Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans
Abstract
:1. Introduction
2. cAMP-Signaling in Apicomplexan Parasites without Canonical G-Proteins and G-Protein-Coupled Receptors (GPCRs): A Comparison to the Human Counterpart
2.1. Non Canonical G-Proteins and Putative GPCRs in Plasmodium
2.2. Small GTPases in Plasmodium May Substitute Canonical G-Proteins
2.3. A Step towards Selective Inhibitors of Heterotrimeric G Proteins in Mammalian Cells
3. Toxoplasma Gondii Uses the GPCR-Signaling Network and GTPases from the Infected Host Cell Besides Its Own Small GTPases
4. The Non-Intracellular Parasite Cryptosporidium Can Manage Its Proliferation without G-Proteins and GPCRs
5. Non-Canonical Camp-Signaling Pathways in the Kinetoplastids: Trypanosomes and Leishmania Have a Variety of GTPases with Specialized Functions
6. Metabolism of cAMP in the Apicomplexa
7. cAMP in Apicomplexan Parasites Activates the Guanine Exchange Factor (GEF) EPAC and Rap1
8. cAMP Signaling in the Kinetoplasids: Small GTPases Control Host Cell Invasion
9. Cyclic Nucleotides Activate Protein Kinases A and G without Canonical G-Proteins
10. Conclusions
Funding
Conflicts of Interest
References
- Hamm, H.E. The many faces of G protein signaling. J. Biol. Chem. 1998, 273, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Baltoumas, F.A.; Theodoropoulou, M.C.; Hamodrakas, S.J. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: A critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J. Struct. Biol. 2013, 182, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Milligan, G.; Kostenis, E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol. 2006, 147, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zaida, A.; Luthey-Schulten, Z.; Suslick, K.S. Is the olfactory receptor a metalloprotein? Proc. Natl. Acad. Sci. USA 2003, 100, 3035–3039. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Trong, I.L.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Gould, M.K.; Koning, d.H.P. Cyclic-nucleotide signalling in protozoa. FEMS Microbiol. Rev. 2011, 35, 515–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haste, N.M.; Talabani, H.; Doo, A.; Merckx, A.; Langsley, G.; Taylor, S.S. Exploring the Plasmodium falciparum cyclic-adenosine monophosphate (cAMP)-dependent protein kinase (PfPKA) as a therapeutic target. Microbes Infect. 2012, 14, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Parbhu-Patel, A.; Meyer, D.I.; Baker, D.A. The role of two novel regulatory sites in the activation of the cGMP-dependent protein kinase from Plasmodium falciparum. Biochem. J. 2003, 374, 559–565. [Google Scholar] [CrossRef]
- Gurnett, A.M.; Liberator, P.A.; Dulski, P.M.; Salowe, S.P.; Donald, R.G.; Anderson, J.W.; Wiltsie, J.; Diaz, C.A.; Harris, G.; Chang, B. Purification and molecular characterization of cGMP-dependent protein kinase from Apicomplexan parasites: A novel chemotherapeutic target. J. Biol. Chem. 2002, 277, 15913–15922. [Google Scholar] [CrossRef]
- Green, J.L.; Moon, R.W.; Whalley, D.; Bowyer, P.W.; Wallace, C.; Rochani, A.; Nageshan, R.K.; Howell, S.A.; Grainger, M.; Jones, H.M.; et al. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 to Kill the Parasite at Different Stages of Intracellular Development. Antimicrob. Agents Chemother. 2015, 60, 1464–1475. [Google Scholar] [CrossRef]
- Rojas, A.M.; Fuentes, G.; Rausell, A.; Valencia, A. The ras protein superfamily: Evolutionary tree and role of con-served amino acids. J. Cell Biol. 2012, 196, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Thumkeo, D.; Watanabe, S.; Narumiya, S. Physiological roles of rho and rho effectors in mammals. Eur. J. Cell Biol. 2013, 92, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Liu, F.; He, Y.; Liu, Q.; Humphreys, G.B.; Tsuboi, T.; Fan, Q.; Luo, E.; Cao, Y.; Cui, L. Functional characterization of Plasmodium berghei PSOP25 during ookinete development and as a malaria transmission-blocking vaccine candidate. Parasite Vectors 2017, 10, 8. [Google Scholar] [CrossRef]
