Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now?
Abstract
:1. Introduction
2. Helicobacter pylori and Gastric Cancer
3. Antimicrobials for H. pylori Eradication
4. Plant Extracts and Phytochemicals with Anti-Helicobacter pylori Activity
5. In Vivo Findings
6. Urease Inhibition
7. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; del Mar Contreras, M.; et al. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res. 2018, 215, 76–88. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Sharopov, F.; Salehi, B.; Yousaf, Z.; Sharifi-Rad, M.; et al. Ethnobotany of the genus Taraxacum–Phytochemicals and antimicrobial activity. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res. 2018, 32, 1425–1449. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Iriti, M.; Setzer, W.N.; Sharifi-Rad, M.; Roointan, A.; Salehi, B. Antiviral activity of Veronica persica Poir. on herpes virus infection. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 11–17. [Google Scholar] [CrossRef]
- Mishra, A.P.; Saklani, S.; Salehi, B.; Parcha, V.; Sharifi-Rad, M.; Milella, L.; Iriti, M.; Sharifi-Rad, J.; Srivastava, M. Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan region: Chemical profile and biological activities of tuber extracts. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 35–43. [Google Scholar] [CrossRef]
- Mishra, A.P.; Sharifi-Rad, M.; Shariati, M.A.; Mabkhot, Y.N.; Al-Showiman, S.S.; Rauf, A.; Salehi, B.; Župunski, M.; Sharifi-Rad, M.; Gusain, P.; et al. Bioactive compounds and health benefits of edible Rumex species-A review. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 27–34. [Google Scholar] [CrossRef]
- Monjazeb Marvdashti, L.; Abdolshahi, A.; Hedayati, S.; Sharifi-Rad, M.; Iriti, M.; Salehi, B.; Sharifi-Rad, J. Pullulan gum production from low-quality fig syrup using Aureobasidium pullulans. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 22–26. [Google Scholar] [CrossRef]
- Salehi, B.; Anil Kumar, N.V.; Şener, B.; Sharifi-Rad, M.; Kılıç, M.; Mahady, G.B.; Vlaisavljevic, S.; Iriti, M.; Kobarfard, F.; Setzer, W.N.; et al. Medicinal plants used in the treatment of human immunodeficiency virus. Int. J. Mol. Sci. 2018, 19, 1459. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, G.; Mirzaei, M.; Mehrabi, R.; Sharifi-Rad, J. Cytotoxic and antioxidant activities of Alstonia scholaris, Alstonia venenata and Moringa oleifera plants from India. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e31129. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Salehi, B.; Sharifi-Rad, J.; Setzer, W.N.; Iriti, M. Pulicaria vulgaris Gaertn. essential oil: An alternative or complementary treatment for Leishmaniasis. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 18–21. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Tayeboon, G.S.; Niknam, F.; Sharifi-Rad, M.; Mohajeri, M.; Salehi, B.; Iriti, M.; Sharifi-Rad, M. Veronica persica Poir. extract-antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase and xanthine oxidase. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 50–56. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sharifi-Rad, M.; Salehi, B.; Iriti, M.; Roointan, A.; Mnayer, D.; Soltani-Nejad, A.; Afshari, A. In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 57–64. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Ferreira, I.C. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Ayatollahi, S.A.; Varoni, E.M.; Salehi, B.; Kobarfard, F.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia 2017, 65, 802–812. [Google Scholar]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.d.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Henriques, M.; Silva, S.; Ferreira, I.C. In vivo anti-candida activity of phenolic extracts and compounds: Future perspectives focusing on effective clinical interventions. BioMed Res. Int. 2015, 2015, 247382. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Mnayer, D.; Roointan, A.; Shahri, F.; Ayatollahi, S.; Sharifi-Rad, M.; Molaee, N. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli. Cell. Mol. Biol. 2016, 62, 75–82. [Google Scholar] [PubMed]
- Sharifi-Rad, M.; Iriti, M.; Gibbons, S.; Sharifi-Rad, J. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of Rubiaceae, Fabaceae and Poaceae plants: A search for new sources of useful alternative antibacterials against MRSA infections. Cell. Mol. Biol. 2016, 62, 39–45. [Google Scholar] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M.; et al. Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Schnitzler, P.; Ayatollahi, S.A.; Kobarfard, F.; Fathi, M.; Eisazadeh, M.; Sharifi-Rad, M. Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn. Cell. Mol. Biol. 2017, 63, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahady, G.B.; Sharifi-Rad, M.; Masjedi, M.R.; Lawal, T.O.; Ayatollahi, S.A.; et al. Medicinal plants used in the treatment of tuberculosis—Ethnobotanical and ethnopharmacological approaches. Biotechnol. Adv. 2017. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Ayatollahi, S.A.; Segura-Carretero, A.; Kobarfard, F.; Contreras, M.D.M.; Faizi, M.; Sharifi-Rad, M.; Tabatabai, S.A.; Sharifi-Rad, J. Bioactive chemical compounds in Eremurus persicus (Joub. & Spach) Boiss. essential oil and their health implications. Cell. Mol. Biol. 2017, 63, 1–7. [Google Scholar] [PubMed]
- Abdolshahi, A.; Naybandi-Atashi, S.; Heydari-Majd, M.; Salehi, B.; Kobarfard, F.; Ayatollahi, S.A.; Ata, A.; Tabanelli, G.; Sharifi-Rad, M.; Montanari, C.; et al. Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 71–77. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Roointan, A.; Setzer, W.N.; Sharifi-Rad, M.; Iriti, M.; Salehi, B. Susceptibility of Leishmania major to Veronica persica Poir. extracts-In vitro and in vivo assays. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 44–49. [Google Scholar] [CrossRef]
- Percival, S.L.; Suleman, L. Biofilms and Helicobacter pylori: Dissemination and persistence within the environment and host. World J. Gastrointest. Pathophysiol. 2014, 5, 122. [Google Scholar] [CrossRef] [PubMed]
- Modolo, L.V.; de Souza, A.X.; Horta, L.P.; Araujo, D.P.; de Fátima, Â. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res. 2015, 6, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Zhang, P.-Y.; Aboul-Soud, M.A. From inflammation to gastric cancer: Role of Helicobacter pylori. Oncol. Lett. 2017, 13, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Fokou, P.; Sharopov, F.; Martorell, M.; Ademiluyi, A.; Rajkovic, J.; Salehi, B.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Antiulcer Agents: From Plant Extracts to Phytochemicals in Healing Promotion. Molecules 2018, 23, 1751. [Google Scholar] [CrossRef] [PubMed]
- Sipponen, P.; Marshall, B.J. Gastritis and gastric cancer: Western countries. Gastroenterol. Clin. N. Am. 2000, 29, 579–592. [Google Scholar] [CrossRef]
- Park, J.Y.; Forman, D.; Waskito, L.A.; Yamaoka, Y.; Crabtree, J.E. Epidemiology of Helicobacter pylori and CagA-Positive Infections and Global Variations in Gastric Cancer. Toxins 2018, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Nagy, T.A.; Frey, M.R.; Yan, F.; Israel, D.A.; Polk, D.B.; Peek, R.M. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. J. Infect. Dis. 2009, 199, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef] [PubMed]
- Tsugane, S. Salt, salted food intake, and risk of gastric cancer: Epidemiologic evidence. Cancer Sci. 2005, 96, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisbert, J.; Gonzalez, L.; Calvet, X.; García, N.; López, T.; Roque, M.; Gabriel, R.; Pajares, J. Proton pump inhibitor, clarithromycin and either amoxycillin or nitroimidazole: A meta-analysis of eradication of Helicobacter pylori. Aliment. Pharmacol. Ther. 2000, 14, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Molina-Infante, J.; Gisbert, J.P. Optimizing clarithromycin-containing therapy for Helicobacter pylori in the era of antibiotic resistance. World J. Gastroenterol. 2014, 20, 10338–10347. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-I.; Wu, D.-C.; Chen, W.-C.; Tseng, H.-H.; Yu, H.-C.; Wang, H.-M.; Kao, S.-S.; Lai, K.-H.; Chen, A.; Tsay, F.-W. Randomized controlled trial comparing 7-day triple, 10-day sequential, and 7-day concomitant therapies for Helicobacter pylori infection. Antimicrob. Agents Chemother. 2014, 58, 5936–5942. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [PubMed]
- Rong, Q.; Xu, M.; Dong, Q.; Zhang, Y.; Li, Y.; Ye, G.; Zhao, L. In vitro and in vivo bactericidal activity of Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo and its main effective component, palmatine, against porcine Helicobacter pylori. BMC Complement. Altern. Med. 2016, 16, 331. [Google Scholar] [CrossRef] [PubMed]
- Lansdorp-Vogelaar, I.; Sharp, L. Cost-effectiveness of screening and treating Helicobacter pylori for gastric cancer prevention. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 933–947. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C. Medicinal plant activity on Helicobacter pylori related diseases. World J. Gastroenterol. 2014, 20, 10368–10382. [Google Scholar] [CrossRef] [PubMed]
