Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis
Abstract
:1. Introduction
2. Results
2.1. O. vulgaris Terpenoids are Modulated by S. littoralis Herbivory
2.2. O. vulgaris Terpenoids Exert Toxic Effects on S. littoralis larvae
2.3. Priming of S. littoralis with O. vulgare Terpenoids Induces Different Choice Behaviors
2.4. S. littoralis Differentially Catabolizes O. vulgare Terpenoids
2.5. O. vulgare Terpenoids Modulate the Activity and Expression of S. littoralis Scavenging and Detoxification Systems
3. Discussion
4. Materials and Methods
4.1. Plant and Animal Material
4.2. Chemicals Used
4.3. Extraction of O. vulgare Terpenoids
4.4. Artificial Diet Composition
4.5. Terpene Toxicity Assays
4.6. Leaf Disk Choice Tests
4.7. S. littoralis Feeding on O. vulgaris Leaves
4.8. Qualitative and Quantitative Analyses of O. vulgare Leaves and S. littoralis Frass Terpenoids
4.9. Isolation of Total RNA and Expression of O. vulgare Genes in Response to S. littoralis Herbivory
4.10. Isolation of Total RNA and Expression of S. littoralis Scavenging and Detoxifying Genes in Response to O. vulgare Terpenoids
4.11. S. littoralis Scavenging and Detoxifying Enzyme Activities upon Feeding on O. vulgare Terpenoids
4.12. Soluble Protein Determination
4.13. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACD | Artificial control diet |
CAT | Catalase |
CYP71D/179/180/181/182 | Cytochrome P450 isoforms |
DXP | Deoxyxylulose phosphate synthase |
GPPS | Geranyldiphosphate synthase |
GST | Glutathione S-transferase |
HIPVs | Herbivore-Induced Plant Volatiles |
HW | Herbivore-wounded |
SOD | Suoperoxide dismutase |
TPS2 | γ-terpinene synthase |
References
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Heil, M. Indirect defence via tritrophic interactions. New Phytol. 2008, 178, 41–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffei, M. Sites of synthesis, biochemistry and functional role of plant volatiles. S. Afr. J. Bot. 2010, 76, 612–631. [Google Scholar] [CrossRef]
- Chen, M.S. Inducible direct plant defense against insect herbivores: A. review. Insect Sci. 2008, 15, 101–114. [Google Scholar] [CrossRef]
- Glas, J.J.; Schimmel, B.C.; Alba, J.M.; Escobar-Bravo, R.; Schuurink, R.C.; Kant, M.R. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 2012, 13, 17077–17103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahn, A. Secretory-tissues in vascular plants. New Phytol. 1988, 108, 229–257. [Google Scholar] [CrossRef]
- Crocoll, C.; Asbach, J.; Novak, J.; Gershenzon, J.; Degenhardt, J. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol. Biol. 2010, 73, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Galletti, G.C.; Bocchini, P.; Carnacini, A. Essential oil chemical composition of wild populations of italian oregano spice (Origanum vulgare ssp. Hirtum (link) ietswaart): A preliminary evaluation of their use in chemotaxonomy by cluster analysis. 1. Inflorescences. J. Agric. Food Chem. 1998, 46, 3741–3746. [Google Scholar]
- Patricelli, D.; Barbero, F.; Occhipinti, A.; Bertea, C.M.; Bonelli, S.; Casacci, L.P.; Zebelo, S.A.; Crocoll, C.; Gershenzon, J.; Maffei, M.E.; et al. Plant defences against ants provide a pathway to social parasitism in butterflies. Proc. Biol. Sci. 2015, 282. [Google Scholar] [CrossRef] [PubMed]
- Kanda, D.; Kaur, S.; Koul, O. A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: Acute toxins or feeding deterrents. J. Pest Sci. 2017, 90, 531–545. [Google Scholar] [CrossRef]