- Doerig, C.; Baker, D.; Billker, O.; Blackman, M.J.; Chitnis, C.; Dhar Kumar, S.; Heussler, V.; Holder, A.A.; Kocken, C.; Krishna, S.; et al. Signalling in malaria parasites. The MALSIG consortium. Parasite 2009, 16, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Bank, E.M.; Ramsey, N.; Hess, K.C.; Deitsch, K.W.; Lewin, L.R.; Buck, J. Characterization of Plasmodium falciparum adenylyl cyclase-β and its role in erythrocytic stage parasites. PLoS ONE 2012, 7, e39769. [Google Scholar] [CrossRef]
- Huber, S.M.; Duranton, C.; Henke, G.; Van De Sand, C.; Heussler, V. Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J. Biol. Chem. 2004, 279, 41444–41452. [Google Scholar] [CrossRef] [PubMed]
- Huber, S. Purinoreceptor signaling in malaria–infected erythrocytes. Microbes Infect. 2012, 14, 779–786. [Google Scholar] [CrossRef]
- Slyter, R.; Shemon, A.N.; Barden, J.A.; Wiley, J.S. Extracellular ATP increases cation fluxes in human erythrocytes by activation of the P2X7 receptor. J. Biol. Chem. 2004, 279, 41444–41452. [Google Scholar]
- Desai, S.A.; Bezrukov, S.M.; Zimmerberg, J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 2000, 31, 1001–1005. [Google Scholar] [CrossRef]
- Harrison, T.; Samuel, B.U.; Akompong, T.; Hamm, H.; Mohandas, N.; Lomasney, J.W. Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 2003, 301, 1734–1736. [Google Scholar] [CrossRef]
- Adderley, S.P.; Sridharan, M.; Bowels, E.A.; Stephenson, A.H.; Sprague, R.S.; Ellsworth, M.L. Inhibition of ATP release from erythrocytes: A role for EPACs and PKC. Microcirculation 2011, 18, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Sprague, R.S.; Bowles, E.A.; Achilleus, D.; Stephenson, A.H.; Ellis, C.G.; Ellsworth, M.E. Erythrocytes as controllers of perfusion distribution in the microvasculature of sceletal muscle. Acta Physiol. 2011, 202, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.C.; Harrison, T.; Hamm, H.E.; Lomasney, J.W.; Mohandas, N. Erythrocyte G protein as a novel target for malarial chemotherapy. PLoS Med. 2006, 3, e528. [Google Scholar] [CrossRef] [PubMed]
- Peatey, C.L.; Dixon, M.W.; Gardiner, D.L.; Trenholme, K.R. Temporal evaluation of commitment to sexual development in Plasmodium falciparum. Malar. J. 2013, 12, 134. [Google Scholar] [CrossRef]
- Gillison, S.L.; Sharp, G.W. ADP ribosylation by cholera toxin identifies three G-proteins that are activated by the galanin receptor. Studies with RINm5F cell membranes. Diabetes 1994, 43, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Moraes, M.S.; Budu, A.; Singh, M.K.; Borges-Pereira, L.; Levano-Garcia, J.; Curra, C.; Picci, L.; Pace, T.; Ponzi, M.; Pozzan, T.; et al. Plasmodium falciparum GPCR-like receptor SR25 mediates extracellular K+ sensing coupled to Ca2+ signaling and stress survival. Sci. Rep. 2017, 7, 9545. [Google Scholar] [CrossRef] [PubMed]
- Langsley, G.; Van Noort, C.; Meissner, M.; de Villiers, E.P.; Bishop, R.; Pain, A. Comparitive genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect. 2008, 10, 462–470. [Google Scholar] [CrossRef]
- Quevillon, E.; Spielmann, T.; Brahimi, K.; Chattopadhyay, D.; Yeramian, E.; Langsley, G. The Plasmodium falciparum family of Rab GTPases. Gene 2003, 306, 13–25. [Google Scholar] [CrossRef]
- Morse, D.; Webster, W.; Kalanon, M.; Langsley, G.; McFadden, G.I. Plasmodium falciparum Rab1A localizes to rhoptries in schizonts. PLoS ONE 2016, 11, e0158174. [Google Scholar] [CrossRef]