- Vale, F.F.; Oleastro, M. Overview of the phytomedicine approaches against Helicobacter pylori. World J. Gastroenterol. 2014, 20, 5594–5609. [Google Scholar] [CrossRef] [PubMed]
- Nariman, F.; Eftekhar, F.; Habibi, Z.; Massarrat, S.; Malekzadeh, R. Antibacterial activity of twenty Iranian plant extracts against clinical isolates of Helicobacter pylori. Iran. J. Basic Med. Sci. 2009, 12, 105–111. [Google Scholar]
- Nostro, A.; Cellini, L.; Bartolomeo, S.D.; Campli, E.D.; Grande, R.; Cannatelli, M.; Marzio, L.; Alonzo, V. Antibacterial effect of plant extracts against Helicobacter pylori. Phytother. Res. 2005, 19, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Cogo, L.L.; Monteiro, C.L.B.; Miguel, M.D.; Miguel, O.G.; Cunico, M.M.; Ribeiro, M.L.; de Camargo, E.R.; Kussen, G.M.B.; Nogueira, K.d.S.; Costa, L.M.D. Anti-Helicobacter pylori activity of plant extracts traditionally used for the treatment of gastrointestinal disorders. Braz. J. Microbiol. 2010, 41, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Anwar, F.; Naz, F.; Mehmood, T.; Saari, N. Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules 2013, 18, 2135–2149. [Google Scholar] [CrossRef] [PubMed]
- Njume, C.; Afolayan, A.J.; Samie, A.; Ndip, R.N. Inhibitory and Bactericidal Potential of Crude Acetone Extracts of Combretum molle (Combretaceae) on Drug-resistant Strains of Helicobacter pylori. J. Health Popul. Nutr. 2011, 29, 438–445. [Google Scholar] [CrossRef]
- Njume, C.; Jide, A.A.; Ndip, R.N. Aqueous and Organic Solvent-Extracts of Selected South African Medicinal Plants Possess Antimicrobial Activity against Drug-Resistant Strains of Helicobacter pylori: Inhibitory and Bactericidal Potential. Int. J. Mol. Sci. 2011, 12, 5652–5665. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Juarez, I.; Gonzalez, V.; Jaime-Aguilar, H.; Martinez, G.; Linares, E.; Bye, R.; Romero, I. Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. J. Ethnopharmacol. 2009, 122, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Okeleye, B.I.; Bessong, P.O.; Ndip, R.N. Preliminary phytochemical screening and in vitro anti-Helicobacter pylori activity of extracts of the stem bark of Bridelia micrantha (Hochst., Baill., Euphorbiaceae). Molecules 2011, 16, 6193–6205. [Google Scholar] [CrossRef] [PubMed]
- Yesilada, E.; Gurbuz, I.; Shibata, H. Screening of Turkish anti-ulcerogenic folk remedies for anti-Helicobacter pylori activity. J. Ethnopharmacol. 1999, 66, 289–293. [Google Scholar] [CrossRef]
- Li, Y.; Xu, C.; Zhang, Q.; Liu, J.Y.; Tan, R.X. In vitro anti-Helicobacter pylori action of 30 Chinese herbal medicines used to treat ulcer diseases. J. Ethnopharmacol. 2005, 98, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Poovendran, P.; Kalaigandhi, V.; Poongunran, E. Antimicrobial activity of the leaves of Cocculus hirsutus against gastric ulcer producing Helicobacter pylori. J. Pharm. Res. 2011, 4, 4294–4295. [Google Scholar]
- Palacios-Espinosa, J.F.; Arroyo-Garcia, O.; Garcia-Valencia, G.; Linares, E.; Bye, R.; Romero, I. Evidence of the anti-Helicobacter pylori, gastroprotective and anti-inflammatory activities of Cuphea aequipetala infusion. J. Ethnopharmacol. 2014, 151, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Hinojosa, W.I.; Del Carpio, J.D.; Palacios-Espinosa, J.F.; Romero, I. Contribution to the ethnopharmacological and anti-Helicobacter pylori knowledge of Cyrtocarpa procera Kunth (Anacardiaceae). J. Ethnopharmacol. 2012, 143, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Uyub, A.M.; Nwachukwu, I.N.; Azlan, A.A.; Fariza, S.S. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on metronidazole-resistant-Helicobacter pylori and some pathogenic bacteria. Ethnobot. Res. Appl. 2010, 8, 095–106. [Google Scholar] [CrossRef]
- Shahani, S.; Monsef-Esfahani, H.R.; Saeidnia, S.; Saniee, P.; Siavoshi, F.; Foroumadi, A.; Samadi, N.; Gohari, A.R. Anti-Helicobacter pylori activity of the methanolic extract of Geum iranicum and its main compounds. Z. Naturforsch. C J. Biosci. 2012, 67, 172–180. [Google Scholar] [CrossRef]
- Pastene, E.; Parada, V.; Avello, M.; Ruiz, A.; Garcia, A. Catechin-based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells. Phytother. Res. 2014, 28, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro Silva, L.; Damacena de Angelis, C.; Bonamin, F.; Kushima, H.; José Mininel, F.; Campaner dos Santos, L.; Karina Delella, F.; Luis Felisbino, S.; Vilegas, W.; Regina Machado da Rocha, L.; et al. Terminalia catappa L.: A medicinal plant from the Caribbean pharmacopeia with anti-Helicobacter pylori and antiulcer action in experimental rodent models. J. Ethnopharmacol. 2015, 159, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Malekzadeh, F.; Ehsanifar, H.; Shahamat, M.; Levin, M.; Colwell, R.R. Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori. Int. J. Antimicrob. Agents 2001, 18, 85–88. [Google Scholar] [CrossRef]
- Bergonzelli, G.E.; Donnicola, D.; Porta, N.; Corthésy-Theulaz, I.E. Essential Oils as Components of a Diet-Based Approach to Management of Helicobacter Infection. Antimicrob. Agents Chemother. 2003, 47, 3240–3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Gara, E.A.; Maslin, D.J.; Nevill, A.M.; Hill, D.J. The effect of simulated gastric environments on the anti-Helicobacter activity of garlic oil. J. Appl. Microbiol. 2008, 104, 1324–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseininejad, Z.; Moghadam, S.D.; Ebrahimi, F.; Abdollahi, M.; Zahedi, M.J.; Nazari, M.; Hayatbakhsh, M.; Adeli, S.; Sharififar, F. In vitro screening of selected Iranian medicinal plants against Helicobacter pylori. Int. J. Green Pharm. 2011, 5, 282–285. [Google Scholar]
- Awaad, A.S.; Al-Rifai, A.A.; El-Meligy, R.M.; Alafeefy, A.M.; Zain, M.E. New Activities for Isolated Compounds from Convolvulus austro-aegyptiacus as Anti-ulcerogenic, Anti-Helicobacter pylori and Their Mimic Synthesis Using Bio-guided Fractionation. Phytother. Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ndip, R.N.; Malange Tarkang, A.E.; Mbullah, S.M.; Luma, H.N.; Malongue, A.; Ndip, L.M.; Nyongbela, K.; Wirmum, C.; Efange, S.M. In vitro anti-Helicobacter pylori activity of extracts of selected medicinal plants from North West Cameroon. J. Ethnopharmacol. 2007, 114, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Mahady, G.B.; Pendland, S.L.; Stoia, A.; Hamill, F.A.; Fabricant, D.; Dietz, B.M.; Chadwick, L.R. In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytother. Res. 2005, 19, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Kouitcheu Mabeku, L.B.; Nanfack Nana, B.; Eyoum Bille, B.; Tchuenteu Tchuenguem, R.; Nguepi, E. Anti-Helicobacter pylori and antiulcerogenic activity of Aframomum pruinosum seeds on indomethacin-induced gastric ulcer in rats. Pharm. Biol. 2017, 55, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Krivokuca, M.; Niketic, M.; Milenkovic, M.; Golic, N.; Masia, C.; Scaltrito, M.M.; Sisto, F.; Kundakovic, T. Anti-Helicobacter pylori Activity of Four Alchemilla Species (Rosaceae). Nat. Prod. Commun. 2015, 10, 1369–1371. [Google Scholar] [PubMed]
- Lima, Z.P.; Calvo, T.R.; Silva, E.F.; Pellizzon, C.H.; Vilegas, W.; Brito, A.R.; Bauab, T.M.; Hiruma-Lima, C.A. Brazilian medicinal plant acts on prostaglandin level and Helicobacter pylori. J. Med. Food 2008, 11, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Kouitcheu Mabeku, L.B.; Eyoum Bille, B.; Nguepi, E. In Vitro and In Vivo Anti-Helicobacter Activities of Eryngium foetidum (Apiaceae), Bidens pilosa (Asteraceae), and Galinsoga ciliata (Asteraceae) against Helicobacter pylori. Biomed. Res. Int. 2016, 2016, 2171032. [Google Scholar] [CrossRef] [PubMed]
- Kouitcheu Mabeku, L.B.; Eyoum Bille, B.; Tchouangueu, T.F.; Nguepi, E.; Leundji, H. Treatment of Helicobacter pylori infected mice with Bryophyllum pinnatum, a medicinal plant with antioxidant and antimicrobial properties, reduces bacterial load. Pharm. Biol. 2017, 55, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Souza Mdo, C.; Beserra, A.M.; Martins, D.C.; Real, V.V.; Santos, R.A.; Rao, V.S.; Silva, R.M.; Martins, D.T. In vitro and in vivo anti-Helicobacter pylori activity of Calophyllum brasiliense Camb. J. Ethnopharmacol. 2009, 123, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Miguel, G.; Faleiro, L.; Cavaleiro, C.; Salgueiro, L.; Casanova, J. Susceptibility of Helicobacter pylori to essential oil of Dittrichia viscosa subsp. revoluta. Phytother. Res. 2008, 22, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Vellosa, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of Euphorbia umbellata (Pax) Bruyns (Euphorbiaceae). J. Ethnopharmacol. 2016, 191, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Marumo, A.; Kaitou, K.; Kanda, T.; Terada, S.; Nomura, T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci. 2002, 71, 1449–1463. [Google Scholar] [CrossRef]