- Furstenberg-Hagg, J.; Zagrobelny, M.; Bak, S. Plant defense against insect herbivores. Int. J. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant vocs. Trends Plant Sci. 2010, 15, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Gols, R. Direct and indirect chemical defences against insects in a multitrophic framework. Plant Cell Environ. 2014, 37, 1741–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas-Barbosa, D.; van Loon, J.J.; Dicke, M. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 2011, 72, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Hummelbrunner, L.A.; Isman, M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (lep., noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis boisd. (lep., noctuidae) larvae. Ind. Crop. Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef] [PubMed]
- Demirel, N.; Erdogan, C. Insecticidal effects of essential oils from labiatae and lauraceae families against cowpea weevil, Callosobruchus maculatus (f.) (coleoptera: Bruchidae) in stored pea seeds. Entomol. Appl. Sci. Lett. 2017, 4, 13–19. [Google Scholar]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Bruno, M.; Benelli, G. Larvicidal activity of essential oils of five apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodivers. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Kumrungsee, N.; Pluempanupat, W.; Koul, O.; Bullangpoti, V. Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. J. Pest Sci. 2014, 87, 721–729. [Google Scholar] [CrossRef]
- Wilson, J.A.; Isman, M.B. Influence of essential oils on toxicity and pharmacokinetics of the plant toxin thymol in the larvae of Trichoplusia ni. Can. Entomol. 2006, 138, 578–589. [Google Scholar] [CrossRef]
- Kordali, S.; Usanmaz, A.; Bayrak, N.; Cakir, A. Fumigation of volatile monoterpenes and aromatic compounds against adults of Sitophilus granarius (L.) (coleoptera: Curculionidae). Rec. Nat. Prod. 2017, 11, 362–373. [Google Scholar]
- Tak, J.H.; Isman, M.B. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Yotavong, P.; Boonsoong, B.; Pluempanupat, W.; Koul, O.; Bullangpoti, V. Effects of the botanical insecticide thymol on biology of a braconid, Cotesia plutellae (kurdjumov), parasitizing the diamondback moth, Plutella xylostella l. Int. J. Pest Manage. 2015, 61, 171–178. [Google Scholar] [CrossRef]
- Shahriari, M.; Sahbzadeh, N.; Zibaee, A.; Khani, A.; Senthil-Nathan, S. Metabolic response of Ephestia kuehniella zeller (lepidoptera: Pyralidae) to essential oil of ajwain and thymol. Toxin Rev. 2017, 36, 204–209. [Google Scholar] [CrossRef]
- Ali, J.G.; Agrawal, A.A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012, 17, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Unsicker, S.B.; Kunert, G.; Gershenzon, J. Protective perfumes: The role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 2009, 12, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Zebelo, S.A.; Bertea, C.M.; Bossi, S.; Occhipinti, A.; Gnavi, G.; Maffei, M.E. Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica l. PLoS ONE 2011, 6, e17195. [Google Scholar] [CrossRef]
- Banchio, E.; Zygadlo, J.; Valladares, G.R. Quantitative variations in the essential oil of Minthostachys mollis (kunth.) griseb. In response to insects with different feeding habits. J. Agri. Food Chem. 2005, 53, 6903–6906. [Google Scholar] [CrossRef] [PubMed]
- Ngxande-Koza, S.W.; Heshula, L.U.P.; Hill, M.P. Changes in chemical composition of essential oils from leaves of different Lantana camara L. (verbenaceae) varieties after feeding by the introduced biological control agent, Falconia intermedia distant (hemiptera: Miridae). Afr. Entomol. 2017, 25, 462–473. [Google Scholar] [CrossRef]
- Tozin, L.R.D.; Marques, M.O.M.; Rodrigues, T.M. Herbivory by leaf-cutter ants changes the glandular trichomes density and the volatile components in an aromatic plant model. AoB Plants 2017, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estevez, J.M.; Cantero, A.; Reindl, A.; Reichler, S.; Leon, P. 1-deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 2001, 276, 22901–22909. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.S.; Croteau, R.B. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci. 2002, 7, 366–373. [Google Scholar] [CrossRef]