- Ezougou, C.N.; Ben-Rached, F.; Moss, D.K.; Lin, J.W.; Black, S.; Knuepfer, E.; Green, J.L.; Khan, S.M.; Moukhopadhyay, A.; Janse, C.J.; et al. Plasmodium falciparum Rab5B is an N-terminally myristoylated Rab GTPase that is targeted to the parasite’s plasma and food vacuole membranes. PLoS ONE 2014, 9, e87695. [Google Scholar] [CrossRef]
- Kaiser, A.; Langer, B.; Przyborski, J.; Kersting, D.; Krüger, M.A. Putative Non-Canonical Ras-Like GTPase from P. falciparum: Chemical Properties and Characterization of the Protein. PLoS ONE 2016, 10, e0140994. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.A. Small molecules targeting heterotrimeric G proteins. Eur. J. Pharmacol. 2018, 826, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Aktories, K. Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 2011, 9, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Freissmuth, M.; Boehm, S.; Beindl, W.; Nickel, P.; Ijzerman, A.P.; Hohenegger, M.; Nanoff, C. Suramin analogues as subtype-selective G protein inhibitors. Mol. Pharmacol. 1996, 49, 602–611. [Google Scholar] [PubMed]
- Prévost, G.P.; Lonchampt, M.O.; Holbeck, S.; Attoub, S.; Zaharevitz, D.; Alley, M.; Wright, J.; Brezak, M.C.; Coulomb, H.; Savola, A.; et al. Anticancer activity of BIM-46174, a new inhibitor of the heterotrimeric Galpha/Gbetagamma protein complex. Cancer Res. 2006, 66, 9227–9234. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.A.; Damian, M.; Gespach, C.; Ferrandis, E.; Lavergne, O.; De Wever, O.; Banères, J.L.; Pin, J.P.; Prévost, G.P. Inhibition of heterotrimeric G protein signaling by a small molecule acting on Galpha subunit. J. Biol. Chem. 2009, 284, 29136–29145. [Google Scholar] [CrossRef] [PubMed]
- Schrage, R.; Schmitz, A.L.; Gaffal, E.; Annala, S.; Kehraus, S.; Wenzel, D.; Büllesbach, K.M.; Bald, T.; Inoue, A.; Shinjo, Y.; et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 2015, 6, 10156. [Google Scholar] [CrossRef] [Green Version]
- Klepac, K.; Kilić, A.; Gnad, T.; Brown, L.M.; Herrmann, B.; Wilderman, A.; Balkow, A.; Glöde, A.; Simon, K.; Lidell, M.E.; et al. The Gq signalling pathway inhibits brown and beige adipose tissue. Nat. Commun. 2016, 7, 10895. [Google Scholar] [CrossRef] [Green Version]
- Matthey, M.; Roberts, R.; Seidinger, A.; Simon, A.; Schröder, R.; Kuschak, M.; Annala, S.; König, G.M.; Müller, C.E.; Hall, I.P.; et al. Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma. Sci. Transl. Med. 2017, 9, eaag2288. [Google Scholar] [CrossRef]
- Appleton, K.M.; Bigham, K.J.; Lindsey, C.C.; Hazard, S.; Lirjoni, J.; Parnham, S.; Hennig, M.; Peterson, Y.K. Development of inhibitors of heterotrimeric Gαi subunits. Bioorg. Med. Chem. 2014, 22, 3423–3434. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.M.; Sleno, R.; Gora, S.; Zylbergold, P.; Laverdure, J.P.; Labbé, J.C.; Miller, G.J.; Hébert, T.E. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol. Rev. 2013, 65, 545–577. [Google Scholar] [CrossRef] [PubMed]
- Smrcka, A.V. G protein βγ subunits: Central mediators of G protein-coupled receptor signaling. Cell. Mol. Life Sci. 2008, 65, 2191–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daaka, Y.; Pitcher, J.A.; Richardson, M.; Stoffel, R.H.; Robishaw, J.D.; Lefkowitz, R.J. Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. Proc. Natl. Acad. Sci. USA 1997, 94, 2180–2185. [Google Scholar] [CrossRef] [PubMed]