- Hinojosa, W.I.; Quiroz, M.A.; Alvarez, I.R.; Castaneda, P.E.; Villarreal, M.L.; Taketa, A.C. Anti-Helicobacter pylori, gastroprotective, anti-inflammatory, and cytotoxic activities of methanolic extracts of five different populations of Hippocratea celastroides collected in Mexico. J. Ethnopharmacol. 2014, 155, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Mahady, G.B.; Pendland, S.L.; Stoia, A.; Chadwick, L.R. In vitro susceptibility of Helicobacter pylori to isoquinoline alkaloids from Sanguinaria canadensis and Hydrastis canadensis. Phytother. Res. 2003, 17, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Garro, M.F.; Salinas Ibanez, A.G.; Vega, A.E.; Arismendi Sosa, A.C.; Pelzer, L.; Saad, J.R.; Maria, A.O. Gastroprotective effects and antimicrobial activity of Lithraea molleoides and isolated compounds against Helicobacter pylori. J. Ethnopharmacol. 2015, 176, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Ngan, L.T.M.; Moon, J.-K.; Shibamoto, T.; Ahn, Y.-J. Growth-Inhibiting, Bactericidal, and Urease Inhibitory Effects of Paeonia lactiflora Root Constituents and Related Compounds on Antibiotic-Susceptible and -Resistant Strains of Helicobacter pylori. J. Agric. Food Chem. 2012, 60, 9062–9073. [Google Scholar] [CrossRef] [PubMed]
- Khanavi, M.; Safavi, S.M.; Siavashi, F.; Falah Tafti, A.; Haji Mahmoudi, M.; Haji Akhoundi, A.; Rezazadeh, S.A.; Foroumadi, A.R. Evaluation of anti-Helicobacter pylori activity of methanol extracts of some species of Stachys and Melia. J. Med. Plants 2008, 28, 74–80. [Google Scholar]
- Ramadan, M.A.; Safwat, N.A. Antihelicobacter Activity of a Flavonoid Compound Isolated from Desmostachya Bipinnata. Aust. J. Basic Appl. Sci. 2009, 3, 2270–2277. [Google Scholar]
- Stamatis, G.; Kyriazopoulos, P.; Golegou, S.; Basayiannis, A.; Skaltsas, S.; Skaltsa, H. In vitro anti-Helicobacter pylori activity of Greek herbal medicines. J. Ethnopharmacol. 2003, 88, 175–179. [Google Scholar] [CrossRef]
- Manayi, A.; Khanavi, M.; Saiednia, S.; Azizi, E.; Mahmoodpour, M.R.; Vafi, F.; Malmir, M.; Siavashi, F.; Hadjiakhoondi, A. Biological activity and microscopic characterization of Lythrum salicaria L. DARU J. Pharm. Sci. 2013, 21, 61. [Google Scholar] [CrossRef] [PubMed]
- Mafioleti, L.; da Silva Junior, I.F.; Colodel, E.M.; Flach, A.; Martins, D.T. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of Arrabidaea chica (Humb. & Bonpl.) B. Verl. J. Ethnopharmacol. 2013, 150, 576–582. [Google Scholar] [PubMed]
- Moraes Tde, M.; Rodrigues, C.M.; Kushima, H.; Bauab, T.M.; Villegas, W.; Pellizzon, C.H.; Brito, A.R.; Hiruma-Lima, C.A. Hancornia speciosa: Indications of gastroprotective, healing and anti-Helicobacter pylori actions. J. Ethnopharmacol. 2008, 120, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Nariman, F.; Eftekhar, F.; Habibi, Z.; Falsafi, T. Anti-Helicobacter pylori activities of six Iranian plants. Helicobacter 2004, 9, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Gu, H.M.; Li, X.Z.; Xu, Z.N.; Chen, Y.S.; Li, Y. Anti-Helicobacter pylori compounds from the ethanol extracts of Geranium wilfordii. J. Ethnopharmacol. 2013, 147, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.L.; Zhang, J.Y.; Song, X.N.; Zhang, Z.Y.; Li, J.F.; Li, S. Anti-ulcer and anti-Helicobacter pylori potentials of the ethyl acetate fraction of Physalis alkekengi L. var. franchetii (Solanaceae) in rodent. J. Ethnopharmacol. 2017, 211, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Lemos, L.M.S.; Martins, T.B.; Tanajura, G.H.; Gazoni, V.F.; Bonaldo, J.; Strada, C.L.; Silva, M.G.D.; Dall’Oglio, E.L.; de Sousa Júnior, P.T.; Martins, D.T.D.O. Evaluation of antiulcer activity of chromanone fraction from Calophyllum brasiliesnse Camb. J. Ethnopharmacol. 2012, 141, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Sidahmed, H.M.A.; Azizan, A.H.S.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Taha, M.M.E.; Hadi, A.H.A.; Ketuly, K.A.; Hashim, N.M.; Loke, M.F.; et al. Gastroprotective effect of desmosdumotin C isolated from Mitrella kentii against ethanol-induced gastric mucosal hemorrhage in rats: Possible involvement of glutathione, heat-shock protein-70, sulfhydryl compounds, nitric oxide, and anti-Helicobacter pylori activity. BMC Complement. Altern. Med. 2013, 13, 183. [Google Scholar] [PubMed]
- Hassani, A.R.; Ordouzadeh, N.; Ghaemi, A.; Amirmozafari, N.; Hamdi, K.; Nazari, R. In vitro inhibition of Helicobacter pylori urease with non and semi fermented Camellia sinensis. Indian J. Med. Microbiol. 2009, 27, 30–34. [Google Scholar] [PubMed]
- Ye, H.; Liu, Y.; Li, N.; Yu, J.; Cheng, H.; Li, J.; Zhang, X.-Z. Anti-Helicobacter pylori activities of Chenopodium ambrosioides L. in vitro and in vivo. World J. Gastroenterol. 2015, 21, 4178–4183. [Google Scholar] [CrossRef] [PubMed]
- O’Gara, E.A.; Hill, D.J.; Maslin, D.J. Activities of Garlic Oil, Garlic Powder, and Their Diallyl Constituents against Helicobacter pylori. Appl. Environ. Microbiol. 2000, 66, 2269–2273. [Google Scholar] [CrossRef] [PubMed]
- Nontakham, J.; Charoenram, N.; Upamai, W.; Taweechotipatr, M.; Suksamrarn, S. Anti-Helicobacter pylori xanthones of Garcinia fusca. Arch. Pharm. Res. 2014, 37, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Bae, K.H.; Jeong, C.-S. Anti-Helicobacter pylori and Antiulcerogenic Activities of the Root Cortex of Paeonia suffruticosa. Biol. Pharm. Bull. 2013, 36, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, G.; Monroy-Noyola, A.; Contreras-Arellano, A.; Mariscal-Durand, J.F.; Galvez-Molina, Y.; Vazquez-Velazquez, A.; Garcia-Jimenez, S.; Nunez, P.; Cardoso-Taketa, A.; Villarreal, M.L. Preclinical evaluation of anti-Helicobacter spp. activity of Hippocratea celastroides Kunth and its acute and sub-acute toxicity. BMC Complement. Altern. Med. 2016, 16, 445. [Google Scholar] [CrossRef] [PubMed]
- Tian, A.; Xu, T.; Liu, K.; Zou, Q.; Yan, X. Anti-Helicobacter pylori effect of total alkaloids of sophora alopecuroides in vivo. Chin. Med. J. 2014, 127, 2484–2491. [Google Scholar] [PubMed]
- Pastene, E.; Speisky, H.; García, A.; Moreno, J.; Troncoso, M.; Figueroa, G. In Vitro and in Vivo Effects of Apple Peel Polyphenols against Helicobacter pylori. J. Agric. Food Chem. 2010, 58, 7172–7179. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Zheng, H.M.; Lee, B.Y.; Lee, W.K.; Lee, D.H. Anti-Helicobacter pylori Properties of GutGard. Prev. Nutr. Food Sci. 2013, 18, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Kwon, Y.; Labbe, R.; Shetty, K. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 2005, 71, 8558–8564. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, H.; Miyamoto, Y.; Akaike, T.; Kubota, T.; Sawa, T.; Okamoto, S.; Maeda, H. Helicobacter pylori Urease Suppresses Bactericidal Activity of Peroxynitrite via Carbon Dioxide Production. Infect. Immun. 2000, 68, 4378–4383. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Kvetnaya, A.S. Antibacterial activity of Chamomilla recutita oil extract against Helicobacter pylori. Phytother. Res. 2008, 22, 252–253. [Google Scholar] [CrossRef] [PubMed]
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Acacia nilotica (L.) Delile | Leguminosae | Flowers | MIC = 8–64 μg/mL | [49] |
Adhatoda vasica Nees | Acanthaceae | Whole plant | MIC = 16–512 μg/mL | [49] |
Alepidea amatymbica Eckl. and Zeyh | Apiaceae | Roots/Rhizomes | IZD = 8.0 ± 8.2 mm | [50,51] |
Amphipterygium adstringens (Schltdl.) Standl. | Anacardiaceae | Aerial parts | MIC = 62.5–125 µg/mL | [52] |
Annona cherimola Mill. | Annonaceae | Leaves/Stem | MIC = 500 µg/mL | [52] |
Artemisia ludoviciana Nutt. subsp. mexicana (Willd. ex Spreng.) Fernald | Compositae | Leaves/stems | MIC = 125 µg/mL | [52] |
Bridelia micrantha (Hochst.) Baill. | Phyllanthaceae | Bark | IZD = 0–15 mm; MIC50 = 48–313 mg/mL; MIC90 = 78 ≥ 625 µg/mL | [53] |
Buddleja perfoliata Kunth | Scrophulariaceae | Aerial parts | MIC = 500 µg/mL | [52] |
Calandrinia ciliata (Ruiz and Pav.) DC. (cited as Calandrinia micrantha Schltdl.) | Portulacaceae | Leaves/Stems | MIC = 1000 µg/mL | [52] |
Calotropis procera (Aiton) W.T. Aiton | Apocynaceae | Leaves | MIC = 16–256 μg/mL | [49] |
Flowers | MIC = 8–256 μg/mL | [49] | ||
Campyloneurum amphostenon (Kunze ex Klotzsch) Fée | Polypodiaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Casuarina equisetifolia L. | Casuarinaceae | Fruit | MIC = 128–1024 μg/mL | [49] |
Chenopodium incisum Poir. (cited as Teloxys graveolens (Willd.) W. A. Weber) | Amaranthaceae | Aerial parts | MIC = 250 µg/mL | [52] |
Cichorium intybus L. | Asteraceae | Root | IZD < 9 mm | [47] |
Cinnamomum zeylanicum Blume | Lauraceae | Bark | IZD < 9 mm | [47] |
Cistus laurifolius L. | Cistaceae | Flowers | MIC = 62.5–125 µg/mL | [54] |
Citrus reticulata Blanco | Rutaceae | Fruit shell | MIC = 100 µg/mL | [55] |
Cocculus hirsutus (L.) Diels. | Menispermaceae | Leaves | IZD = 22 mm (200–1000 μg/mL) | [56] |
Combretum molle R. Br. Ex G. Don | Combretaceae | Bark | IZD = 2.7 ± 5.5 mm | [50,51] |
Coriandrum sativum L. | Apiaceae | Seed | IZD = 9 mm; MIC = 1.25–5 mg/mL | [47] |
Corydalis yanhusuo W.T. Wang | Papaveraceae | Stem | MIC = 100 µg/mL | [55] |
Cuminum cyminum L. | Apiaceae | Seed | IZD < 9 mm | [47] |
