Clinical Evaluation of INNO-LiPA HPV Genotyping EXTRA II Assay Using the VALGENT Framework
Abstract
:1. Introduction
2. Results
2.1. Clinical Performance of the INNO-LiPA
2.2. Genotyping Agreement between INNO-LiPA and Linear Array
3. Discussion
4. Materials and Methods
4.1. Clinical Specimens
4.2. HPV Testing
4.2.1. INNO-LiPA HPV Genotyping Extra II
4.2.2. HC2
4.2.3. Linear Array
4.3. Clinical Outcome and INNO-LiPA Performance Assessment
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
INNO-LiPA | INNO-LiPA HPV Genotyping Extra II assay |
HC2 | Hybrid Capture 2 |
Linear Array | Linear Array HPV Genotyping Test |
HPV | Human papillomavirus |
hrHPV | High-risk HPV |
RCT | Randomised controlled trials |
GP5+/6+-EIA | GP5+/6+ PCR-based enzyme immunoassay |
VALGENT | VALidation of HPV GENotyping Tests |
CIN | Cervical intraepithelial neoplasia |
CIN2+ | CIN grade 2 or worse |
CIN3+ | CIN grade 3 or worse |
ASC-US | Atypical squamous cells of undetermined significance |
LSIL | Low-grade squamous intraepithelial lesion |
HSIL | High-grade squamous intraepithelial lesion |
NILM | Negative for intraepithelial lesion or malignance |
References
- Bzhalava, D.; Eklund, C.; Dillner, J. International standardization and classification of human papillomavirus types. Virology 2015, 476, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Biological Agents: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Available online: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Evaluation-Of-Carcinogenic-Risks-To-Humans/Biological-Agents-2012 (accessed on 11 September 2018).
- Arbyn, M.; Tommasino, M.; Depuydt, C.; Dillner, J. Are twenty human papillomavirus types causing cervical cancer? J. Pathol. 2014, 234, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part B: Biological agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar] [CrossRef]
- Arbyn, M.; Ronco, G.; Anttila, A.; Meijer, C.J.L.M.; Poljak, M.; Ogilvie, G.; Koliopoulos, G.; Naucler, P.; Sankaranarayanan, R.; Peto, J. Evidence regarding HPV testing in secondary prevention of cervical cancer. Vaccine 2012, 30, F88–F99. [Google Scholar] [CrossRef] [PubMed]
- Ronco, G.; Dillner, J.; Elfstrom, K.M.; Tunesi, S.; Snijders, P.J.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 2014, 383, 524–532. [Google Scholar] [CrossRef]
- Wentzensen, N.; Arbyn, M.; Berkhof, H.; Brower, M.; Canfell, K.; Einstein, M.H.; Early, C.; Monsonega, J.; Franceschi, S. Eurogin 2016 Roadmap: How HPV knowledge is changing screening practice. Int. J. Cancer 2017, 140, 2192–2200. [Google Scholar] [CrossRef] [PubMed]
- Poljak, M.; Kocjan, B.J.; Ostrbenk, A.; Seme, K. Commercially available molecular tests for human papillomaviruses (HPV): 2015 update. J. Clin. Virol. 2016, 76, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Nene, B.M.; Shastri, S.S.; Jayant, K.; Muwonge, R.; Budukh, A.M.; Hingmire, S.; Malvi, S.G.; Thorat, R.; Kothari, A.; et al. HPV screening for cervical cancer in Rural India. N. Engl. J. Med. 2009, 360, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Kitchener, H.C.; Almonte, M.; Thomson, C.; Wheeler, P.; Sargent, A.; Stoykova, B.; Gilham, C.; Baysson, H.; Roberts, C.; Dowie, R.; et al. HPV testing in combination with liquid-based cytology in primary cervical screening (ARTISTIC): A randomised controlled trial. Lancet Oncol. 2009, 10, 672–682. [Google Scholar] [CrossRef]