- Majdi, M.; Malekzadeh-Mashhady, A.; Maroufi, A.; Crocoll, C. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors. Plant Physiol. Biochem. 2017, 115, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Baldwin, I.T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.E.; Mithoefer, A.; Boland, W. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 2007, 68, 2946–2959. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Kang, L. Roles of (z)-3-hexenol in plant-insect interactions. Plant Signal. Behave. 2011, 6. [Google Scholar] [CrossRef]
- Zebelo, S.A.; Matsui, K.; Ozawa, R.; Maffei, M.E. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicum) plant-to-plant communication. Plant Sci. 2012, 196, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Arimura, G.I.; Koepke, S.; Kunert, M.; Volpe, V.; David, A.; Brand, P.; Dabrowska, P.; Maffei, M.E.; Boland, W. Effects of feeding Spodoptera littoralis on lima bean leaves: Iv. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 2008, 146, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Keefover-Ring, K. Making scents of defense: Do fecal shields and herbivore-caused volatiles match host plant chemical profiles? Chemoecology 2013, 23, 1–11. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Waomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Wilson, J.A.; Bradbury, R. Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis) against larvae of Pseudaletia unipuncta and Trichoplusia ni in relation to their chemical compositions. Pharm. Biol. 2008, 46, 82–87. [Google Scholar] [CrossRef]
- Khani, A.; Asghari, J. Insecticide activity of essential oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against two stored product pests, the flour beetle, Tribolium castaneum, and the cowpea weevil, Callosobruchus maculatus. J Insect Sci. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Khater, K.S.; El-Shafiey, S.N. Insecticidal effect of essential oils from two aromatic plants against Tribolium castaneum (herbst), (coleoptera: Tenebrionidae). Egypt. J. Biol. Pest Co. 2015, 25, 129–134. [Google Scholar]
- Jassbi, A.R.; Zare, S.; Firuzi, O.; Xiao, J.B. Bioactive phytochemicals from shoots and roots of salvia species. Phytochem. Rev. 2016, 15, 829–867. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Schlegel, V. Distillation time changes oregano essential oil yields and composition but not the antioxidant or antimicrobial activities. HortScience 2012, 47, 777–784. [Google Scholar]
- Koul, O.; Singh, R.; Kaur, B.; Kanda, D. Comparative study on the behavioral response and acute toxicity of some essential oil compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura and Chilo partellus. Ind. Crop. Prod. 2013, 49, 428–436. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Santos, A.A.; Santana, A.S.; Lima, A.P.S.; Melo, C.R.; Santana, E.D.R.; Sampaio, T.S.; Blank, A.F.; Araujo, A.P.A.; Cristaldo, P.F.; et al. Essential oil of Lippia sidoides and its major compound thymol: Toxicity and walking response of populations of Sitophilus zeamais (coleoptera: Curculionidae). Crop Prot. 2018, 112, 33–38. [Google Scholar] [CrossRef]
- Pavela, R.; Sedlak, P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from thymus vulgaris. Ind. Crop. Prod. 2018, 113, 46–49. [Google Scholar] [CrossRef]
- Webster, A.E.; Manning, P.; Sproule, J.M.; Faraone, N.; Cutler, G.C. Insecticidal and synergistic activity of two monoterpenes against diamondback moth (lepidoptera: Plutellidae). Can. Entomol. 2018, 150, 258–264. [Google Scholar] [CrossRef]
- Poulose, A.J.; Croteau, R. Biosynthesis of aromatic monoterpenes: Conversion of gamma-terpinene to p-cymene and thymol in Thymus vulgaris l. Arch. Biochem. Biophys. 1978, 187, 307–314. [Google Scholar] [CrossRef]
