Plant Defense Genes against Biotic Stresses
Funding
Conflicts of Interest
References
- Peyraud, R.; Dubiella, U.; Barbacci, A.; Genin, S.; Raffaele, S.; Rob, D. Advances on plant–pathogen interactions from molecular toward systems biology perspectives. Plant J. 2017, 90, 720–737. [Google Scholar] [CrossRef] [PubMed]
- Stahl, E.; Hilfiker, O.; Reymond, P. Plant-arthropod interactions: Who is the winner. Plant J. 2018, 93, 703–728. [Google Scholar] [CrossRef] [PubMed]
- Pagan, I.; Garcia-Arenal, F. Tolerance to plant pathogens: Theory and experimental evidence. Int. J. Mol. Sci. 2018, 19, 810. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.E.; Arnaiz, A.; Gonzalez-Melendi, P.; Martinez, M.; Diaz, I. Plant perception and short-term responses to phytophagous insects and mites. Int. J. Mol. Sci. 2018, 19, 1356. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.L.; van der Hoorn, R.A.L. Ten prominent host proteases in plant-pathogen interactions. Int. J. Mol. Sci. 2018, 19, 639. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, G.M.; Mazzucotelli, E.; Marone, D.; Crosatti, C.; Michelotti, V.; Vale, G.; Mastrangelo, A.M. Regulation and evolution of NLR genes: A close interconnection for plant immunity. Int. J. Mol. Sci. 2018, 19, 1662. [Google Scholar] [CrossRef] [PubMed]
- Rong, W.; Wang, X.; Wang, X.; Massart, S.; Zhang, Z. Molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in wheat after infection of Barley Yellow Dwarf Virus. Int. J. Mol. Sci. 2018, 19, 1187. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Mo, N.; Muhammad, T.; Liang, Y. Genome-wide analysis of DCL, AGO, and RDR gene families in pepper (Capsicum annuum L.). Int. J. Mol. Sci. 2018, 19, 1038. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.; Olmo, R.; Ruiz-Ferrer, V.; Abreu, I.; Hermans, C.; Martinez-Argudo, I.; Fenoll, C.; Escobar, C. A phenotyping method of giant cells from root-knot nematode feeding by confocal microscopy highlights a role for CHITINASE-like 1 in Arabidopsis. Int. J. Mol. Sci. 2018, 19, 429. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; You, Y.; Fan, H.; Zhu, X.; Wang, Y.; Duan, Y.; Xuan, Y.; Chen, L. The role of sugar transporter genes during early infection by root-knot nematodes. Int. J. Mol. Sci. 2018, 19, 302. [Google Scholar] [CrossRef] [PubMed]
- Paulo, J.; Godinho, D.P.; Silva, A.; Branquinho, C.; Magalhaes, S. Suppression of plant defences by herbivorous mites is not associated with adaptation to host plants. Int. J. Mol. Sci. 2018, 19, 1783. [Google Scholar] [CrossRef] [PubMed]
- Agut, B.; Pastor, V.; Jaques, J.A.; Flors, V. Can plant defence mechanisms provide new approaches for the sustainable control of the two-spotted spider mite Tetranychus urticae? Int. J. Mol. Sci. 2018, 19, 614. [Google Scholar] [CrossRef] [PubMed]
- Panthee, D.R.; Piotrowski, A.; Ibrahem, R. Mapping quantitative trait loci (QTL) for resistance to Late Blight in tomato. Int. J. Mol. Sci. 2018, 18, 1589. [Google Scholar] [CrossRef] [PubMed]
- Salgon, S.; Raynal, M.; Lebon, S.; Baptiste, J.M.; Daunay, M.C.; Dintinger, J.; Jourda, C. Genotyping by sequencing highlights a polygenic resistance to Ralstonia pseudosolanacearum in eggplant (Solanum melongena L.). Int. J. Mol. Sci. 2018, 19, 357. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.R.; Donofrio, N.; Sripathi, V.R.; McClean, P.E.; Lee, R.K.; Pastor-Corrales, M.; Kalavacharla, V. Marker-assisted molecular profiling, deletion mutant analysis, and RNA-Seq reveal a disease resistance cluster associated with Uromyces appendiculatus infection in common bean Phaseolus vulgaris L. Int. J. Mol. Sci. 2018, 18, 1109. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhong, S.; Chen, W.; Fatima, S.A.; Huang, Q.; Li, Q.; Tan, F.; Luo, P. Transcriptome analysis identifies a 140 kb region of chromosome 3B containing genes specific to Fusarium Head Blight resistance in wheat. Int. J. Mol. Sci. 2018, 19, 852. [Google Scholar] [CrossRef] [PubMed]
- Noonam, J.; Williams, W.P.; Shan, X. Investigation of antimicrobial peptide genes associated with fungus and insect resistance in maize. Int. J. Mol. Sci. 2018, 18, 1938. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Guo, G.; He, T.; Gao, R.; Faheem, M.; Huang, J.; Lu, R.; Liu, C. Transient overexpression of HvSERK2 improves barley resistance to Powdery Mildew. Int. J. Mol. Sci. 2018, 19, 1226. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.; Fu, P.; Liu, Y.; Xiang, J.; Lu, J. Molecular characterization and overexpression of VpRPW8 from Vitis pseudoreticulata enhances resistance to Phytophtora capsici in Nicotiana benthamiana. Int. J. Mol. Sci. 2018, 19, 839. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, Y.; Han, R.; Yin, W.; Guo, C.; Li, Z.; Wang, X. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana improves resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. Int. J. Mol. Sci. 2018, 19, 696. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhao, Y.; Ran, X.; Guo, L.; Zhao, D.G. Overexpression of a novel Chitinase genes EUCHIT2 enhances resistance to Erysiphe cichoracearum DC in tobacco plants. Int. J. Mol. Sci. 2018, 18, 2361. [Google Scholar] [CrossRef] [PubMed]