- Bonacci, T.M.; Mathews, J.L.; Yuan, C.; Lehmann, D.M.; Malik, S.; Wu, D.; Font, J.L.; Bidlack, J.M.; Smrcka, A.V. Differential targeting of G-betagamma-subunit signaling with small molecules. Science 2006, 312, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Millholland, M.G.; Mishra, S.; Dupont, C.D.; Love, M.S.; Patel, B.; Shilling, D.; Kazanietz, M.G.; Foskett, J.K.; Hunter, C.A.; Sinnis, P.; et al. A host GPCR signaling network required for the cytolysis of infected cells facilitates release of apicomplexan parasites. Cell Host Microbe 2013, 13, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Kafsack, B.F.; Beckers, C.; Carruthers, V.B. Synchronous invasion of host cells by Toxoplasma gondii. Mol. Biochem. Parasitol. 2004, 136, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Moudy, R.; Manning, T.J.; Beckers, C.J. The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J. Biol. Chem. 2001, 276, 41492–41501. [Google Scholar] [CrossRef]
- Kafsack, B.F.; Pena, J.D.; Coppens, I.; Ravindran, S.; Boothroyd, J.C.; Carruthers, V.B. Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 2009, 323, 530–533. [Google Scholar] [CrossRef]
- Dvorin, J.D.; Martyn, D.C.; Patel, S.D.; Grimley, J.S.; Collins, C.R.; Hopp, C.S.; Bright, A.T.; Westenberger, S.; Winzeler, E.; Blackman, M.J.; et al. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 2010, 328, 910–912. [Google Scholar] [CrossRef]
- Arastu-Kapur, S.; Ponder, E.L.; Fonović, U.P.; Yeoh, S.; Yuan, F.; Fonović, M.; Grainger, M.; Phillips, C.I.; Powers, J.C.; Bogyo, M. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat. Chem. Biol. 2008, 4, 203–213. [Google Scholar] [CrossRef]
- Kremer, K.; Kamin, D.; Rittweger, E.; Wilkes, J.; Flammer, H.; Mahler, S.; Heng, J.; Tonkin, C.J.; Langsley, G.; Hell, S.W.; et al. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog. 2013, 9, e1003213. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.D.; Nolan, S.J.; Porter, C.; Ehrenman, K.; Hartman, E.J.; Hsia, R.C.; Coppens, I. The parasite Toxoplasma sequesters host Rab vesicles within an intravacuolar network. J. Cell Biol. 2017, 216, 4235–4254. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, J.; Sasai, M.; Liu, J.; Yamashita, K.; Ma, J.S.; Lee, Y.; Bando, H.; Howard, J.C.; Ebisu, S.; Hayashi, M.; et al. RabGDIα is a negative regulator of interferon-γ-inducible GTPase-dependent cell-autonomous immunity to Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 2015, 112, 4581–4590. [Google Scholar] [CrossRef] [PubMed]
- Reese, M.L.; Shah, N.; Boothroyud, J.C. The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases. J. Biol. Chem. 2014, 289, 27849–27858. [Google Scholar] [CrossRef] [PubMed]
- Leitch, G.J.; He, Q. Cryptosporidiosis-an overview. J. Biomed. Res. 2012, 25, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Francis, S.M.; Gas, M.E.; Daugeron, M.C.; Bravo, J.; Seraphin, B. Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment. Nucleic Acids Res. 2012, 40, 11100–11114. [Google Scholar] [CrossRef] [PubMed]
- O’hara, S.P.; Splinter, P.L.; Trussoni, C.E.; Gajdjos, G.B.; Lineswala, P.N.; La Russow, N.F. Cholangiocyte N-Ras protein mediates lipopolysaccharide-induced interleukin 6 secretion and proliferation. J. Biol. Chem. 2011, 286, 30352–30360. [Google Scholar] [CrossRef]
- Abrahamsen, M.S.; Templeton, T.J.; Enomoto, S.; Abrahante, J.E.; Zhu, G.; Lancto, C.A.; Deng, M.; Liu, C.; Widmer, G.; Tzipori, S. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004, 304, 441–445. [Google Scholar] [CrossRef]
- Frankel, M.B.; Knoll, L.J. The ins and outs of nuclear trafficking. DNA Cell Biol. 2009, 28, 277–284. [Google Scholar] [CrossRef]
- Ponte-Sucre, A. An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction. Front. Microbiol. 2016, 26, 2126. [Google Scholar] [CrossRef]
