P3HT:Bebq2-Based Photovoltaic Device Enhances Differentiation of hiPSC-Derived Retinal Ganglion Cells
Abstract
:1. Introduction
2. Results
2.1. Development and Characterization of High Efficiency Solar Cell-Like Polymeric Materials
2.2. Development of a Three-Dimensional (3D) Culture System in the Purpose of Investigating iPSCs-Induced RGC Cells in an Accurate Representation of the In Vivo Environment and Study the Cultured RGC Cells on Multi-Color Absorption Solar Cell-Like Device
2.3. Differentiation of hiPSCs into Retinal Ganglion Cells (RGCs)
2.4. Design and Testing of Solar Cell-Like Device
2.5. White Light Induces Photocurrent in P3HT:Bebq2 Solar Cell-Like Device
2.6. P3HT:Bebq2 Solar Cell-Like Device Stimulates Differentiation of Retinal Progenitors into RGCs
3. Discussion
4. Materials and Methods
4.1. Differentiation of hiPSCs into OVs
4.2. Differentiation of OVs into RGCs
4.3. Immunofluorescence Staining
4.4. Preparation of the Solar Cell-Like Device
4.5. Photostimulation
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RGCs | Retinal ganglion cells |
hiPSC | Human induced pluripotent stem cells |
EBs | Embryoid bodies |
OVs | Optic vesicles |
NRs | Neural rosettes |
P3HT | Poly(3-hexylthiophene) |
Alq3 | Tris-(8-hydroxyquinoline)aluminum |
BeBq2 | Bis(10-hydroxybenzo[h]quinolinato)beryllium |
PCBM | Phenyl-C61-butyric acid methyl ester |
PEDOT:PSS | poly(3,4-ethylenedioxythiophene) polystyrene sulfonate |
ITO | Indium tin oxide |
BH | Bulk heterojunction |
PBS | Phosphate buffered saline |
SFEBq | Serum-free floating culture of embryoid body-like aggregate with quick reggregation |
DAPI | 4′,6-diamidino-2-phenylindole |
FBS | Fetal bovine serum |
RDM | Retinal differentiation medium |
NIM | Neural Induction Medium |
DMEM/F12 | Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 |
NEAA | Non-Essential Amino Acids |
PDL | poly-D-Lysine |
GAPDH | Glyceraldehyde-3-Phosphate Dehydrogenase |
LED | Light-emitting diode |
References
- McCaig, C.D.; Song, B.; Rajnicek, A.M. Electrical dimensions in cell science. J. Cell Sci. 2009, 122, 4267–4276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, M. Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell 2014, 25, 3835–3850. [Google Scholar] [CrossRef] [PubMed]
- Borgens, R.; Roederer, E.; Cohen, M. Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 1981, 213, 611–617. [Google Scholar] [CrossRef]
- Borgens, R.B.; Toombs, J.P.; Breur, G.; Widmer, W.R.; Waters, D.; Harbath, A.M.; March, P.; Adams, L.G. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J. Neurotrauma 1999, 16, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.; Borgens, R.; Pascuzzi, R.; Roos, K.; Groff, M.; Purvines, S.; Rodgers, R.B.; Hagy, S.; Nelson, P. Oscillating field stimulation for complete spinal cord injury in humans: A phase 1 trial. J. Neurosurg. Spine 2005, 2, 3–10. [Google Scholar] [CrossRef]
- Shapiro, S. A review of oscillating field stimulation to treat human spinal cord injury. World Neurosurg. 2014, 81, 830–835. [Google Scholar] [CrossRef]