- Poljak, M.; Ostrbenk, A.; Seme, K.; Ucakar, V.; Hillemanns, P.; Bokal, E.V.; Jancar, N.; klavs, I. Comparison of Clinical and Analytical Performance of the Abbott RealTime High Risk HPV Test to the Performance of Hybrid Capture 2 in Population-Based Cervical Cancer Screening. J. Clin. Microbiol. 2011, 49, 1721–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesselink, A.T.; Bulkmans, N.W.; Berkhof, J.; Lorincz, A.T.; Meijer, C.J.L.M.; Snijders, P.J. Cross-sectional comparison of an automated hybrid capture 2 assay and the consensus GP5+/6+ PCR method in a population-based cervical screening program. J. Clin. Microbiol. 2006, 44, 3680–3685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naucler, P.; Ryd, W.; Tornberg, S.; Strand, A.; Wadell, G.; Elfgren, K.; Radberg, T.; Strander, B.; Forslund, O.; Hansson, B.G.; et al. Efficacy of HPV DNA testing with cytology triage and/or repeat HPV DNA testing in primary cervical cancer screening. J. Natl. Cancer Inst. 2009, 101, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Rijkaart, D.C.; Berkhof, J.; Rozendaal, L.; van kemenade, F.J.; Bulkmans, N.W.J.; Heideman, D.A.M.; Kenter, G.G.; Cuzick, J.; Snijders, P.J.F.; Meijer, C.J.L.M. Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: Final results of the POBASCAM randomised controlled trial. Lancet Oncol. 2012, 13, 78–88. [Google Scholar] [CrossRef]
- Meijer, C.J.L.M.; Castle, P.E.; Hesselink, A.T.; Franco, E.L.; Ronco, G.; Arbyn, M.; Bosch, F.X.; Cuzick, J.; Dillner, J.; Heideman, D.A. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int. J. Cancer 2009, 124, 516–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbyn, M.; Snijders, P.J.; Meijer, C.J.L.M.; Berkhof, H.; Cuschieri, K.; Kocjan, B.J.; Poljak, M. Which high-risk HPV assays fulfil criteria for use in primary cervical cancer screening? Clin. Microbiol. Infect. 2015, 21, 817–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castle, P.E.; Stoler, M.H.; Wright, T.C., Jr.; Sharma, A.; Wright, T.L.; Behrens, C.M. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: A subanalysis of the ATHENA study. Lancet Oncol. 2011, 12, 880–890. [Google Scholar] [CrossRef]
- Monsonego, J.; Cox, J.T.; Behrens, C.; Sandri, M.; Franco, E.L.; Yap, P.S.; Huh, W. Prevalence of high-risk human papilloma virus genotypes and associated risk of cervical precancerous lesions in a large U.S. screening population: Data from the ATHENA trial. Gynecol. Oncol. 2015, 137, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J.; Wheeler, C. Need for expanded HPV genotyping for cervical screening. Papillomavir. Res. 2016, 2, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Melchers, W.J.G.; Bakkers, J.M.J.E.; Wang, J.; de Wilde, P.C.M.; Boonstra, H.; Quint, W.G.V.; Hanselaar, A.G.J.M. Technical advance. Short fragment polymerase chain reaction reverse hybridization line probe assay to detect and genotype a broad spectrum of human papillomavirus types. Am. J. Pathol. 1999, 155, 1473–1478. [Google Scholar] [CrossRef]
- Kleter, B.; van Doorn, L.J.; Schrauwen, L.; Molijn, A.; Sastrowijoto, S.; ter Schegget, J.; Lindeman, J.; ter Harmsel, B.; Burger, M.; Quint, W. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J. Clin. Microbiol. 1999, 37, 2508–2517. [Google Scholar] [PubMed]
- Fujirebio Europe Upgrades its HPV (Human Papillomamvirus) Genotyping Panel with the Launch of the INNO-LiPA HPV Genotyping Extra II Assay. Fujirebio Europe Upgrades its HPV (Human Papillomamvirus). Available online: https://www.fujirebio-europe.com/media-and-events/news/2015/fujirebio-europe-upgrades-its-hpv-human-papillomavirus-genotyping-panel (accessed on 11 September 2018).
