in normal cervical tissues in human cervical carcinoma samples. | [31] | |
FZD5 | Prostate | FZD5 mRNA expression was significantly higher in the prostate cancer tissues compared with healthy controls. | [84] |
FZD6 | Colorectal | Both FZD6 protein expression and FZD6 mRNA expression were found to be significantly increased compared with adjacent non-tumor samples, which indicated that upregulation of FZD6 correlated with the development of colorectal cancer. | [40] |
Breast | FZD6 expression was significantly associated with reduced distant relapse-free survival in the triple negative breast cancer patient subgroup, but no significant association with other subtypes. | [42] | |
FZD7 | Esophageal | FZD7 protein expression was significantly higher in ESCC than that in the adjacent non-tumor tissues. FZD7 overexpression was significantly associated with shorter survival time of patients with ESCC. | [51] |
Glioma | FZD7 protein expression was significantly increased in glioma compared with the adjacent normal tissues. | [53] | |
Gastric | FZD7 mRNA expression was found to be significantly upregulated in gastric cancers compared with normal gastric tissues. IHC staining also confirmed the result above and FZD7 overexpression associated with advanced tumor stages and poor survival. | [56] | |
Breast | FZD7 expression was significantly higher in the TNBC samples compared with non-TNBC samples. | [57] | |
Colorectal | FZD7 mRNA expression examined by real-time PCR was significantly increased in CRC compared with non-tumor tissues. FZD7 overexpression was significantly associated with higher tumor stage. | [58] | |
FZD8 | Prostate | Both FZD8 mRNA and protein expression were found to be more notably increased in bone metastatic prostate cancer than in primary prostate cancer and normal prostate tissues. | [61] |
Breast | FZD8 expression was significantly higher in human breast cancer tissues compared with the adjacent normal tissues, and high expression of FZD8 was closely correlated with lymph node metastasis. | [64] | |
Lung | Upregulation of FZD8 expression was observed in 85% tumor samples from lung cancer patients when compared to their matched normal lung tissues. | [69] | |
FZD9 | Astrocytoma | FZD9 protein was more frequently expressed in malignant astrocytoma than in low-grade astrocytoma. | [70] |
Osteosarcoma | FZD9 expression was higher in osteosarcoma tissues than in the adjacent non-cancerous tissues. The high level expression of FZD9 occurred more frequently in late stage than in the early stage of osteosarcoma. | [71] | |
FZD10 | Colorectal | FZD10 mRNA expression was confined to CRC tissues and almost absent from normal mucosa. No IHC staining was observed for FZD10 in normal mucosa, and only tumor cells in polyps and CRC tissues showed spotted staining. | [80] |
Synovial sarcoma | FZD10 mRNA was expressed in synovial sarcoma, but not expressed in normal human organs except placenta. FZD10 protein expression appeared to be absent or low in normal vital organs compared to its highly increased expression in synovial sarcoma tissues. | [85] |
Antibodies/Inhibitors | Targets | Cancer Types |
---|---|---|
mAb 92-13 | FZD10 | Synovial sarcoma |
anti-FZD7 antibody | FZD7 | Wilms’ tumor |
scFvs | FZD7 | Triple negative breast cancer |
OMP-18R5 | FZD1,2,5,7, and 8 | Breast, Pancreatic, Colon and Lung Cancers |
SRI37892 | FZD7 | Breast cancer |
RHPDs | FZD7 | Hepatocellular carcinoma |
FJ9 | FZD7 | Melanoma, Non-small cell lung cancer |
dFz7-21 | FZD1, FZD2, FZD7 | Unknown |
IgG-2919 and IgG-2921 | FZD5 | RNF43-mutant pancreatic ductal adenocarcinoma |
OMP-54F28 | Compete with FZD8 | Advanced solid tumors |
sFZD7 | Compete with FZD7 | Hepatocellular carcinoma |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, C.-M.; Chen, Z.; Fu, L. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. Int. J. Mol. Sci. 2018, 19, 1543. https://doi.org/10.3390/ijms19051543
Zeng C-M, Chen Z, Fu L. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. International Journal of Molecular Sciences. 2018; 19(5):1543. https://doi.org/10.3390/ijms19051543
Chicago/Turabian StyleZeng, Chui-Mian, Zhe Chen, and Li Fu. 2018. "Frizzled Receptors as Potential Therapeutic Targets in Human Cancers" International Journal of Molecular Sciences 19, no. 5: 1543. https://doi.org/10.3390/ijms19051543
APA StyleZeng, C. -M., Chen, Z., & Fu, L. (2018). Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. International Journal of Molecular Sciences, 19(5), 1543. https://doi.org/10.3390/ijms19051543