- Mogk, S.; Boßelmann, C.M.; Mudugo, C.N.; Stein, J.; Wolburg, H.; Duszenko, M. African trypanosomes and brain infection—The unsolved question. Biol. Rev. Cambr. Philos. Soc. 2016, 92, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J. 2016, 15, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Adung’a, V.O.; Field, M.C. TbFRP, a novel FYVE-domain containing phosphoinositide-binding Ras-like GTPase from trypanosomes. Exp. Parasitol. 2013, 133, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.; Leung, K.F.; Field, M.C. The ancient small GTPase Rab21 functions in intermediate endocytic steps in trypanosomes. Eukaryot. Cell 2014, 13, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Alsford, S.; Field, M.C.; Horn, D. Receptor-mediated endocytosis for drug delivery in African trypanosomes: Fulfilling Paul Ehrlich’s vision of chemotherapy. Trends Parasitol. 2013, 29, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Huet, D.; Blisnick, T.; Perrot, S.; Bastin, P. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. eLife 2014, 24, e02419. [Google Scholar] [CrossRef]
- Hemsworth, G.R.; Price, H.P.; Smith, D.F.; Wilson, K.S. Crystal structure of the small GTPase Arl6/BBS3 from Trypanosoma brucei. Protein Sci. 2013, 22, 196–203. [Google Scholar] [CrossRef]
- Dos Santos, G.R.; Nepomuceno-Silva, J.L.; de Melo, L.D.; Meyer-Fernandes, J.R.; Salmon, D.; Azevedo-Pereira, R.L.; Lopes, U.G. The GTPase TcRjl of the human pathogen Trypanosoma cruzi is involved in the cell growth and differentiation. Biochem. Biophys. Res. Commun. 2012, 419, 38–42. [Google Scholar] [CrossRef]
- Bonfirm-Melo, A.; Ferreira, E.R.; Mortara, R.A. Rac1/WAVE2 and Cdc42/N-WASP Participation in Actin-Dependent Host Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi. Front. Microbiol. 2018, 28, 360. [Google Scholar] [CrossRef]
- Yavus, S.; Warren, P. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei. Mol. Biol. Cell 2017, 21, 1782–1791. [Google Scholar] [CrossRef]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nillson, D.; Aggarwal, G.; Tran, A.N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Sadekar, N.; Ashton, A.W.; Huang, H.; Spray, D.C.; Lisanti, M.P.; Machado, F.S.; Weiss, L.M.; Tanowitz, H.B. Identification of a functional prostanoid-like receptor in the protozoan parasite, Trypanosoma cruzi. Parasitol. Res. 2013, 112, 1417–1425. [Google Scholar] [CrossRef]
- Tagoe, D.N.; Kaleyeiy, T.D.; de Koning, H.P. The ever unfolding story of cAMP signaling in trypanosomatids: Vive la difference! Front. Pharmacol. 2015, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Wolf Nassif, P.; DE Mello, T.F.; Navasconi, T.R.; Mota, C.A.; Demarchi, I.G.; Aristides, S.M.; Lonardoni, M.V.; Teixeira, J.J.; Silveira, T.G. Safety and efficacy of current alternatives in the topical treatment of cutaneous leishmaniasis: A systematic review. Parasitology 2017, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Singh, A. Recent developments and future prospects in the treatment of visceral leishmaniasis. Ther. Adv. Infect. Dis. 2016, 3, 98–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahl, S.; Parashar, S.; Malhotra, H.; Raje, M.; Mukhopadhyay, A. Functional characterization of monomeric GTPase Rab1 in the secretory pathway of Leishmania. J. Biol. Chem. 2015, 290, 29993–30005. [Google Scholar] [CrossRef] [PubMed]
- Parashar, S.; Mukhopadhyay, A. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania. J. Biol. Chem. 2017, 292, 12111–12125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, R.; Verma, J.K.; Kapoor, A.; Langsley, G.; Mukhopadhyay, A. Rab 5 isoforms specifically regulate different modes of endocytosis in Leishmania. J. Biol. Chem. 2016, 291, 14732–14746. [Google Scholar] [CrossRef]
- Chauhan, I.S.; Shukla, R.; Krishna, S.; Sekhri, S.; Kaushik, U.; Baby, S.; Pal, C.; Siddiqi, M.I.; Sundar, S.; Singh, N. Recombinant Leishmania Rab6 (rLdRab6) is recognized from visceral Leishmania patients. Exp. Parasitol. 2016, 170, 135–147. [Google Scholar] [CrossRef]