- Xu, L.; Ostrbenk, A.; Poljak, M.; Arbyn, M. Assessment of the Roche Linear Array HPV genotyping test within the VALGENT framework. J. Clin. Virol. 2018, 98, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Polman, N.J.; Ostrbenk, A.; Xu, L.; Snijders, P.; Meijer, C.J.L.M.; Poljak, M.; Heideman, D.A.M.; Abyn, M. Evaluation of the clinical performance of the HPV-Risk assay using the VALGENT-3 panel. J. Clin. Microbiol. 2017, 55, 3544–3551. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Kleter, B.; van Doorn, L.J.; Schrauwen, L.; van Krimpen, K.; Burger, M.; ter Harmsel, B.; Quint, W. Novel short-fragment PCR assey for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. Am. J. Pathol. 1998, 153, 1731–1739. [Google Scholar] [CrossRef]
- Iftner, T.; Villa, L.L. Chapter 12: Human papillomavirus technologies. J. Natl. Cancer Inst. Monogr. 2003, 2003, 80–88. [Google Scholar] [CrossRef]
- Arbyn, M.; Andersson, K.; Bergeron, C.; Bogers, J.P.; von Knebel-Doeberitz, M.; Dillner, J. Cervical cytology biobanks as a resource for molecular epidemiology. Methods Mol. Biol. 2011, 675, 279–298. [Google Scholar] [PubMed]
- Arbyn, M.; Depuydt, C.; Benoy, I.; Boger, J.; Cuschieri, K.; Schmitt, M.; Pawlita, M.; Geraets, D.; Heard, I.; Gheit, T.; et al. VALGENT: A protocol for clinical validation of human papillomavirus assays. J. Clin. Virol. 2016, 76, S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Depuydt, C.; Benoy, I.; Boger, J.; Antoine, J.; Arbyn, M.; Pawlita, M. Prevalence and viral load of 51 genital human papillomavirus types and 3 subtypes. Int. J. Cancer 2013, 132, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Depuydt, C.E.; Benoy, I.; Bogers, J.; Antoine, J.; Pawlita, M.; Arbyn, M. Viral load of high-risk human papillomaviruses as reliable clinical predictor for the presence of cervical lesions. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Depuydt, C.; Benoy, I.; Boger, J.; Antoine, J.; Arbyn, M.; Pawlita, M. Multiple HPV infections with high viral loads are associated with cervical lesions but do not differentiate grades of cervical abnormalities. J. Clin. Microbiol. 2013, 51, 1458–1464. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, K.; Geraets, D.T.; Moore, C.; Quint, W.; Duvall, E.; Arbyn, M. Clinical and analytical performance of the Onclarity HPV assay using the VALGENT framework. J. Clin. Microbiol. 2015, 53, 3272–3279. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, K.; Geraets, D.; Cuzick, J.; Cadman, L.; Moore, C.; Vanden Broeck, D.; Padalko, E.; Quint, W.; Arbyn, M. Performance of a cartridge based assay for the detection of clinically significant HPV infection—Lessons from VALGENT (Validation of HPV Genotyping Tests). J. Clin. Microbiol. 2016, 54, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Geraets, D.; Cuschieri, K.; Koning, M.; van Doorn, L.; Snijders, P.; Meijer, C.J.L.M.; Quint, W.; Arbyn, M. Clinical evaluation of a GP5+/6+-based Luminex assay having full high-risk HPV genotyping capability and an internal control. J. Clin. Microbiol. 2014, 52, 3996–4002. [Google Scholar] [CrossRef] [PubMed]
- Heard, I.; Cuschieri, K.; Geraets, D.T.; Quint, W.; Arbyn, M. Clinical and analytical performance of the PapilloCheck HPV-Screening assay using the VALGENT framework. J. Clin. Virol. 2016, 81, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Smernice za celostno obravnavo žensk s predrakavimi spremembami materničnega vratu. Available online: https://zora.onko-i.si/fileadmin/user_upload/dokumenti/strokovna_priporocila/2011_Smernice_web.pdf (accessed on 11 September 2018).