- Yamada, M.; Tanemura, K.; Okada, S.; Iwanami, A.; Nakamura, M.; Mizuno, H.; Ozawa, M.; Ohyama-Goto, R.; Kitamura, N.; Kawano, M.; et al. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 2007, 25, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Tandon, N.; Cimetta, E.; Taubman, A.; Kupferstein, N.; Madaan, U.; Mighty, J.; Redenti, S.; Vunjak-Novakovic, G. Biomimetic electrical stimulation platform for neural differentiation of retinal progenitor cells. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 5666–5669. [Google Scholar] [Green Version]
- Goetz, G.A.; Palanker, D.V. Electronic approaches to restoration of sight. Rep. Prog. Phys. 2016, 79, 096701. [Google Scholar] [CrossRef]
- Mathieson, K.; Loudin, J.; Goetz, G.; Huie, P.; Wang, L.; Kamins, T.I.; Galambos, L.; Smith, R.; Harris, J.S.; Sher, A.; et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 2012, 6, 391–397. [Google Scholar] [CrossRef]
- Lorach, H.; Goetz, G.; Smith, R.; Lei, X.; Mandel, Y.; Kamins, T.; Mathieson, K.; Huie, P.; Harris, J.; Sher, A.; et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 2015, 21, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, V.; Rand, D.; Hanein, Y.; Narayan, K.S. A polymer optoelectronic interface provides visual cues to a blind retina. Adv. Mater. 2014, 26, 1751–1756. [Google Scholar] [CrossRef]
- Gautam, V.; Narayan, K.S. Polymer optoelectronic structures for retinal prosthesis. Organogenesis 2014, 10, 9–12. [Google Scholar] [CrossRef]
- Ghezzi, D.; Antognazza, M.R.; Dal Maschio, M.; Lanzarini, E.; Benfenati, F.; Lanzani, G. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2011, 2, 166. [Google Scholar] [CrossRef]
- Zhang, Y.; Basel, T.P.; Gautam, B.R.; Yang, X.; Mascaro, D.J.; Liu, F.; Vardeny, Z.V. Spin-enhanced organic bulk heterojunction photovoltaic solar cells. Nat. Commun. 2012, 3, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghezzi, D.; Antognazza, M.R.; Maccarone, R.; Bellani, S.; Lanzarini, E.; Martino, N.; Mete, M.; Pertile, G.; Bisti, S.; Lanzani, G.; et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 2013, 7, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Pires, F.; Ferreira, Q.; Rodrigues, C.A.; Morgado, J.; Ferreira, F.C. Neural stem cell differentiation by electrical stimulation using a cross-linked pedot substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta 2015, 1850, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Bosse, B.; Damle, S.; Akinin, A.; Jing, Y.; Bartsch, D.U.; Cheng, L.; Oesch, N.; Lo, Y.H.; Cauwenberghs, G.; Freeman, W.R. In vivo photovoltaic performance of a silicon nanowire photodiode-based retinal prosthesis. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5885–5892. [Google Scholar] [CrossRef]
- Ohlemacher, S.K.; Sridhar, A.; Xiao, Y.; Hochstetler, A.E.; Sarfarazi, M.; Cummins, T.R.; Meyer, J.S. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells 2016, 34, 1553–1562. [Google Scholar] [CrossRef]
- Chen, H.Y.; Kaya, K.D.; Dong, L.; Swaroop, A. Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation. Mol. Vis. 2016, 22, 1077–1094. [Google Scholar] [PubMed]
- Fligor, C.M.; Langer, K.B.; Sridhar, A.; Ren, Y.; Shields, P.K.; Edler, M.C.; Ohlemacher, S.K.; Sluch, V.M.; Zack, D.J.; Zhang, C.; et al. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci. Rep. 2018, 8, 14520. [Google Scholar] [CrossRef]