- Chakraborty, S.; Srivastava, A.; Jha, M.K.; Nair, A.; Pandey, S.P.; Srivastava, N.; Kumari, S.; Singh, S.; Krishnasastry, M.V.; Saha, B. Inhibition od CD40-induced N-Ras activation reduces Leishmania major infection. J. Immunol. 2015, 194, 3852–3860. [Google Scholar] [CrossRef]
- Yusa, K.; Mi-Ichi, F.; Kobayashi, T.; Yamanouchi, M.; Kotera, J.; Kita, K.; Omori, K. PfPDE1, a novel cGMP-specific phosphodieszerase from the human malaria parasite Plasmodium falciparum. Biochem. J. 2005, 392, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.L.; Harvey, K.L.; Azevedo, M.F.; Crabb, B.S.; Jennings, I.G.; Sanders, P.R.; Manallack, D.T.; Thompson, P.E.; Tonkin, C.J.; Gilson, P.R. Identification of potent phosphodiesterase inhibitors that demonstrate cyclic nucleotide-dependent functions in apicomplexan parasites. ACS Chem. Biol. 2015, 10, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Beghyn, T.B.; Charton, J.; Leroux, F.; Laconde, G.; Bourin, A.; Cos, P.; Maes, L.; Deprez, B. Drug to genome to drug: Discovery of new antiplasmodial compounds. J. Med. Chem. 2011, 54, 3222–3240. [Google Scholar] [CrossRef] [PubMed]
- Beghyn, T.B.; Charton, J.; Leroux, F.; Henninot, A.; Reboule, I.; Cos, P.; Maes, L.; Deprez, B. Drug to genome to drug, step 2: Reversing selectivity in a series of antiplasmodial compounds. J. Med. Chem. 2012, 55, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.W.; Taylor, C.J.; Bex, C.; Schepers, R.; Goulding, D.; Waters, A.P.; Baker, D.A.; Billker, D.O. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog. 2009, 5, e1000599. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, V.; Fishbaugher, M.E.; Morrison, B.; Baldwin, M.; Macarulay, M.; Vaughan, A.M.; Mikolajczak, S.A.; Kappe, S.H.I. Cyclic GMP balance is critical for malaria parasite transmission from the mosquito to the mammalian host. mBio 2015, 6, e02330-14. [Google Scholar] [CrossRef] [PubMed]
- Muhia, D.K.; Swales, C.A.; Eckstein-Ludwig, U.; Kelly, J.M.; Schaa, P.; Saran, S.; Polley, S.D.; Krishna, S.; Baker, D.A. Multiple splice variants encode a novel adenylyl cyclase of possible plastid origin expressed in the sexual stage of the malaria parasite Plasmodium falciparum. J. Biol. Chem. 2003, 278, 22014–22022. [Google Scholar] [CrossRef] [PubMed]
- Carrucci, D.J.; Witney, A.A.; Muhia, D.K.; Warhurst, D.C.; Schaap, P.; Meima, M.; Li, J.L.; Taylor, M.C.; Kelly, J.M.; Baker, D.A. Guanyl cyclase activity associated with putative bifunctional integral membrane proteins in Plasmodium falciparum. J. Biol. Chem. 2000, 275, 22147–22156. [Google Scholar] [CrossRef]
- Taylor, C.J.; McRobert, L.; Baker, D.A. Disruption of a Plasmodium falciparum cyclic nucleotide phosphodiesterase gene causes abberant gametogenesis. Mol. Microbiol. 2008, 69, 110–118. [Google Scholar] [CrossRef]
- Baker, D.A.; Drought, L.G.; Flueck, C.; Nofal, S.D.; Patel, A. Cyclic nucleotide signaling in malaria parasites. Open Biol. 2017. [Google Scholar] [CrossRef]
- Soni, R.; Sharma, D.; Rai, P.; Sharma, B.; Bhatt, T.K. Signaling Strategies of malaria parasite for its survival, proliferation, and infection during the erythrocytic stage. Front. Immun. 2017, 8, 349. [Google Scholar] [CrossRef]
- Niu, Q.; Valentin, C.; Bonsergent, C.; Malandrin, L. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group). Infect. Genet. Evol. 2014, 28, 21–32. [Google Scholar] [CrossRef]
- Rapoport, A.; Aharonson-Raz, K.; Berlin, D.; Tal, S.; Gottlieb, Y.; Klement, E.; Steinman, A. Molecular characterization oft he Babesia caballi rap-1 gene and epidemological survey in horses in Israel. Infect. Genet. Evol. 2014, 23, 115–120. [Google Scholar] [CrossRef]
- Kirkman, L.A.; Weiss, L.M.; Kim, K. Cyclic nucleotide signaling in Toxoplasma gondii bradyzoite differentiation. Infect. Immun. 2001, 69, 148–153. [Google Scholar] [CrossRef]