- Martinez, S.S.; Van Emden, H.F. Sublethal concentrations of azadirachtin affect food intake, conversion efficiency and feeding behaviour of Spodoptera littoralis (lepidoptera: Noctuidae). B. Entomol. Res. 1999, 89, 65–71. [Google Scholar] [CrossRef]
- Akhtar, Y.; Rankin, C.H.; Isman, M.B. Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (lepidoptera: Noctuidae). J. Insect Behav. 2003, 16, 811–831. [Google Scholar] [CrossRef]
- Hanley, M.E.; Lamont, B.B.; Fairbanks, M.M.; Rafferty, C.M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. 2007, 8, 157–178. [Google Scholar] [CrossRef]
- Miyazawa, M.; Murata, T. Biotransformation of myrcene by the larvae of common cutworm (Spodoptera litura). J. Agri. Food Chem. 2000, 48, 123–125. [Google Scholar] [CrossRef]
- Miyazawa, M.; Wada, T.; Kameoka, H. Biotransformation of gamma terpinene in common cutworm larvae (Spodoptera litura fabricius). J. Agri. Food Chem. 1996, 44, 2889–2893. [Google Scholar] [CrossRef]
- Miyazawa, M.; Wada, T. Biotransformation of terpinene and phellandrene by the larvae of common cutworm (Spodoptera litura). J. Agri. Food Chem. 2000, 48, 2893–2895. [Google Scholar] [CrossRef]
- Cordero, C.; Zebelo, S.A.; Gnavi, G.; Griglione, A.; Bicchi, C.; Maffei, M.E.; Rubiolo, P. Hs-SPME-GCXGC-QMS volatile metabolite profiling of Chrysolina herbacea frass and mentha spp. Leaves. Anal. Bioanal. Chem. 2012, 402, 1941–1952. [Google Scholar] [CrossRef] [PubMed]
- Felton, G.W.; Summers, C.B. Antioxidant systems in insects. Arch. Insect Biochem. 1995, 29, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S. Biochemical defense of prooxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 1992, 20, 269–296. [Google Scholar] [CrossRef]
- Krishnan, N.; Kodrik, D. Antioxidant enzymes in Spodoptera littoralis (boisduval): Are they enhanced to protect gut tissues during oxidative stress? J. Insect Physiol. 2006, 52, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Sehnal, F. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of spodoptera littoralis. Arch. Insect Biochem. 2006, 63, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Anshul, N.; Bhakuni, R.S.; Gaur, R.; Singh, D. Isomeric flavonoids of Artemisia annua (asterales: Asteraceae) as insect growth inhibitors against Helicoverpa armigera (lepidoptera: Noctuidae). Fla. Entomol. 2013, 96, 897–903. [Google Scholar] [CrossRef]
- Hoffmann-Campo, C.B.; Harborne, J.B.; McCaffery, A.R. Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Appl. 2001, 98, 181–194. [Google Scholar] [CrossRef]
- Klopman, G.; Venegas, R.E. Computer automated structure evaluation (case) of flavonoids as larval growth-inhibitors. Pure Appl. Chem. 1988, 60, 265–270. [Google Scholar] [CrossRef]
- Ghashghaei, T.; Soudi, M.R.; Hoseinkhani, S.; Shiri, M. Effects of nonionic surfactants on xanthan gum production: A survey on cellular interactions. Iran. J. Biotechnol. 2018, 16, 60–66. [Google Scholar] [CrossRef]
- Carroll, M.; Schmelz, E.; Meagher, R.; Teal, P. Attraction of spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J. Chem. Ecol. 2006, 32, 1911–1924. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.W. Gas-chromatographic retention indexes of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20m phases. J. Chromatogr. 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Goodner, K. Practical retention index models of OV-101, DB-1, DB-5, and Db-wax for flavor and fragrance compounds. Lwt-Food Sci. Techn. 2008, 41, 951–958. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 2001, 29. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Rozen, S.; Skaletsky, H. Primer3 on the www for general users and for biologist programmers. In Bioinformatics Methods and Protocols; Krawetz, S., Misener, S., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 365–386. [Google Scholar]