- Arbyn, M.; Anttila, A.; Jordan, J.; Ronco, G.; Schenck, U.; Segnan, N.; Wiener, H.; Herbert, A.L.; von karsa, L. European Guidelines for Quality Assurance in Cervical Cancer Screening. Second Edition—Summary Document. Ann. Oncol. 2010, 21, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.S.; Tang, M.L.; Chan, I.S. On tests of equivalence via non-unity relative risk for matched-pair design. Stat. Med. 2003, 22, 1217–1233. [Google Scholar] [CrossRef] [PubMed]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J.L; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
HPV Type | HrHPV Prevalence (No. and %) by Cytology Results | Ratio Prevalence HSIL/NILM | |||
---|---|---|---|---|---|
NILM (N = 1234) | ASC-US (N = 131) | LSIL (N = 113) | HSIL (N = 114) | ||
13 hrHPV * | 187 (15.2%) | 56 (42.8%) | 78 (69.0%) | 98 (86.0%) | 5.7 |
HPV16 | 32 (2.6%) | 12 (9.2%) | 27 (23.9%) | 56 (49.1%) | 18.9 |
HPV18 | 12 (1.0%) | 4 (3.1%) | 9 (8.0%) | 10 (8.8%) | 8.8 |
HPV31 | 54 (4.4%) | 22 (16.8%) | 19(16.8) | 23 (20.2%) | 4.6 |
HPV33 | 11 (0.9%) | 5 (3.8%) | 9 (8.0%) | 11 (9.7%) | 10.8 |
HPV35 | 3 (0.2%) | 1 (0.8%) | 0 (0.0%) | 2 (0.9%) | 4.5 |
HPV39 | 16 (1.3%) | 1 (0.8%) | 5 (4.4%) | 2 (1.8%) | 1.4 |
HPV45 | 6 (0.5%) | 5 (3.8%) | 4 (3.5%) | 5 (4.4%) | 8.8 |
HPV51 | 31 (2.5%) | 4 (3.1%) | 9 (8.0%) | 5 (4.4%) | 1.8 |
HPV52 | 27 (2.2%) | 10 (7.6%) | 11 (9.7%) | 7 (6.1%) | 2.8 |
HPV56 | 11 (0.9%) | 2 (1.5%) | 7 (6.2%) | 5 (4.4%) | 4.9 |
HPV58 | 9 (0.7%) | 3 (2.3%) | 7 (6.2%) | 5 (4.4%) | 6.3 |
HPV59 | 11 (0.9%) | 3 (2.3%) | 4 (3.5%) | 0 (0.0%) | 0 |
HPV68 | 16 (1.3%) | 5 (3.8%) | 7 (6.2%) | 5 (4.4%) | 3.4 |
Assay, Study Population and Clinical Outcome | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|
n/N | % | 95% CI | n/N | % | 95% CI | |
INNO-LiPA a | ||||||
Total study population | ||||||
CIN2+ | 123/127 | 96.9 | (92.1–99.1) | |||
CIN3+ | 81/82 | 98.8 | (93.4–100) | |||
≤CIN1 | 1034/1212 | 85.3 | (83.2–87.3) | |||
Women >30 years old | ||||||
CIN2+ | 95/98 | 96.9 | (91.3–99.4) | |||
CIN3+ | 65/66 | 98.5 | (91.8–100) | |||
≤CIN1 | 887/1009 | 87.9 | (85.7–89.9) | |||
HC2 | ||||||
Total study population | ||||||
CIN2+ | 122/127 | 96.1 | (91.1–98.7) | |||
CIN3+ | 80/82 | 97.6 | (91.5–99.7) | |||
≤CIN1 | 1092/1212 | 90.1 | (88.3–91.8) | |||
Women >30 years old | ||||||
CIN2+ | 94/98 | 95.9 | (89.9–98.9) | |||
CIN3+ | 64/66 | 97.0 | (89.5–99.6) | |||
≤CIN1 | 935/1009 | 92.7 | (90.9–94.2) |
INNO-LiPA vs. HC2 | Relative Sensitivity | Relative Specificity | pmcna | pn.infb |
---|---|---|---|---|
Total study population | ||||
CIN2+ | 1.01 (0.97–1.04) | 0.6547 | 0.0002 | |
CIN3+ | 1.01 (0.97–1.06) | 0.5637 | 0.001 | |
≤CIN1 | 0.95 (0.93–0.97) | <0.001 | 0.9998 | |
Women > 30 years old | ||||
CIN2+ | 1.01 (0.96–1.06) | 0.6547 | 0.001 | |
CIN3+ | 1.02 (0.96–1.07) | 0.5637 | 0.003 | |
≤CIN1 | 0.95 (0.93–0.97) | <0.001 | 0.999 |
HPV Type | I+/L+ | I+/L− | I−/L+ | I−/L− | Concordance | κ (95% CI) | pmcna |
---|---|---|---|---|---|---|---|
13 hrHPV b | 318 | 103 | 9 | 1166 | 93.0% | 0.805 (0.757–0.854) | <0.001 |