Cuphea aequipetala Cav. | Lythraceae | Aerial parts | MIC = 125 μg/mL | [57] |
MIC = 125 µg/mL | [52] | |||
Cynara scolymus L. | Asteraceae | Leaves | IZD = 18 mm; MIC= 1.25–5 mg/mL | [47] |
Cyrtocarpa procera Kunth | Anacardiaceae | Bark | MIC = 125 µg/mL | [58] |
MIC = 250 µg/mL | [52] | |||
Desmos cochinchinensis Lour. | Annonaceae | Leaves | IZD = 10.0 ± 0.6 mm (240 µg/disc) | [59] |
Dysphania ambrosioides (L.) Mosyakin and Clemants (cited as Teloxys ambrosioides (L.) W. A. Weber) | Amaranthaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Elettaria cardamomum (L.) Maton. | Zingiberaceae | Seeds | IZD < 9 mm | [47] |
Eryngium carlinae F. Delaroche | Apiaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Eugenia caryophyllata Thunb | Myrtaceae | Flower | MIC = 60 µg/mL | [55] |
Eupatorium petiolare Moc. ex DC. | Compositae | Aerial parts | MIC = 500 µg/mL | [52] |
Fagoniaar abica L. | Zygophyllaceae | Whole plant | MIC = 16–256 μg/mL | [49] |
Foeniculum vulgare Mill. var. dulce DC | Apiaceae | Seed | IZD < 9 mm; MIC = 5–10 mg/mL | [47] |
Fritillaria thunbergii Miq. | Liliaceae | Stem | MIC = 40 µg/mL | [55] |
Garcinia kola Heckel | Guttiferae | Seeds | IZD = 1.0 ± 2.6 mm | [50,51] |
Geum iranicum Khatamsaz | Rosaceae | Root | IZD = 24–35 mm (100 µg/mL) | [60] |
Gnaphalium canescens DC. | Compositae | Aerial parts | MIC = 500 µg/mL | [52] |
Grindelia inuloides Willd. | Compositae | Aerial parts | MIC = 500 µg/mL | [52] |
Hesperozygis marifolia Epling | Lamiaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Heterotheca inuloides Cass. | Compositae | Aerial parts | MIC = 500 µg/mL | [52] |
Juniperus communis L. | Cupressaceae | Berry | IZD < 9 mm | [47] |
Larrea tridentata (Sessé and Moc. ex DC.) Coville | Zygophyllaceae | Aerial parts | MIC = 500 µg/mL | [52] |
Ligusticum striatum DC (cited as Ligusticum chuanxiong Hort.) | Apiaceae | Root | MIC = 100 µg/mL | [55] |
Lippia graveolens Kunth (cited as Lippia berlandieri Schauer) | Verbenaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Ludwigia repens J. R. Forst. | Onagraceae | Aerial parts | MIC = 125 µg/mL | [52] |
Machaeranthera riparia (Kunth) A.G. Jones | Compositae | Aerial parts | MIC = 1000 µg/mL | [52] |
Machaeranthera tanacetifolia (Kunth) Nees | Compositae | Aerial parts | MIC = 1000 µg/mL | [52] |
Mentha × piperita L. | Lamiaceae | Leaves | IZD < 9 mm | [47] |
Mirabilis jalapa L. | Nyctaginaceae | Aerial parts | MIC = 250 µg/mL | [52] |
Monarda citriodora var. austromontana (Epling) B. L. Turner (cited as Monarda austromontana Epling) | Lamiaceae | Aerial parts | MIC = 500 µg/mL | [52] |
Olea europaea L. | Oleaceae | Leaves/Stem | MIC = 125 µg/mL | [52] |
Origanum vulgare L. | Lamiaceae | Leaves | IZD = 25 mm; MIC = 0.6–2.5 mg/mL | [47] |
Orthosiphon aristatus (Blume) Miq. (cited as Orthosiphon stamineus Benth) | Lamiaceae | Leaves | IZD = 9.0 ± 1.3 mm (240 µg/disc) | [59] |
Stem | IZD = 8.0 ± 0.1 mm (240 µg/disc) | [59] | ||
Peumus boldus Mol. | Monimiaceae | Leaves | >1500 μg/mL | [61] |
Plantago major L. | Plantaginaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Priva grandiflora (Ortega) Moldenke | Verbenaceae | Aerial parts | MIC = 250 µg/mL | [52] |
Prunus avium L. | Rosaceae | Peduncles | IZD = 9 mm; MIC = 5–10 mg/mL | [47] |
Rosmarinus officinalis L. | Lamiaceae | Leaves | IZD < 9 mm | [47] |
Ruta chalepensis L. | Rutaceae | Leaves | MIC = 1000 µg/mL | [52] |
Salvia officinalis L. | Lamiaceae | Leaves | IZD = 10 mm; MIC = 1.25–10 mg/mL | [47] |
Sclerocarya birrea A. Rich Hochst | Anacardiaceae | Stem bark | MIC = 0.16–2.5 mg/mL; IZD = 15.0 ± 2.7 mm | [50,51] |
Tagetes lucida Cav. | Compositae | Aerial parts | MIC = 500 µg/mL | [52] |
Tecoma stans (L.) Juss. ex Kunth | Bignoniaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Terminalia catappa L. | Combretaceae | Aerial parts | MIC = 125 µg/mL | [62] |
Terminalia chebula Retz | Combretaceae | Fruit | MIC = 125 mg/mL; MBC = 150 mg/mL | [63] |
Thymus serpyllum L. | Lamiaceae | Aerial parts | IZD = 10 mm; MIC = 1.25–10 mg/mL | [47] |
Tillandsia usneoides L. | Bromeliaceae | Aerial parts | MIC = 1000 µg/mL | [52] |
Tinospora sagittata Gagnep. | Menispermaceae | Root | MIC = 100 µg/mL | [55] |
Tithonia diversifolia (Hemsl.) A.G. | Compositae | Aerial parts | MIC = 500 µg/mL | [52] |
Verbena carolina L. | Verbenaceae | Aerial parts | MIC = 62.5–125 µg/mL | [52] |
Zingiber officinale Roscoe | Zingiberaceae | Rhizome | IZD = 9 mm; MIC = 2.5–5 mg/mL | [47] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Abies mariesii Mast. (cited as Abies maritima) | Pinaceae | Pine | IZD = 22 ± 2 mm (500 µg/disc) | [64] |
IZD = 14 ± 1 mm (500 µg/disc) | [64] | |||
Allium sativum L. | Amaryllidaceae | Cloves | 8–32 μg/mL | [65] |
Artemisia dracunculus L. | Compositae | Tarragon | IZD = 7 ± 0 mm (500 µg/disc) | [64] |
Carum carvi L. | Apiaceae | Caraway | IZD = 12 ± 0 mm (500 µg/disc) | [64] |
Cinnamomum zeylanicum Blume | Lauraceae | Bark | MIC = 0.3 μL/mL; IZD = 24.8 mm | [66] |
IZD = 63 ± 0.5 mm (500 µg/disc) | [64] | |||
IZD = 45 ± 5 mm (500 µg/disc) | [64] | |||
Cistus ladanifer L. | Cistaceae | Cistus | IZD = 8 ± 0 mm (500 µg/disc) | [64] |
IZD = 16 ± 1.5 mm (500 µg/disc) | [64] | |||
Citrus aurantium L. | Rutaceae | Orange blossom | >88% inhibition (0.3 μL/mL) | [66] |
IZD = 12 ± 0 mm (500 µg/disc) | [64] | |||
IZD = 16 ± 0 mm (500 µg/disc) | [64] | |||
Citrus limon (L.) Burm. f. | Rutaceae | Lemon | IZD = 16 ± 0 mm (500 µg/disc) | [64] |
IZD = 14 ± 10 mm (500 µg/disc) | [64] | |||
Citrus paradise Macfad | Rutaceae | White grapefruit | IZD = 29 ± 2.5 mm (500 µg/disc) | [64] |
IZD = 17 mm (500 µg/disc) | [64] | |||
Grapefruit | IZD = 13 ± 0.5 mm (500 µg/disc) | [64] | ||
Tea tree | IZD = 9 ± 0 mm (500 µg/disc) | [64] | ||
Cupressus sempervirens L. | Cupressaceae | Cypress | IZD = 19 ± 3.5 mm (500 µg/disc) | [64] |
IZD = 11 ± 10 mm (500 µg/disc) | [64] | |||
Cymbopogon citratus (DC.) Stapf | Poaceae | Lemongrass | IZD = 32 ± 7 mm (500 µg/disc) | [64] |
IZD = 23 ± 0.05 mm (500 µg/disc) | [64] | |||
Daucus carota L. | Apiaceae | Carrot seed | IZD = 8 ± 0.5 mm (500 µg/disc) | [64] |
IZD = 16 ± 1.5 mm (500 µg/disc) | [64] | |||
Dittrichia viscosa (L.) Greuter subsp. revoluta | Asteraceae | Aerial parts | 0.33 μL/mL * | [67] |
Eucalyptus globulus L. | Myrtaceae | Eucalyptus | IZD = 10 ± 1 mm (500 µg/disc) | [64] |
IZD = 12 ± 10 mm (500 µg/disc) | [64] | |||
Eugenia caryophyllus (Spreng.) Bullock and S. G. Harrison | Myrtaceae | Clove-bud | IZD = 13 ± 2.5 mm (500 µg/disc) | [64] |
Clove-leaf | IZD = 25 ± 5 mm (500 µg/disc) | [64] | ||
Heracleum persicum L. | Apiaceae | Fruits | >88% inhibition (0.3 μL/mL) | [66] |
Juniperus communis L. | Cupressaceae | Berry | IZD = 14 ± 0.5 mm (500 µg/disc) | [64] |
IZD = 10 ± 1 mm (500 µg/disc) | [64] | |||
Leptospermum scoparium J. R. Forst and G. Forst | Myrtaceae | Manuka | IZD = 23 ± 3 mm (500 µg/disc) | [64] |
Aloysia citriodora Palau (cited as Lippia citriodora) | Verbenaceae | Aerial parts | IZD = 29 ± 2 mm (500 µg/disc) | [64] |
Matricaria chamomilla L. (cited as Matricaria recutita) | Compositae | Flowers | IZD = 7 ± 0 mm (500 µg/disc) | [64] |
IZD = 15 ± 10 mm (500 µg/disc) | [64] | |||
Melaleuca alternifolia Cheel. | Myrtaceae | Tea tree | IZD = 9 ± 0.3 mm (500 µg/disc) | [64] |
Ocimum basilicum L. | Lamiaceae | Aerial parts | IZD = 9 ± 0.3 mm (500 µg/disc) | [64] |
IZD = 8 ± 0.5 mm (500 µg/disc) | [64] | |||
Origanum vulgare L. | Lamiaceae | Leaves | IZD = 19 ± 4 mm (500 µg/disc) | [64] |
Pimpinella anisum L. | Apiaceae | Anise | IZD = 12 ± 10 mm (500 µg/disc) | [64] |
Salvia sclarea L. | Lamiaceae | Aerial parts | IZD = 10 ± 2 mm (500 µg/disc) | [64] |
IZD = 10 ± 10 mm (500 µg/disc) | [64] | |||
Salvia officinalis L. | Lamiaceae | Leaves | IZD = 7 ± 0 mm (500 µg/disc) | [64] |
Sassafras officinale Siebold | Lauraceae | Aerial parts | IZD = 7 ± 0 mm (500 µg/disc) | [64] |
Satureja montana L. | Lamiaceae | Savory | IZD = 25 ± 5 mm (500 µg/disc) | [64] |
IZD = 13 ± 5 mm (500 µg/disc) | [64] | |||
Syzygium aromaticum (L.) Merr. and L. M. Perry | Myrtaceae | Buds | >88% inhibition (0.3 μL/mL) | [66] |
Thymus vulgaris L. | Lamiaceae | Thyme | IZD = 15 ± 5 mm (500 µg/disc) | [64] |
IZD = 12 ± 10 mm (500 µg/disc) | [64] | |||
Thymus zygis L. | Lamiaceae | Red thyme | IZD = 19 ± 0.5 mm (500 µg/disc) | [64] |
Zataria multiflora Boiss. | Lamiaceae | Aerial parts | MIC = 0.3 μL/mL IZD = 23.6 mm | [66] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Abrus cantoniensis Bge. | Leguminosae | Aerial parts | MIC = 40 µg/mL | [55] |
Alepidea Amatymbica Eckl. and Zeyh | Apiaceae | Roots/rhizomes | IZD = 6.7 ± 6.7 mm | [50,51] |
Amomum villosum Lour. | Zingiberaceae | Fruit | MIC = 100 µg/mL | [55] |
Bixa orellana L. | Bixaceae | Seed | MIC ≤ 625–1250 μg/mL | [48] |
Bupleurum chinense DC. | Apiaceae | Aerial parts | MIC = 60 µg/mL | [55] |
Chamomilla recutita (L.) Rauschert | Compositae | Inflorescences | MIC ≤ 625 μg/mL | [48] |
Cichorium intybus L. | Asteraceae | Root | IZD = 12 mm; MIC = 1.25–10 mg/mL | [47] |