- Hermeslima, M.; Willmore, W.G.; Storey, K.B. Quantification of lipid-peroxidation in tissue-extracts based on Fe (III) xylenol orange complex-formation. Free Radic. Biol. Med. 1995, 19, 271–280. [Google Scholar] [CrossRef]
- Vecera, J.; Krishnan, N.; Mithofer, A.; Vogel, H.; Kodrik, D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp. Biochem. Physiol. C 2012, 155, 389–395. [Google Scholar]
- Karthi, S.; Shivakumar, M.S. The protective effect of melatonin against cypermethrin-induced oxidative stress damage in Spodoptera litura (lepidoptera: Noctuidae). Biol. Rhythm Res. 2015, 46, 1–12. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione s-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Compounds | Control | HW | Frass |
---|---|---|---|
Green Leaf Volatiles | |||
(E)-2-Hexenal | nd | 8.96 ± 3.66 ** | nd |
(Z)-3-Hexenol | nd | 9.43 ± 0.79 ** | nd |
Monoterpenes | |||
Sabinene | 116.32 ± 0.24 | 133.99 ± 8.09 | 2.84 ± 0.34 |
β-Pinene | 4.18 ± 0.03 | 4.75 ± 0.56 | nd |
β-Myrcene | 31.93 ± 1.00 | 34.61 ± 1.88 | 0.42 ± 0.04 |
α-Terpinene | 25.62 ± 0.5 | 32.38 ± 2.30 * | 0.77 ± 0.12 |
p-Cymene | 53.87 ± 18.84 | 83.43 ± 10.39 | 2.97 ± 0.60 |
1-Octen-3-ol | 5.12 ± 0.31 | 13.75 ± 3.67 | nd |
Limonene | 14.55 ± 2.13 | 20.21 ± 0.05 * | nd |
β-Phellandrene | 17.91 ± 1.36 | 28.83 ± 2.95 * | nd |
γ-Terpinene | 187.89 ± 1.61 | 193.92 ± 15.28 | 8.60 ± 1.17 |
1-Octenyl-3-acetate | 20.01 ± 0.93 | 24.75 ± 4.29 | nd |
Trans-sabinene hydrate | 52.28 ± 5.31 | 98.07 ± 10.80 ** | 1.41 ± 0.32 |
Cis-sabinene hydrate | 700.21 ± 71.55 | 1062.03 ± 167.15 ** | 19.38 ± 1.53 |
Linalool | 7.40±0.49 | 17.79 ± 0.62 * | nd |
Linalool oxide | 4.33 ± 0.15 | 6.90 ± 0.74 | nd |
Terpinen-4-ol | 8.12 ± 0.86 | 10.78 ± 2.03 | 1.16 ± 0.16 |
α-Terpineol | 43.64 ± 4.56 | 60.50 ± 11.09 * | 1.80 ± 0.20 |
Trans-dihydrocarvone | 4.04 ± 0.28 | 5.88 ± 0.23 ** | nd |
Cis-dihydrocarvone | 9.20 ± 0.56 | 12.70 ± 1.68 * | 1.57 ± 0.29 |
Sabinene hydrate acetate | 5.59 ± 0.09 | 6.76 ± 1.11 | nd |
Carvacrol methyl ether | 44.29 ± 1.77 | 86.34 ± 5.03 ** | 3.35 ± 0.44 |
Linalyl acetate | 51.03 ± 3.11 | 88.85 ± 10.51 ** | 2.45 ± 0.18 |
Thymol | 4.11 ± 0.33 | 6.92 ± 0.32 ** | nd |
Carvacrol | 959.26 ± 8.90 | 1159.39 ± 84.46 | 109.76 ± 6.96 |
Sesquiterpenes | |||
Bicycloelemene | 11.49 ± 1.54 | 18.95 ± 1.32 * | nd |
β-Cubebene | 5.99 ± 0.92 | 12.13 ± 0.03 ** | nd |
α-Copaene | 10.93 ± 1.31 | 7.73 ± 2.10 | nd |
β-Caryophyllene | 40.81 ± 2.66 | 58.38 ± 5.43 * | 1.69 ± 0.29 |
α-Humulene | 5.65 ± 1.04 | 7.65 ± 0.20 | nd |
Germacrene D | 37.19 ± 2.72 | 49.46 ± 2.96 * | 1.79 ± 0.37 |
Bicyclogermacrene | 24.05 ± 3.32 | 33.18 ± 2.12* | 1.13 ± 0.12 |
β-Bisabolene | 93.00 ± 7.33 | 114.85 ± 4.94 * | 5.33 ± 0.93 |
α-Farnesene | 2.54 ± 0.16 | 6.44 ± 0.59 * | nd |
β-Sesquiphellandrene | 6.91 ± 0.92 | 12.71 ± 0.80 ** | nd |
Germacrene d-4-ol | 4.14 ± 0.50 | 7.18 ± 1.10 * | nd |
Trans-farnesol | 3.94 ± 0.07 | 4.07 ± 0.38 | 0.81 ± 0.15 |
TOTAL | 2617.54 ± 27.15 | 3544.65 ± 66.13 | 163.16 ± 6.58 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agliassa, C.; Maffei, M.E. Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis. Int. J. Mol. Sci. 2018, 19, 2805. https://doi.org/10.3390/ijms19092805
Agliassa C, Maffei ME. Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis. International Journal of Molecular Sciences. 2018; 19(9):2805. https://doi.org/10.3390/ijms19092805
Chicago/Turabian StyleAgliassa, Chiara, and Massimo E. Maffei. 2018. "Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis" International Journal of Molecular Sciences 19, no. 9: 2805. https://doi.org/10.3390/ijms19092805
APA StyleAgliassa, C., & Maffei, M. E. (2018). Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis. International Journal of Molecular Sciences, 19(9), 2805. https://doi.org/10.3390/ijms19092805