- Mueller, C.; Samoo, A.; Hammoudi, P.M.; Klages, N.; Kallio, J.P.; Kursula, I.; Soldati-Favre, D. Structural and functional dissection of Toxoplasma gondii armadillo repeats only protein. J. Cell Sci. 2016, 129, 1031–1045. [Google Scholar] [CrossRef]
- Dziadek, B.; Brzostek, A. Recombinant ROP2, ROP4, GRA4 and SAG1 antigen-cocktails as possible tools for immunoprophylaxis of toxoplasmosis: what’s next? Bioengineered 2012, 3, 358–364. [Google Scholar] [CrossRef]
- Babokhov, P.; Sanyaolu, A.O.; Oyibo, W.A.; Fagbenro-Beyioku, A.F.; Iriemenam, N.C. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog. Glob. Health 2013, 107, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Jansen, C. Discovery of novel Trypanosoma brucei phosphodiesterase B1 inhibitors by virtual screening against the unliganded TbrPDEB1 crystal structure. J. Med. Chem. 2013, 56, 2087–2096. [Google Scholar] [CrossRef]
- Salmon, D.; Vanwalleghem, G.; Morias, Y.; Denoued, J.; Krumbholz, C.; Lhomme, F.; Bachmeier, S.; Kador, M.; Gossmann, J.; Dias, F.B. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 2012, 337, 463–466. [Google Scholar] [CrossRef]
- Pandya, U.M.; Sandhu, R.; Li, B. Silencing subtelomeric VSGs by Trypanosoma brucei RAP1 at the insect stage involves chromatin structure changes. Nucleic Acids Res. 2013, 41, 7673–7682. [Google Scholar] [CrossRef]
- Laxman, S.; Riechers, A.; Sadilek, M.; Schwede, F.; Beavo, J.A. Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc. Natl. Acad. Sci. USA 2006, 103, 19194–19199. [Google Scholar] [CrossRef]
- Huang, H. Signal transduction in Trypanosoma cruzi. Adv. Parasitol. 2011, 75, 325–344. [Google Scholar]
- Orrling, K.M.; Jansen, C.; Vu, X.L.; Balmer, V.; Bregy, P.; Shanmugham, A.; England, P.; Bailey, D.; Cos, P.; Maes, L.; et al. Catechol pyrazolinones as trypanocidals: Fragment-based design, synthesis, and pharmacological evaluation of nanomolar inhibitors of trypanosomal phosphodiesterase B1. J. Med. Chem. 2012, 55, 8745–8756. [Google Scholar] [CrossRef]
- Salmon, D.; Bachmaier, S.; Krumbholz, C.; Kador, M.; Gossmann, J.A.; Uzureau, P.; Pays, E.; Boshart, M. Cytokinesis of Trypanosoma blood stream forms depends on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol. Microbiol. 2012, 84, 225–242. [Google Scholar] [CrossRef]
- Verma, J.K.; Rastogi, R.; Mukhopadhyay, A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via downregulation of miR-494. PLoS Pathog. 2017, 26, e1006459. [Google Scholar] [CrossRef]
- Biswas, A.; Bhattacharya, A.; Das, P.K. Role of cAMP signaling in the survival and infectivity of the protozoan parasite, Leishmania donovani. Mol. Biol. Int. 2011, 2011, 782971. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Biswas, A.; Das, P.K. Role of a differentially expressed cAMP phosphodiesterase in regulating the induction of resistance against oxidative damage in Leishmania donovani. Free Radic. Biol. Med. 2009, 47, 1494–1506. [Google Scholar] [CrossRef]
- Siman-Tov, M.M.; Aly, R.; Shapira, M.; Jaffe, C.L. Cloning from Leishmania major of a developmentally regulated gene, c-lpk2, for the catalytic subunit of the cAMP-dependent protein kinase. Mol. Biochem. Parasitol. 2001, 77, 201–215. [Google Scholar] [CrossRef]
- Carvalho, T.G.; Morahan, B.; John von Freyend, S.; Boeuf, P.; Grau, G.; Garcia-Bustos, J.; Doerig, C. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation. Mol. Biochem. Parasitol. 2016, 208, 2–15. [Google Scholar] [CrossRef]
- Li, J.; Cox, L.S. Isolation and characterization of a cAMP-dependent protein kinase catalytic subunit gene from Plasmodium falciparum. Mol. Biochem. Parasitol. 2000, 109, 157–163. [Google Scholar] [CrossRef]