HPV16 | 112 | 16 | 2 | 1466 | 99.0% | 0.920 (0.871–0.969) | 0.001 |
HPV18 | 31 | 6 | 3 | 1556 | 99.4% | 0.870 (0.822–0.920) | 0.3173 |
HPV31 | 68 | 50 | 1 | 1417 | 96.8% | 0.712 (0.664–0.759) | <0.001 |
HPV33 | 24 | 13 | 1 | 1558 | 99.2% | 0.770 (0.722–0.818) | 0.0013 |
HPV35 | 5 | 0 | 0 | 1591 | 100.0% | 1.000 (0.951–1.049) | 1.0000 |
HPV39 | 15 | 9 | 2 | 1570 | 99.1% | 0.728 (0.680–0.777) | 0.0348 |
HPV45 | 14 | 6 | 0 | 1576 | 99.6% | 0.822 (0.774–0.870) | 0.0143 |
HPV51 | 33 | 16 | 1 | 1546 | 98.9% | 0.790 (0.742–0.838) | <0.001 |
HPV52 | 30 | 26 | 2 | 1538 | 94.6% | 0.674 (0.633–0.714) | 0.8840 |
HPV56 | 16 | 9 | 7 | 1564 | 99.0% | 0.662 (0.613–0.712) | 0.6171 |
HPV58 | 19 | 5 | 0 | 1572 | 99.7% | 0.882 (0.833–0.931) | 0.0253 |
HPV59 | 17 | 2 | 2 | 1575 | 99.8% | 0.894 (0.845–0.943) | 1.0000 |
HPV68 | 7 | 26 | 0 | 1563 | 98.4% | 0.345 (0.308–0.382) | <0.001 |
HPV26 c | 0 | 0 | 0 | 1596 | 100.0% | - | 1.0000 |
HPV53 | 43 | 23 | 1 | 1529 | 98.5% | 0.774 (0.726–0.822) | <0.001 |
HPV66 | 29 | 16 | 1 | 1550 | 98.9% | 0.768 (0.720–0.816) | <0.001 |
HPV70 | 11 | 10 | 0 | 1575 | 99.4% | 0.685 (0.638–0.731) | 0.0016 |
HPV73 | 19 | 7 | 2 | 1570 | 99.4% | 0.788 (0.739–0.837) | 0.0956 |
HPV82 | 5 | 4 | 1 | 1586 | 99.7% | 0.665 (0.617–0.713) | 0.1797 |
HPV06 | 7 | 14 | 1 | 1574 | 99.1% | 0.479 (0.435–0.523) | 0.0008 |
HPV11 | 2 | 3 | 0 | 1591 | 99.8% | 0.571 (0.526–0.615) | 0.0833 |
HPV40 | 1 | 4 | 0 | 1591 | 99.8% | 0.333 (0.296–0.369) | 0.0455 |
HPV42 | 3 | 5 | 9 | 1579 | 99.1% | 0.296 (0.248–0.344) | 0.2850 |
HPV54 | 10 | 14 | 12 | 1560 | 98.4% | 0.427 (0.378–0.476) | 0.6949 |
HPV61 | 16 | 17 | 6 | 1557 | 98.6% | 0.575 (0.527–0.623) | 0.0218 |
HPV62 | 15 | 12 | 9 | 1560 | 98.7% | 0.582 (0.533–0.632) | 0.5127 |
HPV67 | 3 | 5 | 1 | 1587 | 99.6% | 0.498 (0.452–0.543) | 0.1025 |
HPV81 | 3 | 3 | 1 | 1589 | 99.8% | 0.599 (0.551–0.647) | 0.3173 |
HPV83 | 0 | 6 | 3 | 1587 | 99.4% | −0.003 (−0.049–0.044) | 0.3173 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Padalko, E.; Oštrbenk, A.; Poljak, M.; Arbyn, M. Clinical Evaluation of INNO-LiPA HPV Genotyping EXTRA II Assay Using the VALGENT Framework. Int. J. Mol. Sci. 2018, 19, 2704. https://doi.org/10.3390/ijms19092704
Xu L, Padalko E, Oštrbenk A, Poljak M, Arbyn M. Clinical Evaluation of INNO-LiPA HPV Genotyping EXTRA II Assay Using the VALGENT Framework. International Journal of Molecular Sciences. 2018; 19(9):2704. https://doi.org/10.3390/ijms19092704
Chicago/Turabian StyleXu, Lan, Elizaveta Padalko, Anja Oštrbenk, Mario Poljak, and Marc Arbyn. 2018. "Clinical Evaluation of INNO-LiPA HPV Genotyping EXTRA II Assay Using the VALGENT Framework" International Journal of Molecular Sciences 19, no. 9: 2704. https://doi.org/10.3390/ijms19092704
APA StyleXu, L., Padalko, E., Oštrbenk, A., Poljak, M., & Arbyn, M. (2018). Clinical Evaluation of INNO-LiPA HPV Genotyping EXTRA II Assay Using the VALGENT Framework. International Journal of Molecular Sciences, 19(9), 2704. https://doi.org/10.3390/ijms19092704