Cinnamomum zeylanicum Blume | Lauraceae | Bark | IZD = 20 mm; MIC = 1.25–5 mg/mL | [47] |
Citrus reticulata Blanco | Rutaceae | Fruit shell | MIC = 60 µg/mL | [55] |
Combretum molle R. Br. Ex G. Don | Combretaceae | Bark | IZD = 12.9 ± 4.7 mm | [50,51] |
Convolvulus austro-aegyptiacu Abdallah and Saad | Convolvulaceae | Aerial parts | MIC = 100–200 µg/mL | [67] |
Coriandrum sativum L. | Apiaceae | Seed | IZD = 12 mm; MIC = 5–10 mg/mL | [47] |
Corydalis yanhusuo W.T. Wang | Papaveraceae | Stem | MIC = 60 µg/mL | [55] |
Cuminum cyminum L. | Apiaceae | Seed | IZD = 14 mm; MIC= 0.075–0.6 mg/mL | [47] |
Cynara scolymus L. | Asteraceae | Leaves | IZD = 25 mm; MIC = 0.15–0.6 mg/mL | [47] |
Elettaria cardamomum (L.) Maton. | Zingiberaceae | Seed | IZD = 18 mm; MIC = 0.6–2.5 mg/mL | [47] |
Eugenia caryophyllata Thunb | Myrtaceae | Flower | MIC = 40 µg/mL | [55] |
Foeniculum vulgare Mill. var. dulce DC | Apiaceae | Seed | IZD < 9 mm | [47] |
Fritillaria thunbergii Miq. | Liliaceae | Stem | MIC = 40 µg/mL | [55] |
Garcinia kola Heckel | Guttiferae | Seeds | MIC = 0.63–5 mg/mL; IZD = 9.2 ± 7.2 mm | [50,51] |
Hippophae rhamnoides L. | Elaeagnaceae | Leaves | MIC = 60 µg/mL | [55] |
Ilex paraguariensis A. St.-Hil. | Aquifoliaceae | Green leaves | MIC ≤ 625–5000 μg/mL | [48] |
Roasted leaves | MIC ≤ 625–5000 μg/mL | [48] | ||
Juniperus communis L. | Cupressaceae | Berry | IZD = 10 mm; MIC = 1.25–10 mg/mL | [47] |
Ligusticum striatum DC (cited as Ligusticum chuanxiong) | Apiaceae | Root | MIC = 60 µg/mL | [55] |
Lysimachia christinae Hance | Primulaceae | Whole plant | MIC = 100 µg/mL | [55] |
Magnolia officinalis Rehd. et Wils. | Magnoliaceae | Bark | MIC = 60 µg/mL | [55] |
Malva sylvestris L. | Malvaceae | Leaves and inflorescences | MIC ≤ 625–5000 μg/mL | [48] |
Melia azedarach L. (cited as Melia toosendan) | Meliaceae | Fruit | MIC = 100 µg/mL | [55] |
Mentha × piperita L. | Lamiaceae | Leaves | IZD < 9 mm | [47] |
Piper longum L. | Piperaceae | Spike | MIC = 100 µg/mL | [55] |
Prunus avium L. | Rosaceae | Peduncles | IZD = 10 mm; MIC = 1.25–10 mg/mL | [47] |
Rosmarinus officinalis L. | Lamiaceae | Leaves | IZD = 20 mm; MIC = 1.25–10 mg/mL | [47] |
Salvia officinalis L. | Lamiaceae | Leaves | IZD = 14 mm; MIC= 1.25–5 mg/mL | [47] |
Saussurea costus (Falc.) Lipsch. (cited as Saussurea lappa) | Compositae | Root | MIC = 40 µg/mL | [55] |
Schisandra chinensis Baill. | Schisandraceae | Fruit | MIC = 60 µg/mL | [55] |
Sclerocarya birrea A. Rich Hochst | Anacardiaceae | Stem bark | IZD = 3.3 ± 5.0 mm | [50,51] |
Thymus serpyllum L. | Lamiaceae | Aerial parts | IZD = 22 mm; MIC = 1.25–10 mg/mL | [47] |
Tinospora sagittata Gagnep. | Menispermaceae | Aerial parts | MIC/MBC = 6250 μg/mL | [42] |
Trigonella foenum-graecum L. | Leguminosae | Seed | MIC = 40 µg/mL | [55] |
Zingiber officinale Roscoe | Zingiberaceae | Rhizome | IZD = 25 mm; MIC = 0.075–0.6 mg/mL | [47] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Acacia nilotica (L.) Delile | Leguminosae | Leaves | MIC = 8–128 μg/mL | [49] |
Flowers | MIC = 8–64 μg/mL | [49] | ||
Acanthus montanus (Nees) T. Anders | Acanthaceae | Leaves stalk | IZD = 6–22 mm (25µg/disc) | [68] |
Achillea millefolium L. | Compositae | Aerial parts | MIC = 1.56–100 µg/mL | [69] |
Adhatoda vasica Nees | Acanthaceae | Whole plant | MIC = 64–512 μg/mL | [49] |
Aframomum pruinosum Gagnepain | Zingiberaceae | Seed | MIC = 128 μg/mL | [70] |
Ageratum conyzoides L. | Compositae | Whole plant | IZD = 6–22 mm (25 µg/disc); MIC = 63–1000 µg/mL; MBC = 195–12,500 µg/mL | [68] |
Alchemilla fissa Günther and Schummel | Rosaceae | Aerial parts | MIC = 4–32 μg/mL | [71] |
Alchemilla glabra Neygenf. | Rosaceae | Aerial parts | MIC = 4–32 μg/mL | [71] |
Alchemilla monticola Opiz | Rosaceae | Aerial parts | MIC = 4–32 μg/mL | [71] |
Alchemilla viridiflora Rothm. | Rosaceae | Aerial parts | MIC = 4–16 μg/mL | [71] |
Alchornea triplinervia (Spreng.) Müll.Arg. | Euphorbiaceae | Aerial parts | MIC = 250 µg/mL | [72] |
Alepidea amatymbica Eckl. and Zeyh | Apiaceae | Roots/rhizomes | IZD = 6.1 ± 6.4 mm | [50,51] |
Alpinia galanga (L.) Willd. (cited as Languas galanga) | Zingiberaceae | Tuber | IZD = 21.5 ± 1.9 mm (240 µg/disc) | [59] |
Amphipterygium adstringens (Schltdl.) Standl. | Anacardiaceae | Aerial parts | MIC = 250 µg/mL | [52] |
Anoda cristata (L.) Schltdl. | Malvaceae | Leaves/stem | MIC = 500 µg/mL | [52] |
Artemisia ludoviciana Nutt. subsp. mexicana (Willd. ex Spreng.) Fernald | Compositae | Leaves/stem | MIC = 250 µg/mL | [52] |
Aulotandria kamerunensis (Loes) | Zingiberaceae | Rhizome | IZD = 16–22 mm (25 µg/disc) | [68] |
Bidens pilosa L. | Compositae | Leaves | MIC = 128–512 μg/mL | [73] |
Bryophyllum pinnatum (Lam.) Kurz | Crassulaceae | Leaves | MIC = 32 μg/mL; MBC = 256 μg/mL | [74] |
Calandrinia ciliata (Ruiz and Pav.) DC. (cited as Calandrinia micrantha) | Portulacaceae | Leaves/Stem | MIC = 250 µg/mL | [52] |
Calophyllum brasiliense Cambess. | Clusiaceae | Bark | MIC = 31 µg/mL; IZD = 7–8 mm (62.5–1000 µg/disc) | [75] |
Calotropis gigantea (L.) W.T. Aiton | Apocynaceae | Leaves | IZD = 9.8 ±1.2 mm (240 µg/disc) | [59] |
Calotropis procera W.T. Aiton | Apocynaceae | Flowers | MIC = 64–256 μg/mL | [49] |
Capsella bursa-pastoris (L.) Medik. | Brassicaceae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Carum carvi L. | Apiaceae | Seeds | MIC = 100 µg/mL | [69] |
Casuarina equisetifolia L. | Casuarinaceae | Fruit | MIC = 128–512 μg/mL | [49] |
Centella asiatica (L.) Urb. | Apiaceae | Whole plant | IZD = 13.0 ± 0.9 mm (240 µg/disc) | [59] |
Chenopodium incisum Poir. (cited as Teloxys graveolens) | Amaranthaceae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Chromolaena odorata (L.) R.M. King and H. Rob. | Asteraceae | Leaves | IZD = 25.3 ± 1.6 mm (240 µg/disc) | [59] |
Cistus laurifolius L. | Cistaceae | Flowers | MIC = 62.5–125 µg/mL | [54] |
Colubrina asiatica (L.) Brongn. | Rhamnaceae | Leaves | IZD = 16.3 ± 2.1 mm (240 µg/disc) | [59] |
Combretum molle R. Br. Ex G. Don | Combretaceae | Bark | IZD = 13.1 ± 5.3 mm | [50,51] |
Cosmos caudatus Kunth | Asteraceae | Leaves | IZD = 23.0 ± 0.9 mm (240 µg/disc) | [59] |
Cuminum cyminum L. | Apiaceae | Seed | MIC = 100 µg/mL | [69] |
Curcuma longa L. | Zingiberaceae | Rhizome | MIC = 12.5–100 µg/mL | [69] |
Curcuma longa L./Zingiber officinale L. | Zingiberaceae | Rhizome | MIC = 3.125–100 µg/mL | [69] |
Cymbopogon citratus (DC.) Stapf | Poaceae | Aerial parts | MIC = 31.2 µg/mL | [52] |
Stem | IZD = 28.5 ± 1.5 mm (240 µg/disc) | [59] | ||
Cyrtocarpa procera Kunth | Anacardiaceae | Bark | MIC = 62.5 µg/mL | [58] |
Derris trifoliata Lour. | Leguminosae | Stem | IZD = 47.0 ± 0.9 mm (240 µg/disc) | [59] |
IZD = 8.5 ± 1.0 mm (240 µg/disc) | [59] | |||
Dysphania ambrosioides (L.) Mosyakin and Clemants (cited as Teloxys ambrosioides) | Amaranthaceae | Aerial parts | MIC = 250–500 µg/mL | [52] |
Elettaria cardamomum (L.) Maton. | Zingiberaceae | Seed | MIC = 3.125-100 µg/mL | [69] |
Emilia coccinea (Sims) G. Don | Compositae | Whole plant | IZD = 6–22 mm (25 µg/disc) | [68] |
Eryngium carlinae F. Delaroche | Apiaceae | Aerial parts | MIC = 31.2 µg/mL | [52] |
Eryngium foetidium L. | Apiaceae | Whole plant | IZD = 6–18 mm (25 µg/disc) | [68] |
Leaves | MIC = 64–512 μg/mL | [73] | ||
Eucalyptus torelliana F. Muell. | Myrtaceae | Stem bark | MIC = 12.5–200 µg/mL | [76] |
Eupatorium petiolare Moc. ex DC. | Compositae | Aerial parts | MIC = 125 µg/mL | [52] |
Euphorbia hirta L. | Euphorbiaceae | Whole plant | IZD = 6–18 mm (25 µg/disc) | [68] |
Euphorbia umbellata (Pax) Bruyns | Euphorbiaceae | Bark | 44.6% inhibition (256 μg/mL) | [77] |
Fagoniaar abica L. | Zygophyllaceae | Whole plant | MIC = 32–256 μg/mL | [49] |
Ficus deltoidea Jack | Moraceae | Leaves | IZD = 12.0 ± 0.6 mm (240 µg/disc) | [59] |
Foeniculum vulgare Mill. var. dulce DC | Apiaceae | Seeds | MIC = 50–100 µg/mL | [69] |
Garcinia kola Heckel | Guttiferae | Seeds | IZD = 7.1 ± 5.8 mm | [50,51] |
Galinsoga ciliata (Raf.) S. F. Blake | Compositae | Leaves | MIC = 128–512 μg/mL | [73] |
Gentiana lutea L. | Gentianaceae | Root | MIC = 3.125–100 µg/mL | [69] |
Ginkgo biloba L. | Ginkgoaceae | Leaves | MIC = 100 µg/mL | [69] |
Glycyrrhiza glabra L. | Leguminosae | Root | IDZ = 19 mm (10 mg/mL) | [78] |
Gnaphalium canescens DC. | Compositae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Grindelia inuloides Willd. | Compositae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Haplopappus spinulosus (Pursh) DC. | Compositae | MIC = 125 µg/mL | [52] | |
Hesperozygis marifolia Epling | Lamiaceae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Heterotheca inuloides Cass. | Compositae | Aerial parts | MIC = 31.25 µg/mL | [52] |
Hibiscus rosa-sinensis L. | Malvaceae | Stem | IZD = 13.7 ± 1.2 mm (240 µg/disc) | [59] |
Leaves | IZD = 14.3 ± 1.0 mm (240 µg/disc) | [59] | ||
Hippocratea celastroides HBK | Hippocrateace | Root bark | MIC = 31.25–125 μg/mL | [79] |
Leaves | MIC = 7.81–31.25 μg/mL | [79] | ||
Stem | MIC = 7.81–15.63 μg/mL | [79] | ||
Hydrastis canadensis L. | Ranunculaceae | Rhizome | MIC = 0.78–50 µg/mL | [80] |