- Losvik, A.; Beste, L.; Glinwood, R.; Ivarson, E.; Stephens, J.; Zhu, L.H.; Jonsson, L. Overexpression and down-regulation of barley Lipoxygenase LOX2.2 affects jasmonate-regulated genes and aphid fecundity. Int. J. Mol. Sci. 2018, 18, 2765. [Google Scholar] [CrossRef] [PubMed]
- Losvik, A.; Beste, L.; Mehrabi, S.; Jonsson, L. The protease inhibitor Ci2c gene induced by Bird Cherry-Oat aphid in barley inhibits Green Peach aphid fecundity in transgenic Arabidopsis. Int. J. Mol. Sci. 2018, 18, 1317. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.E.; Diaz-Mendoza, M.; Perez-Hergueda, D.; Hensel, G.; Kumlehn, J.; Diaz, I.; Martinez, M. Overexpression of HvIcy6 in barley enhances resistance against Tetranychus urticae and entails partial transcriptomic reprogramming. Int. J. Mol. Sci. 2018, 19, 697. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Nag, A.; Arya, P.; Kapoor, R.; Singh, A.; Jaswal, R.; Sharma, T.R. Prospects of understanding the molecular biology of disease resistance in rice. Int. J. Mol. Sci. 2018, 19, 1141. [Google Scholar] [CrossRef] [PubMed]
Publication Title | Ref. |
---|---|
Tolerance to plant pathogens: theory and experimental evidence | [3] |
Plant perception and short-term responses to phytophagous insects and mites | [4] |
Ten prominent host proteases in plant-pathogen interactions | [5] |
Regulation and evolution of NLR genes: a close interconnection for plant immunity | [6] |
Molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in wheat after infection of Barley Yellow Dwarf Virus | [7] |
Genome-wide analysis of DCL, AGO, and RDR gene families in pepper (Capsicum annuum L.) | [8] |
A phenotyping method of giant cells from root-knot nematode feeding by confocal microscopy highlights a role for CHITINASE-like 1 in Arabidopsis | [9] |
The role of sugar transporter genes during early infection by root-knot nematodes | [10] |
Suppression of plant defences by herbivorous mites is not associated with adaptation to host plants | [11] |
Can plant defence mechanisms provide new approaches for the sustainable control of the two-spotted spider mite Tetranychus urticae? | [12] |
Mapping quantitative trait loci (QTL) for resistance to Late Blight in tomato | [13] |
Genotyping by sequencing highlights a polygenic resistance to Ralstonia pseudosolanacearum in eggplant (Solanum melongena L.) | [14] |
Marker-assisted molecular profiling, deletion mutant analysis, and RNA-Seq reveal a disease resistance cluster associated with Uromyces appendiculatus infection in common bean Phaseolus vulgaris L. | [15] |
Transcriptome analysis identifies a 140 kb region of chromosome 3B containing genes specific to Fusarium Head Blight resistance in wheat | [16] |
Investigation of antimicrobial peptide genes associated with fungus and insect resistance in maize | [17] |
Transient overexpression of HvSERK2 improves barley resistance to Powdery Mildew | [18] |
Molecular characterization and overexpression of VpRPW8 from Vitis pseudoreticulata enhances resistance to Phytophtora capsici in Nicotiana benthamiana | [19] |
Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana improves resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000 | [20] |
Overexpression of a novel Chitinase genes EUCHIT2 enhances resistance to Erysiphe cichoracearum DC in tobacco plants | [21] |
Overexpression and down-regulation of barley Lipoxygenase LOX2.2 affects jasmonate-regulated genes and aphid fecundity | [22] |
The protease inhibitor Ci2c gene induced by Bird Cherry-Oat aphid in barley inhibits Green Peach aphid fecundity in transgenic Arabidopsis | [23] |
Overexpression of HvIcy6 in barley enhances resistance against Tetranychus urticae and entails partial transcriptomic reprogramming | [24] |
Prospects of understanding the molecular biology of disease resistance in rice | [25] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz, I. Plant Defense Genes against Biotic Stresses. Int. J. Mol. Sci. 2018, 19, 2446. https://doi.org/10.3390/ijms19082446
Diaz I. Plant Defense Genes against Biotic Stresses. International Journal of Molecular Sciences. 2018; 19(8):2446. https://doi.org/10.3390/ijms19082446
Chicago/Turabian StyleDiaz, Isabel. 2018. "Plant Defense Genes against Biotic Stresses" International Journal of Molecular Sciences 19, no. 8: 2446. https://doi.org/10.3390/ijms19082446
APA StyleDiaz, I. (2018). Plant Defense Genes against Biotic Stresses. International Journal of Molecular Sciences, 19(8), 2446. https://doi.org/10.3390/ijms19082446