- Moshiri, A.; Gonzalez, E.; Tagawa, K.; Maeda, H.; Wang, M.; Frishman, L.J.; Wang, S.W. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev. Biol. 2008, 316, 214–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, Y.S.; Liao, Y.H.; Chen, H.L.; Chen, P.; Chen, F.C. Organic photovoltaics and bioelectrodes providing electrical stimulation for pc12 cell differentiation and neurite outgrowth. ACS Appl. Mater. Interfaces 2016, 8, 9275–9284. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Oh, J.Y.; Lee, J.S.; Jin, Y.; Chang, G.E.; Chae, S.S.; Cheong, E.; Baik, H.K.; Cho, S.W. Photoactive poly(3-hexylthiophene) nanoweb for optoelectrical stimulation to enhance neurogenesis of human stem cells. Theranostics 2017, 7, 4591–4604. [Google Scholar] [CrossRef] [PubMed]
- Tortiglione, C.; Antognazza, M.R.; Tino, A.; Bossio, C.; Marchesano, V.; Bauduin, A.; Zangoli, M.; Morata, S.V.; Lanzani, G. Semiconducting polymers are light nanotransducers in eyeless animals. Sci. Adv. 2017, 3, e1601699. [Google Scholar] [CrossRef] [PubMed]
- Bossio, C.; Abdel Aziz, I.; Tullii, G.; Zucchetti, E.; Debellis, D.; Zangoli, M.; Di Maria, F.; Lanzani, G.; Antognazza, M.R. Photocatalytic activity of polymer nanoparticles modulates intracellular calcium dynamics and reactive oxygen species in hek-293 cells. Front. Bioeng. Biotechnol. 2018, 6. [Google Scholar] [CrossRef]
- Lin, T.W.; Chien, Y.; Lin, Y.Y.; Wang, M.L.; Yarmishyn, A.A.; Yang, Y.P.; Hwang, D.K.; Peng, C.H.; Hsu, C.C.; Chen, S.J.; et al. Establishing liposome-immobilized dexamethasone-releasing pdms membrane for the cultivation of retinal pigment epithelial cells and suppression of neovascularization. Int. J. Mol. Sci. 2019, 20, 241. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-C.; Lin, Y.-Y.; Yang, T.-C.; Yarmishyn, A.A.; Lin, T.-W.; Chang, Y.-L.; Hwang, D.-K.; Wang, C.-Y.; Liu, Y.-Y.; Lo, W.-L.; et al. P3HT:Bebq2-Based Photovoltaic Device Enhances Differentiation of hiPSC-Derived Retinal Ganglion Cells. Int. J. Mol. Sci. 2019, 20, 2661. https://doi.org/10.3390/ijms20112661
Hsu C-C, Lin Y-Y, Yang T-C, Yarmishyn AA, Lin T-W, Chang Y-L, Hwang D-K, Wang C-Y, Liu Y-Y, Lo W-L, et al. P3HT:Bebq2-Based Photovoltaic Device Enhances Differentiation of hiPSC-Derived Retinal Ganglion Cells. International Journal of Molecular Sciences. 2019; 20(11):2661. https://doi.org/10.3390/ijms20112661
Chicago/Turabian StyleHsu, Chih-Chen, Yi-Ying Lin, Tien-Chun Yang, Aliaksandr A. Yarmishyn, Tzu-Wei Lin, Yuh-Lih Chang, De-Kuang Hwang, Chien-Ying Wang, Yung-Yang Liu, Wen-Liang Lo, and et al. 2019. "P3HT:Bebq2-Based Photovoltaic Device Enhances Differentiation of hiPSC-Derived Retinal Ganglion Cells" International Journal of Molecular Sciences 20, no. 11: 2661. https://doi.org/10.3390/ijms20112661
APA StyleHsu, C. -C., Lin, Y. -Y., Yang, T. -C., Yarmishyn, A. A., Lin, T. -W., Chang, Y. -L., Hwang, D. -K., Wang, C. -Y., Liu, Y. -Y., Lo, W. -L., Peng, C. -H., Chen, S. -J., & Yang, Y. -P. (2019). P3HT:Bebq2-Based Photovoltaic Device Enhances Differentiation of hiPSC-Derived Retinal Ganglion Cells. International Journal of Molecular Sciences, 20(11), 2661. https://doi.org/10.3390/ijms20112661