Illicium verum Hook. f. | Schisandraceae | Fruit | MIC = 50–100 µg/mL | [69] |
Jatropha podagrica Hook. | Euphorbiaceae | Leaves | IZD = 8.0 ± 0.7 mm (240 µg/disc) | [59] |
Stem | IZD = 9.2 ± 0.8 mm (240 µg/disc) | [59] | ||
Root | IZD = 34.0 ± 2.5 mm (240 µg/disc) | [59] | ||
Juniperus communis L. | Cupressaceae | Berry | MIC = 25–100 µg/mL | [69] |
Kaempferia galanga L. | Zingiberaceae | Leaves | IZD = 46.0±0.1 mm (240 µg/disc) | [59] |
Tuber | IZD = 11.0 ± 0.6 mm (240 µg/disc) | [59] | ||
Larrea tridentata (Sessé and Moc. ex DC.) Coville | Zygophyllaceae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Laurus nobilis L. | Lauraceae | Leaves | MIC = 50–100 µg/mL | [69] |
Lavandula angustifolia Mill. | Lamiaceae | Flower | MIC = 100–1000 µg/mL | [69] |
Limnocharis flava (L.) Buchenau | Alismataceae | Leaves | IZD = 11.0 ±1.1 mm (240 µg/disc) | [59] |
Lippia graveolens Kunth (cited as Lippia berlandieri) | Verbenaceae | Aerial parts | MIC = 31.2 µg/mL | [52] |
Lithraea molleoides (Vell.) Engl. | Anacardiaceae | Aerial parts | MIC = 18–125 μg/mL | [81] |
Ludwigia repens J. R. Forst. | Onagraceae | Aerial parts | MIC = 500 µg/mL | [52] |
Lycopodium cernua (L.) Pic. Serm | Lycopodiaceae | Whole plant | IZD = 16–22 mm (25 µg/disc; MIC = 63–250 µg/mL; MBC = 195–12500 µg/mL | [68] |
Machaeranthera parviflora A. Gray | Compositae | Aerial parts | MIC = 31.2 µg/mL | [52] |
Machaeranthera riparia (Kunth) A.G. Jones | Compositae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Machaeranthera tanacetifolia (Kunth) Nees | Compositae | Aerial parts | MIC = 125 µg/mL | [52] |
Marantodes pumilum (Blume) Kuntze (cited as Labisia pumila) | Primulaceae | Root | IZD = 8.0 ±0.5 mm (240 µg/disc) | [59] |
Marrubium vulgare L. | Lamiaceae | Leaves/stem | MIC = 31.2 µg/mL | [52] |
Melastoma malabathricum L. (blue variety) | Melastomataceae | Leaves | IZD = 25.7 ± 0.8 mm (240 µg/disc) | [59] |
Stem | IZD = 18.0 ±0.6 mm (240 µg/disc) | [59] | ||
Melissa officinalis L. | Lamiaceae | Leaves | MIC = 100 ≥ 100 µg/mL | [69] |
Mentha × piperita L. | Lamiaceae | Leaves | MIC = 25–100 µg/mL | [69] |
Leaves/Stem | MIC = 500 µg/mL | [52] | ||
Mimosa pudica L. | Leguminosae | Whole plant | IZD = 14.2 ± 1.9 mm (240 µg/disc) | [59] |
Mitrasacme indica Wight (cited as Mitrasacme alsinoides) | Loganiaceae | Leaves | IZD = 13.3 ± 2.3 mm (240 µg/disc) | [59] |
Monarda citriodora var. austromontana (Epling) B. L. Turner. (cited as Monarda austromontana) | Lamiaceae | Aerial parts | MIC = 125 µg/mL | [52] |
Moussonia deppeana (Schltdl. and Cham.) Klotzsch ex Hanst. | Gesneriaceae | Leaves/stem | MIC = 15.6 µg/mL | [52] |
Myristica fragrans Houtt. | Myristicaceae | Seed | MIC = 3.125–25 µg/mL | [69] |
Neptunia oleracea Lour. | Leguminosae | Leaves | IZD = 28.3 ± 4.1 mm (240 µg/disc) | [59] |
Ocimum basilicum L. | Lamiaceae | Aerial parts | MIC = 31.2 µg/mL | [52] |
Origanum majorana L. | Lamiaceae | Aerial parts | MIC = 50–100 µg/mL | [69] |
Origanum vulgare L. | Lamiaceae | Leaves | MIC = 100 ≥ 100 µg/mL | [69] |
Orthosiphon aristatus (Blume) Miq. (cited as Orthosiphon stamineus) | Lamiaceae | Leaves | IZD = 22.0 ± 2.4 mm (240 µg/disc) | [59] |
Stem | IZD = 16.0 ± 0.9 mm (240 µg/disc) | [59] | ||
Paeonia × suffruticosa Andrews | Paeoniaceae | Root Cortex | IZD = 17 ± 0.08 mm (1 mg/disc) | [82] |
Parkia speciosa Hassk. | Leguminosae | Seed | IZD = 18.0 ± 0.1 mm (240 µg/disc) | [59] |
Passiflora edulis Sims (cited as Passiflora incarnata) | Passifloraceae | Aerial parts | MIC = 50–100 µg/mL | [69] |
Persicaria minor (Huds.) Opiz (cited as Polygonum minus) | Polygonaceae | Leaves | IZD = 15.5 ± 1.1 mm (240 µg/disc) | [59] |
Petroselinum crispum (Mill.) Fuss | Apiaceae | Aerial parts | MIC = 100 ≥ 100 µg/mL | [69] |
Phaeomeria imperialis (Roscoe) Lindl. | Zingiberaceae | Flowers | IZD = 16.3 ± 1.4 mm (240 µg/disc) | [59] |
Phyllanthus niruri L. | Phyllanthaceae | Whole plant | IZD = 29.7 ± 1.4 mm (240 µg/disc) | [59] |
Piper betle L. | Piperaceae | Leaves | IZD = 23.5 ± 0.8 mm (240 µg/disc) | [59] |
Plantago major L. | Plantaginaceae | Aerial parts | MIC = 250 µg/mL | [52] |
Plectranthus amboinicus (Lour.) Spreng. | Lamiaceae | Aerial parts | MIC = 31.2 µg/mL | [52] |
Pluchea indica (L.) Less. | Compositae | Leaves | IZD = 23.0 ± 1.3 mm (240 µg/disc) | [59] |
Poliomintha longiflora A. Gray | Lamiaceae | Leaves/stem | MIC = 250 µg/mL | [52] |
Priva grandiflora (Ortega) Moldenke | Verbenaceae | Aerial parts | MIC = 500 µg/mL | [52] |
Psidium guajava L. | Myrtaceae | Leaves | IZD = 33.0 ± 2.3 mm (240 µg/disc) | [59] |
Quercus rugosa Née | Fagaceae | Leaves | MIC = 125 µg/mL | [52] |
Rosmarinus officinalis L. | Lamiaceae | Leaves | MIC = 12.5–100 µg/mL | [69] |
Ruta chalepensis L. | Rutaceae | Leaves | MIC = 62.5 µg/mL | [52] |
Salvia officinalis L. | Lamiaceae | Leaves | MIC = 25–100 µg/mL | [69] |
Sanguinaria canadensis L. | Papaveraceae | Rhizome | MIC = 12.5–50 µg/mL | [80] |
Scleria woodii var. ornata (Cherm.) J. Schultze-Motel (cited as Scleria striatonux) | Cyperaceae | Root | IZD = 6–30 mm (25 µg/disc); MIC = 63–1000 µg/mL; MBC = 195–12,500 µg/mL | [68] |
Scleria verrucossa (Wild) | Cyperaceae | Root | IZD = 4–20 mm (25 µg/disc) | [68] |
Sclerocarya birrea A. Rich Hochst | Anacardiaceae | Stem bark | IZD = 3.0 ± 4.4 mm | [50,51] |
IZD = 17.3 ± 1.6 mm (240 µg/disc) | [59] | |||
Solanum torvum Sw. | Solanaceae | Seed | IZD = 12.3 ± 0.8 mm (240 µg/disc) | [59] |
Stachys setifera C. A. Mey. | Lamiaceae | Aerial parts | IZD = 38.3 mm (8 mg/disc) | [83] |
Tagetes lucida Cav. | Compositae | Aerial parts | MIC = 500 µg/mL | [52] |
Tanacetum partshenium (L.) Sch. Bip. | Compositae | MIC = 62.5 µg/mL | [52] | |
Tapeinochilos ananassae (Hassk.) K. Schum. | Costaceae | Rhizome | IZD = 6–18 mm (25 µg/disc) | [68] |
Tecoma stans (L.) Juss. ex Kunth | Bignoniaceae | Aerial parts | MIC = 500 µg/mL | [52] |
Tillandsia usneoides L. | Bromeliaceae | Aerial parts | MIC = 125 µg/mL | [52] |
Tinospora sinensis (Lour.) Merr. (cited as Tinospora cordifolia) | Menispermaceae | Stem | IZD = 13.7 ± 2.7 mm (240 µg/disc) | [59] |
Tithonia diversifolia (Hemsl.) A.G. | Compositae | Aerial parts | MIC = 62.5 µg/mL | [52] |
Verbena carolina L. | Verbenaceae | Aerial parts | MIC = 500–1000 µg/mL | [52] |
Zingiber officinale Roscoe | Zingiberaceae | Rhizome | MIC = 6.25–50 µg/mL | [69] |
IZD = 19.7 ± 1.5 mm (240 µg/disc) | [59] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Acacia nilotica (L.) Delile | Leguminosae | Leaves | MIC = 8–128 μg/mL | [49] |
Flowers | MIC = 4–64 μg/mL | [49] | ||
Adhatoda vasica Nees | Acanthaceae | Whole plant | MIC = 16–512 μg/mL | [49] |
Alepidea Amatymbica Eckl. and Zeyh | Apiaceae | Roots/Rhizomes | IZD = 7.0 ± 6.5 mm | [50,51] |
Bridelia micrantha (Hochst.) Baill. | Phyllanthaceae | Bark | IZD = 16–23 mm | [53] |
Calotropis procera W.T. Aiton | Apocynaceae | Leaves | MIC = 32–256 μg/mL | [49] |
Flowers | MIC = 8–128 μg/mL | [49] | ||
Casuarina equisetifolia L. | Casuarinaceae | Fruit | MIC = 128.0–1024 μg/mL | [49] |
Cocculus hirsutus (L.) Diels. | Menispermaceae | Leaves | IZD = 22–24 mm (200–1000 μg/mL) | [56] |
Combretum molle R. Br. Ex G. Don * | Combretaceae | Bark | MIC50 = 0.08–1.25 mg/mL; IZD = 10.7 ± 4.7 mm; | [50,51] |
Desmostachya bipinnata (L.) Stapf. | Gramineae | Whole plant | MIC = 1.3 mg/mL | [84] |
Fagoniaar abica L. | Zygophyllaceae | Whole plant | MIC = 16–128 μg/mL | [49] |
Garcinia kola Heckel | Guttiferae | Seeds | IZD = 8.8 ± 5.2 mm | [50,51] |
Sclerocarya birrea A. Rich Hochst * | Anacardiaceae | Stem bark | MIC50 = 0.06–1.25 mg/mL; IZD = 14.7 ± 2.5 mm | [50,51] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Calotropis gigantea (L.) W.T. Aiton | Apocynaceae | Leaves | IZD = 14.0 ± 0. 9 mm (240 µg/disc) | [59] |
Cedrus libani A. Rich | Pinaceae | Cones | MIC = 31.2 µg/mL | [54] |
Centaurea solstitialis L. | Asteraceae | Aerial parts | MIC = 1.95 µg/mL | [54] |
Centella asiatica (L.) Urb. | Apiaceae | Whole plant | IZD = 8.2 ± 0.4 mm (240 µg/disc) | [59] |
Chromolaena odorata (L.) R.M. King and H. Rob. | Asteraceae | Leaves | IZD = 27.5 ± 1.0 mm (240 µg/disc) | [59] |
Cistus laurifolius L. | Cistaceae | Flowers | MIC = 1.95 µg/mL | [54] |
Colubrina asiatica (L.) Brongn. | Rhamnaceae | Leaves | IZD = 10.0 ± 0.9 mm (240 µg/disc) | [59] |
Cosmos caudatus Kunth | Asteraceae | Leaves | IZD = 11.7 ± 0.5 mm (240 µg/disc) | [59] |
Cymbopogon citratus (DC.) Stapf | Poaceae | Stem | IZD = 18.0 ± 1.4 mm (240 µg/disc) | [59] |
Derris trifoliata Lour. | Leguminosae | Stem | IZD = 47.0 ± 1.7 mm (240 µg/disc); MIC50 = 2 mg/mL MIC90 = 4 mg/L | [59] |
IZD = 38.0 ± 1.0 mm (240 µg/disc) | [59] | |||
Desmos cochinchinensis Lour. | Annonaceae | Leaves | IZD = 30.0 ± 2.1 mm (240 µg/disc) | [59] |
Desmostachya bipinnata (L.) Stapf. | Gramineae | Whole plant | MIC = 5 mg/mL | [84] |
Eucalyptus camaldulensis Dehnh | Myrtaceae | Stem bark | MIC = 25–100 µg/mL | [76] |
Leaves | MIC = 50 µg/mL | [76] | ||
Eucalyptus torelliana F. Muell. | Myrtaceae | Leaves | MIC = 25–400 µg/mL | [76] |
Stem bark | MIC = 50–100 µg/mL | [76] | ||