- Leykauf, L.; Treeck, M.; Gilson, P.R.; Nebl, T.; Braulke, T.; Cowman, A.F.; Gilberger, T.W.; Crabb, B.S. Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLoS Pathog. 2010, 6, e1000941. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, G.; Naissant, B.; Thompson, E.; Breil, F.; Lorthiois, A.; Dupuy, F.; Cummings, R.; Duffier, Y.; Corbett, Y.; Mercereau-Puijalon, O.; et al. cAMP-signaling regulates gametocyte infected erythrocyte deformability required for malaria parasite transmission. PLoS Pathog. 2015, 11, e1004815. [Google Scholar] [CrossRef]
- Hirai, M.; Arai, M.; Kawai, S.; Matsouka, H. PbGCbeta is essential for Plasmodium ookinete motility to invade midgut cell and for successful completion of parasite cycle in mosquitoes. J. Biochem. 2006, 140, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, F.; Fujioka, H.; Murakami, R.; Syafruddin, H.M.; Ishikawa, T.; Hidaka, H. The roles of Ca2+, calmodulin- and cGMP-dependent pathways in gametogenesis of a rodent malaria parasite, Plasmodium berghei. Eur. J. Cell Biol. 1993, 60, 101–107. [Google Scholar] [PubMed]
- Buskes, M.J.; Harvey, K.L.; Prinz, B.; Crabb, B.S.; Gilson, P.R.; Wilson, D.J.; Abbott, B.M. Exploration of 3-methylisoquinoline-4-carbonitriles as protein kinase A inhibitors of Plasmodium falciparum. Bioorg. Med. Chem. 2016, 24, 2389–2396. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, T.; Liniger, M.; Seebeck, T. The regulatory subunit of a cGMP-regulated protein kinase A of Trypanosoma brucei. Eur. J. Biochem. 2001, 268, 6197–6206. [Google Scholar] [CrossRef] [PubMed]
- Siman-Tov, M.M.; Ivens, A.C.; Jaffe, C.L. Molecular cloning and characterization of two new isoforms of the protein kinase A catalytic subunit from the human parasite Leishmania. Gene 2012, 288, 65–75. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Biswas, A.; Das, P.K. Identification of a protein kinase A regulatory subunit from Leishmania having importance in metacyclogenesis through induction of autophagy. Mol. Microbiol. 2012, 83, 548–564. [Google Scholar] [CrossRef] [Green Version]
- Lavogina, D.; Budu, A.; Enkvist, E.; Hopp, C.S.; Baker, D.A.; Langsley, G.; Garcia, C.R.; Uri, A. Targeting Plasmodium falciparum protein kinases with adenosine analogue-oligoarginine conjugates. Exp. Parasitol. 2014, 138, 55–62. [Google Scholar] [CrossRef]
- Kurokawa, H.; Kato, K.; Iwanaga, T.; Sugi, T.; Sudo, A.; Kobayashi, K.; Gong, H.; Takemae, H.; Recuenco, F.C.; Horimoto, T.; et al. Identification of Toxoplasma gondii cAMP dependent protein kinase and its role in the tachyzoite growth. PLoS ONE 2011, 6, e22492. [Google Scholar] [CrossRef]
- Sugi, T.; Ma, Y.F.; Tomita, T.; Murakoshi, F.; Eaton, M.S.; Yakubu, R.; Han, B.; Tu, V.; Kato, K.; Kawazu, S. Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development. mBio 2016, 31, 7. [Google Scholar] [CrossRef]
- Makin, L.; Gluenz, E. cAMP signalling in trypanosomatids: Role in pathogenesis as a drug target. Trends Parasitol. 2015, 31, 373–379. [Google Scholar] [CrossRef]
- Santara, S.S. Globin-coupled heme containing oxygen sensor soluble adenylate cyclase in Leishmania prevents cell death during hypoxia. Proc. Natl. Acad. Sci. USA 2013, 110, 16790–16795. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, A. Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. Int. J. Mol. Sci. 2019, 20, 138. https://doi.org/10.3390/ijms20010138
Kaiser A. Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. International Journal of Molecular Sciences. 2019; 20(1):138. https://doi.org/10.3390/ijms20010138
Chicago/Turabian StyleKaiser, Annette. 2019. "Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans" International Journal of Molecular Sciences 20, no. 1: 138. https://doi.org/10.3390/ijms20010138
APA StyleKaiser, A. (2019). Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. International Journal of Molecular Sciences, 20(1), 138. https://doi.org/10.3390/ijms20010138