Ficus deltoidea Jack | Moraceae | Leaves | IZD = 10.0 ± 0.6 mm (240 µg/disc) | [59] |
Heterotheca inuloides Cass. | Compositae | Leaves | IZD = 11.2 ± 1.2 mm (240 µg/disc) | [59] |
Stem | IZD = 9.6 ± 0.6 mm (240 µg/disc) | [59] | ||
Hypericum perforatum L. | Hypericaceae | Aerial parts | MIC = 7.8–31.2 µg/mL | [54] |
Jatropha podagrica Hook. | Euphorbiaceae | Leaves | IZD = 10.0 ± 0.5 mm (240 µg/disc) | [59] |
Root | IZD = 42.0 ± 0.5 mm (240 µg/disc) | [59] | ||
Kaempferia galanga L. | Zingiberaceae | Leaves | IZD = 66.0 ± 0.1 mm (240 µg/disc) | [59] |
Tuber | IZD = 18.3 ± 1.0 mm (240 µg/disc) | [59] | ||
Alpinia galanga (L.) Willd. (cited as Languas galanga) | Zingiberaceae | Tuber | IZD = 24.2 ± 1.6 mm (240 µg/disc) | [59] |
Limnocharis flava (L.) Buchenau | Alismataceae | Leaves | IZD = 14.0 ± 0.6 mm (240 µg/disc) | [59] |
Melastoma malabathricum L. (blue variety) | Melastomataceae | Leaves | IZD = 22.2 ± 1.3 mm (240 µg/disc) | [59] |
Stem | IZD = 7.2 ± 0.4 mm (240 µg/disc) | [59] | ||
Mimosa pudica L. | Leguminosae | Whole plant | IZD = 8.8 ± 1.6 mm (240 µg/disc) | [59] |
Mitrasacme indica Wight (cited as Mitrasacme alsinoides) | Loganiaceae | Leaves | IZD = 9.5 ± 1.1 mm (240 µg/disc) | [59] |
Momordica charantia L. | Cucurbitaceae | Fruits | MIC = 31.2–125 µg/mL | [54] |
Neptunia oleracea Lour. | Leguminosae | Leaves | IZD = 10.7 ± 2.0 mm (240 µg/disc) | [59] |
Orthosiphon aristatus (Blume) Miq. (cited as Orthosiphon stamineus) | Lamiaceae | Leaves | IZD = 18.3 ± 2.2 mm (240 µg/disc) | [59] |
Stem | IZD = 11.3 ± 1.0 mm (240 µg/disc) | [59] | ||
Paeonia × suffruticosa Andrews | Paeoniaceae | Root Cortex | IZD = 23.9–26.7 mm (1–10 mg/disc) | [82] |
Parkia speciosa Hassk. | Leguminosae | Seed | IZD = 26.0 ± 0.6 mm (240 µg/disc) | [59] |
Phaeomeria imperialis (Roscoe) Lindl. | Zingiberaceae | Flowers | IZD = 14.0 ± 0.6 mm (240 µg/disc) | [59] |
Phyllanthus niruri L. | Phyllanthaceae | Whole plant | IZD = 9.8 ± 0.8 mm (240 µg/disc) | [59] |
Piper betle L. | Piperaceae | Leaves | IZD = 25.8 ± 0.8 mm (240 µg/disc) | [59] |
Pluchea indica (L.) Less. | Compositae | Leaves | IZD = 11.0 ± 0.6 mm (240 µg/disc) | [59] |
Persicaria minor (Huds.) Opiz (cited as Polygonum minus) | Polygonaceae | Leaves | IZD = 12.3 ± 0.8 mm (240 µg/disc) | [59] |
Psidium guajava L. | Myrtaceae | Leaves | IZD = 10.0 ± 0.6 mm (240 µg/disc) | [59] |
Sambucus ebulus | Adoxaceae | Aerial parts | MIC = 31.2 µg/mL | [54] |
Sesbania grandiflora (L.) Pers. | Leguminosae | Leaves | IZD = 8.8 ± 1.1 mm (240 µg/disc) | [59] |
Solanum torvum Sw. | Solanaceae | Seed | IZD = 8.7 ± 0.0 mm (240 µg/disc) | [59] |
Tinospora sinensis (Lour.) Merr. (cited as Tinospora cordifolia) | Menispermaceae | Stem | IZD = 19.2 ± 5 mm (240 µg/disc) | [59] |
Zingiber officinale Roscoe | Zingiberaceae | Rhizome | IZD = 41.5 ± 7.0 mm (240 µg/disc) | [59] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Calotropis gigantea (L.) W.T. Aiton | Apocynaceae | Leaves | IZD = 13.2 ± 0.8 mm (240 µg/disc) | [59] |
Centella asiatica (L.) Urb. | Apiaceae | Whole plant | IZD = 8.5 ± 0.6 mm (240 µg/disc) | [59] |
Chromolaena odorata (L.) R.M. King and H. Rob. | Asteraceae | Leaves | IZD = 20.3 ± 1.4 mm (240 µg/disc) | [59] |
Colubrina asiatica (L.) Brongn. | Rhamnaceae | Leaves | IZD = 11.0 ± 0.9 mm (240 µg/disc) | [59] |
Cosmos caudatus Kunth | Asteraceae | Leaves | IZD = 16.0 ± 0.6 mm (240 µg/disc) | [59] |
Cymbopogon citratus (DC.) Stapf | Poaceae | Stem | IZD = 29.5 ± 1.5 mm (240 µg/disc) | [59] |
Derris trifoliata Lour. | Leguminosae | Stem | IZD = 42.0 ± 0.9 mm (240 µg/disc); MIC50 = 1 mg/mL; MIC90 = 2 mg/L | [59] |
IZD = 42.0 ± 1.0 mm (240 µg/disc) | [59] | |||
Desmostachya bipinnata (L.) Stapf. | Gramineae | Whole plant | MIC = 1.5 mg/mL | [84] |
Ficus deltoidea Jack | Moraceae | Leaves | IZD = 8.0 ± 0.1 mm (240 µg/disc) | [59] |
Heterotheca inuloides Cass. | Compositae | Leaves | IZD = 11.5 ± 1.1 mm (240 µg/disc) | [59] |
Stem | IZD = 13.2 ± 0.1 mm (240 µg/disc) | [59] | ||
Jatropha podagrica Hook. | Euphorbiaceae | Leaves | IZD = 13.0 ± 1.1 mm (240 µg/disc) | [59] |
Stem | IZD = 15.5 ± 1.4 mm (240 µg/disc) | [59] | ||
Root | IZD = 47.3 ± 3.1 mm (240 µg/disc) | [59] | ||
Kaempferia galanga L. | Zingiberaceae | Leaves | IZD = 62.0 ± 0.1 mm (240 µg/disc) | [59] |
Tuber | IZD = 18.3 ± 1.0 mm (240 µg/disc) | [59] | ||
Alpinia galanga (L.) Willd. (cited as Languas galanga) | Zingiberaceae | Tuber | IZD = 39.3 ± 2.1 mm (240 µg/disc) | [59] |
Limnocharis flava (L.) Buchenau | Alismataceae | Leaves | IZD = 24.0 ± 0.6 mm (240 µg/disc) | [59] |
Melastoma malabathricum L. (blue variety) | Melastomataceae | Leaves | IZD = 14.0 ± 2.3 mm (240 µg/disc) | [59] |
Stem | IZD = 10.5 ± 0.8 mm (240 µg/disc) | [59] | ||
Mimosa pudica L. | Leguminosae | Whole plant | IZD = 8.5 ± 0.6 mm (240 µg/disc) | [59] |
Mitrasacme indica Wight (cited as Mitrasacme alsinoides R. Br.) | Loganiaceae | Leaves | IZD = 11.0 ± 0.6 mm (240 µg/disc) | [59] |
Neptunia oleracea Lour. | Leguminosae | Leaves | IZD = 10.5 ± 0.8 mm (240 µg/disc) | [59] |
Orthosiphon aristatus (Blume) Miq. (cited as Orthosiphon stamineus) | Lamiaceae | Leaves | IZD = 17.7 ± 2.8 mm (240 µg/disc) | [59] |
Stems | IZD = 12.7 ± 0.5 mm (240 µg/disc) | [59] | ||
Parkia speciosa Hassk. | Leguminosae | Seeds | IZD = 10.5 ± 0.8 mm (240 µg/disc) | [59] |
Pereskia sacharosa Griseb. | Cactaceae | Leaves | IZD = 13.3 ± 0.5 mm (240 µg/disc) | [59] |
Etlingera elatior (Jack) R.M.Sm. (cited as Phaeomeria imperialis) | Zingiberaceae | Flowers | IZD = 18.0 ± 1.1 mm (240 µg/disc) | [59] |
Phyllanthus niruri L. | Phyllanthaceae | Whole plant | IZD = 14.0 ± 1.6 mm (240 µg/disc) | [59] |
Piper betle L. | Piperaceae | Leaves | IZD = 54.2 ± 0.8 mm (240 µg/disc) | [59] |
Pluchea indica (L.) Less. | Compositae | Leaves | IZD = 13.7 ± 1.9 mm (240 µg/disc) | [59] |
Persicaria minor (Huds.) Opiz (cited as Polygonum minus) | Polygonaceae | Leaves | IZD = 15.5 ± 0.6 mm (240 µg/disc) | [59] |
Psidium guajava L. | Myrtaceae | Leaves | IZD = 8.5 ± 0.8 mm (240 µg/disc) | [59] |
Sesbania grandiflora (L.) Pers. | Leguminosae | Leaves | IZD = 10.8 ± 1.0 mm (240 µg/disc) | [59] |
Solanum torvum Sw. | Solanaceae | Seeds | IZD = 11.0 ± 0.9 mm (240 µg/disc) | [59] |
Tinospora sinensis (Lour.) Merr. (cited as Tinospora cordifolia) | Menispermaceae | Stems | IZD = 10.7 ± 0.8 mm (240 µg/disc) | [59] |
Zingiber officinale Roscoe | Zingiberaceae | Rhizome | IZD = 33.3 ± 1.6 mm (240 µg/disc) | [59] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Methanol/Water (70:30, v/v) | ||||
Acacia seyal Delile | Leguminoseae | Stem | MIC = 20 mg/mL | [84] |
Leaves | MIC = 20 mg/mL | [84] | ||
Alhagi maurorum Medik. | Leguminoseae | Whole plant | MIC = 0.79 mg/mL | [84] |
Bidens bipinnata L. | Compositae | Whole plant | MIC = 25 mg/mL | [84] |
Capparis spinose L. | Capparaceae | Aerial parts | MIC = 10 mg/mL | [84] |
Casimiroa edulis Llave and Lex | Rutaceae | Unripe fruit | MIC = 20 mg/mL | [84] |
Centaurea alexandrina Delile | Compositae | Whole plant | MIC = 80 mg/mL | [84] |
Centaurea pelia DC. | Compositae | ND | MIC = 0.625–5 mg/mL | [85] |
Centaurea thessala Hausskn. ssp. drakiensis (Freyn and Sint.) Georg | Compositae | ND | MIC = 0.625–5 mg/mL | [85] |
Cerastium candidisimum L. | Caryophyllaceae | ND | MIC = 0.625–2.5 mg/mL | [85] |
Chamomilla recutita (L.) Rauschert | Compositae | ND | MIC = 0.625–2.5 mg/mL | [85] |
Cleome africana Botsch. | Cleomaceae | Whole plant | MIC = 0.158 mg/mL | [84] |
Conyza albida Willd. ex Spreng. | Asteraceae | ND | MIC = 0.625–2.5 mg/mL | [85] |
Conyza bonariensis (L.) Cronquist. | Asteraceae | ND | MIC = 0.625–2.5 mg/mL | [85] |
Cota palaestina Reut. ex Unger and Kotschy (cited as Anthemis melanolepis) | Compositae | ND | MIC = 0.625–2.5 mg/mL | [85] |
Desmostachya bipinnata (L.) Stapf. | Gramineae | Whole plant | MIC = 0.040 mg/mL | [84] |
Diplotaxis acris (Forssk.) Boiss. | Cruciferae | Whole plant | MIC = 10 mg/mL | [84] |
Dittrichia viscosa (L.) Greuter subsp. revoluta | Asteraceae | ND | MIC = 0.625–2.5 mg/mL | [85] |
Euphorbia retusa Forssk. | Euphorbiaceae | MIC = 2.5 mg/mL | [84] | |
Glossostemon brugueiri Desf. | Sterculiaceae | Root | MIC = 10 mg/mL | [84] |
Leaves | MIC = 25 mg/mL | [84] | ||
Hamada elegans (Bunge) Botsch. | Chenopodiaceae | Whole plant | MIC = 10 mg/mL | [84] |
Haplophyllum tuberculatum (Forssk.) A. Juss. | Rutaceae | Whole plant | MIC = 1.58 mg/mL | [84] |
Lythrum salicaria L.* | Lythraceae | Aerial parts | IZD = 17 ± 0.08 mm (500 mg/mL) | [86] |
Marrubium vulgare L. | Lamiaceae | Whole plant | MIC = 0.251 mg/mL | [84] |
Ocimum basilicum L. | Lamiaceae | Aerial parts | MIC = 0.625–5 mg/mL | [85] |
Origanum dictamnus L. | Lamiaceae | Aerial parts | MIC = 0.625–5 mg/mL | [85] |
Origanum majorana L. | Lamiaceae | Aerial parts | MIC = 0.625–5 mg/mL | [85] |
Origanum vulgare L. | Lamiaceae | Leaves | MIC = 0.625–2.5 mg/mL | [85] |
Schouwia thebaica Webb. | Brassicaceae | Whole plant | MIC = 25 mg/mL | [84] |
Sisymbrium irio L. | Brassicaceae | Whole plant | MIC = 0.074 mg/mL | [84] |
Stachys alopecuros (L.) Benth. | Lamiaceae | Aerial parts | MIC = 0.625–2.5 mg/mL | [85] |
Thymbra capitata (L.) Cav. (cited as Thymus capitatus) | Lamiaceae | Whole plant | MIC = 12.5 mg/mL | [84] |
Trifolium alexandrinum L. | Leguminosae | Whole plant | MIC = 25 mg/mL | [84] |
Ethanol/Water (70:30, v/v) | ||||
Calophyllum brasiliense Cambess. | Clusiaceae | Bark | MIC = 31 µg/mL; IZD = 8–14 mm (62.5–1000 µg/disc) | [75] |
Cocculus hirsutus (L.) Diels. | Menispermaceae | Leaves | IZD = 26 mm (200–1000 μg/mL) | [56] |
Fridericia chica (Bonpl.) L. G. Lohmann (cited as Arrabidaea chica) | Bignoniaceae | Fresh leaves | 12.5 | [87] |
Hancornia speciosa Gomez | Apocynaceae | Bark | MIC = 125 µg/mL | [88] |
Methanol/Petroleum (1:1) | ||||
Carum bulbocastanum (L.) Koch. | Apiaceae | Fruit | MIC = 31.25–250 µg/mL | [46] |
Carum carvi L. | Apiaceae | Fruit | MIC = 31.25–125 µg/mL | [46] |
Glycyrrhiza glabra Linn | Leguminosae | Root | MIC = 15.6–250 µg/mL | [46] |
Mentha longifolia (L). Huds. | Lamiaceae | Aerial parts | MIC = 31.25–125 µg/mL | [46] |
Salvia limbata C. A. Mey. | Lamiaceae | Aerial parts | MIC = 125–250 µg/mL | [46] |
Salvia sclarea L. | Lamiaceae | Aerial parts | MIC = 125–500 µg/mL | [46] |
Trachyspermum ammi (L.) Sprague (cited as Trachyspermum copticum) | Apiaceae | Aerial parts | MIC = 31.25–250 µg/mL | [46,89] |
Xanthium strumarium subsp. brasilicum (Vell.) O. Bolòs and Vigo (cited as Xanthium brasilicum) | Compositae | Aerial parts | MIC = 31.25–250 µg/mL | [46,89] |
Ziziphora clinopodioides Lam. | Lamiaceae | Aerial parts | MIC = 31.25–125 µg/mL | [46] |
Methanol/Dichloromethan | ||||
Cyrtocarpa procera Kunth | Anacardiaceae | Bark | MIC = 62.5 µg/mL | [58] |
Species | Family | Parts | Anti-H. pylori Potency | Ref. |
---|---|---|---|---|
Cyclohexane | ||||
Alchemilla fissa Günther and Schummel | Rosaceae | Aerial parts | MIC = 64–256 μg/mL | [71] |
Alchemilla glabra Neygenf. | Rosaceae | Aerial parts | MIC = 64–256 μg/mL | [71] |
Alchemilla monticola Opiz | Rosaceae | Aerial parts | MIC = 8–64 μg/mL | [71] |
Alchemilla viridiflora Rothm. | Rosaceae | Aerial parts | MIC = 64–256 μg/mL | [71] |
Dichloromethane | ||||
Alchemilla fissa Günther and Schummel | Rosaceae | Aerial parts | MIC = 64–256 μg/mL | [71] |
Alchemilla glabra Neygenf. | Rosaceae | Aerial parts | MIC = 64–256 μg/mL | [71] |
Alchemilla monticola Opiz | Rosaceae | Aerial parts | MIC = 16–64 μg/mL | [71] |
Alchemilla viridiflora Rothm. | Rosaceae | Aerial parts | MIC = 16–128 μg/mL | [71] |
Calophyllum brasiliense Cambess. | Clusiaceae | Bark | MIC = 125 µg/mL; IZD = 7–10 mm (62.5–1000 µg/disc) | [75] |
Cyrtocarpa procera Kunth | Anacardiaceae | Bark | MIC = 15.6 µg/mL | [58] |
Ethyl acetate | ||||
Alepidea Amatymbica Eckl. and Zeyh | Apiaceae | Roots/rhizomes | IZD = 8.5 ± 4.8 mm | [50,51] |
Bidens pilosa L. | Compositae | Leaves | MIC = 128–512 μg/mL | [73] |
Bridelia micrantha (Hochst.) Baill. | Phyllanthaceae | Bark | IZD = 12–20 mm; MIC50 = 4.8–156 µg/mL; MIC90 = 4.8–2500 µg/mL | [53] |
Calophyllum brasiliense Cambess. | Clusiaceae | Bark | MIC = 125 µg/mL; IZD = 7–8 mm (62.5–1000 µg/disc) | [75] |
Combretum molle R. Br. Ex G. Don | Combretaceae | Bark | IZD =10.7 ± 4.7 mm | [50,51] |
Desmostachya bipinnata (L.) Stapf. | Gramineae | Whole plant | MIC = 0.79 mg/mL | [84] |
Eryngium foetidium (Linn) | Apiaceae | Leaves | MIC = 128–512 μg/mL | [73] |
Garcinia kola Heckel | Guttiferae | Seeds | IZD = 5.1 ± 4.6 mm | [50,51] |
Galinsoga ciliata (Raf.) S. F. Blake | Compositae | Leaves | MIC = 128–512 μg/mL | [73] |
Geranium wilfordii Maxim | Geraniaceae | Aerial parts | MIC = 30 µg/mL | [90] |
Paeonia × suffruticosa Andrews | Paeoniaceae | Root Cortex | IZD = 14.1–19.9 mm (1–10 mg/disc) | [82] |
Physalis alkekengi L. var. franchetii (Mast.) Makino | Solanaceae | Aerial parts | MIC = 500 μg/mL | [91] |
Sclerocarya birrea A. Rich Hochst | Anacardiaceae | Stem bark | IZD = 13.2 ± 2.8 mm | [50,51] |
n-Butanol | ||||
Centaurea solstitialis L. subsp. solstitialis | Asteraceae | Aerial parts | MIC = 31.2 µg/mL | [54] |
Cistus laurifolius L. | Cistaceae | Flowers | MIC = 62.5–125 µg/mL | [54] |
Hypericum perforatum L. | Hypericaceae | Aerial parts | MIC = 15.6–31.2 µg/mL | [54] |
Momordica charantia L. | Cucurbitaceae | Fruits | MIC = 62.5 µg/mL | [54] |
n-Hexane | ||||
Calophylum brasiliense Cambess. | Clusiaceae | Bark | IZD = 7–14 mm (100–400 μg/disc) | [92] |
IZD =7–8 mm (62.5–1000 µg/disc) | [75] | |||
IZD = 14 mm (400 mg/mL) MIC = 31 µg/mL | [75] | |||
Cyrtocarpa procera Kunth | Anacardiaceae | Bark | MIC = 7.81 µg/mL | [58] |
Eucalyptus camaldulensis Dehnh | Myrtaceae | Stem bark | MIC = 25–200 µg/mL | [76] |
Leaves | MIC = 50 µg/mL | [76] | ||
Eucalyptus torelliana F. Muell. | Myrtaceae | Leaves | MIC = 25–50 µg/mL | [76] |
Stem bark | MIC = 25–200 µg/mL | [76] | ||
Mitrella kentii (Bl.) Miq | Annonaceae | Bark | MIC = 125 μg/mL | [93] |
Paeonia × suffruticosa Andrews | Paeoniaceae | Root Cortex | IZD = 29.9–31.3 mm (1–10 mg/disc) | [82] |
Others | ||||
Camellia sinensis (L.) Kuntze | Theaceae | Young shoots | IZD = 22.5 mm (20–60 μg/disc) MBC = 4 mg/mL | [94] |
IZD = 18 mm (20–60 μg/disc) MBC = 5.5 mg/mL | [94] | |||
Chenopodium ambrosioides L. | Amaranthaceae | Aerial parts | MIC = 16 mg/L * | [95] |
Plant Species | Bioactive Compounds | Anti-H. pylori Potency (MIC) | Ref. |
---|---|---|---|
Allium sativum L. (cloves) | Allicin (garlic poder) | 4 μg/mL | [96] |
Allicin | 6 μg/mL | [96] | |
Diallyl disulfide | 100–200 μg/mL | [96] | |
Diallyl tetrasulfide | 3–6 μg/mL | [96] | |
Convolvulus austro-aegyptiacu Abdallah and Saad (aerial parts) | Scopoletin | 50–200 µg/mL | [67] |
Scopolin | 50–100 µg/mL | [67] | |
Glycyrrhiza glabra L. (roots) | Licoricidin | 6.25–12.5 µg/mL | [78] |
Licoisoflavone | 6.25 µg/mL | [78] | |
Fuscaxanthone I | 15.2–122.0 μM | [97] | |
Beta-Mangostin | 18.3–147.3 μM | [97] | |
Fuscaxanthone A | 16.3–131.2 μM | [97] | |
Cowanin | 16.3–130.6 μM | [97] | |
Cowaxanthone | 4.6–152.3 μg/mL | [97] | |
Alpha-Mangostin | 19.0–76.1 μM | [97] | |
Cowanol | 15.7–126.4 μM | [97] | |
Isojacareubin | 23.9 μM | [97] | |
Fuscaxanthone G | 16.3–130.6 μM | [97] | |
Nigrolineabiphenyl B | 56.5–226.3 μM | [97] | |
1,3,5,6-Tetrahydroxyxanthone | 29.9–240.3 μM | [97] | |
Vokensiflavone | 14.4–115.7 μM | [97] | |
Morelloflavone | 14.0–112.3 μM | [97] | |
Hydrastis canadensis L. (rhizomes) | Berberine | 0.78–25 µg/mL | [80] |
β-Hydrastine | 25–100 µg/mL | [80] | |
Sanguinaria canadensis L. (rhizomes) | Sanguinarine | 6.25–50 µg/mL | [80] |
Chelerythrine | 25–100 µg/mL | [80] | |
Protopine | 25 ≥ 100 µg/mL | [80] | |
Tinospora sagittata Gagnep. (aerial parts) | Palmatine | 3.12–6.25 μg/mL | [42] |
Plant Species | Parts | Extraction Solvent | Concentration Tested | Urease Inhibition | Ref. |
---|---|---|---|---|---|
Acacia nilotica (L.) Delile | Leaves | Methanol | 8–128 μg/mL | 8.21–88.21% | [49] |
Flowers | Acetone | 8–128 μg/mL | 9.20–86.56% | [49] | |
Calotropis procera (Aiton) W.T. Aiton | Leaves | Methanol | 16–256 μg/mL | 12.23–48.22% | [49] |
Leaves | Acetone | 32–256 μg/mL | 7.23–58.21% | [49] | |
Flowers | Acetone | 8–128 μg/mL | 9.33–68.21% | [49] | |
Camellia sinensis (L.) Kuntze | Young shoots | Methanol: water (62.5:37.5 v/v) non-fermented extract | 2.5 mg/mL | 100% Ure A and B | [94] |
Methanol: water (62.5:37.5 v/v)) semifermented extract | 3.5 mg/mL | 100% Ure A and B | [94] | ||
Casuarina equisetifolia L. | Fruit | Methanol | 128–512 μg/mL | 12.21–86.21% | [49] |
Chamomilla recutita (L.) Rauschert | Flowers | Olive oil | 31.25–250 mg/mL | Inhibited urease production | [105] |
Euphorbia umbellata (Pax) Bruyns | Bark | Methanol | 1024 μg/mL | 78.6% | [77] |
Peumus boldus Mol. | Leaves | Water | IC50 = 23.4 μg GAE/mL | [61] | |
Teminalia chebula Retz | Fruit | Water | 1–2.5 mg/mL | Inhibited urease activity | [63] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, B.; Sharopov, F.; Martorell, M.; Rajkovic, J.; Ademiluyi, A.O.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now? Int. J. Mol. Sci. 2018, 19, 2361. https://doi.org/10.3390/ijms19082361
Salehi B, Sharopov F, Martorell M, Rajkovic J, Ademiluyi AO, Sharifi-Rad M, Fokou PVT, Martins N, Iriti M, Sharifi-Rad J. Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now? International Journal of Molecular Sciences. 2018; 19(8):2361. https://doi.org/10.3390/ijms19082361
Chicago/Turabian StyleSalehi, Bahare, Farukh Sharopov, Miquel Martorell, Jovana Rajkovic, Adedayo Oluwaseun Ademiluyi, Mehdi Sharifi-Rad, Patrick Valere Tsouh Fokou, Natália Martins, Marcello Iriti, and Javad Sharifi-Rad. 2018. "Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now?" International Journal of Molecular Sciences 19, no. 8: 2361. https://doi.org/10.3390/ijms19082361
APA StyleSalehi, B., Sharopov, F., Martorell, M., Rajkovic, J., Ademiluyi, A. O., Sharifi-Rad, M., Fokou, P. V. T., Martins, N., Iriti, M., & Sharifi-Rad, J. (2018). Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now? International Journal of Molecular Sciences, 19(8), 2361. https://doi.org/10.3390/ijms19082361