Migraine: Experimental Models and Novel Therapeutic Approaches
Abstract
:1. Introduction
2. Pharmacological Targets in Migraine Treatment: 5-HT and CGRP Receptors
3. Animal Models of Migraine
4. New Therapeutic Strategies in Experimental Models
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AEs | Adverse Effects |
SC | Subcutaneous |
IV | Intravenous |
IP | Intraperitoneal |
IG | Intragastrically |
URI | Upper Respiratory Infection |
UTI | Urinary Tract Infection |
EM | Episodic Migraine |
CM | Chronic Migraine |
TGVS | Trigeminovascular System |
TNC | Trigeminal nucleus caudalis |
CGRP | Calcitonin gene-related peptide |
DHE | Dihydroergotamine |
5-HT | Serotonin |
CNS | Central nervous system |
DRG | Dorsal root ganglia |
TG | Trigeminal ganglion |
TCC | Trigeminocervical complex |
CLR | Calcitonin receptor-like receptor |
RAMP1 | Receptor activity-modifying protein 1 |
RCP | Receptor component protein |
mAbs | Monoclonal antibodies |
PGE | Prostaglandin |
BBB | Blood-brain-barrier |
NTG | Nitroglycerin |
MOH | Medication overuse headache |
FHM | Familial hemiplegic migraine |
KI | Knock-in |
CSD | Cortical spreading depression |
DOR | Delta opioid receptor |
PTH | Post-traumatic headache |
OIH | Opioid-induced hyperalgesia |
PPE | Plasma protein extravasation |
RB-SLNs | Rizatriptan benzoate-loaded solid lipid nanoparticles |
ZNPs | Zolmitriptan nanoparticles |
SS | Sumatriptan succinate |
SLN | Solid lipid nanoparticles |
NPs | Nanoparticles |
PBCA | Poly (butyl cyanoacrylate) |
BSA-ApoE | Bovine serum albumin linked with apolipoprotein E3 |
Gas | Gastrodin |
References
- Goadsby, P.J.; Lipton, R.B.; Ferrari, M.D. Migraine–current understanding and treatment. N. Engl. J. Med. 2002, 346, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Headache Classification Committee of the International Headache Society. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia Int. J. Headache 2013, 33, 629–808. [Google Scholar] [CrossRef] [PubMed]
- Buse, D.C.; Greisman, J.D.; Baigi, K.; Lipton, R.B. Migraine progression: A systematic review. Headache 2018, 59, 306–338. [Google Scholar] [CrossRef] [PubMed]
- Charles, A. The evolution of a migraine attack—A review of recent evidence. Headache 2013, 53, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Noseda, R.; Burstein, R. Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, csd, sensitization and modulation of pain. Pain 2013, 154 (Suppl. 1), S44–S53. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.D.; Holland, S.; Freitag, F.; Dodick, D.W.; Argoff, C.; Ashman, E. Evidence-based guideline update: Pharmacologic treatment for episodic migraine prevention in adults: Report of the quality standards subcommittee of the american academy of neurology and the american headache society. Neurology 2012, 78, 1337–1345. [Google Scholar] [CrossRef]
- Pringsheim, T.; Davenport, W.J.; Marmura, M.J.; Schwedt, T.J.; Silberstein, S. How to apply the ahs evidence assessment of the acute treatment of migraine in adults to your patient with migraine. Headache 2016, 56, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Bigal, M.E.; Serrano, D.; Buse, D.; Scher, A.; Stewart, W.F.; Lipton, R.B. Acute migraine medications and evolution from episodic to chronic migraine: A longitudinal population-based study. Headache 2008, 48, 1157–1168. [Google Scholar] [CrossRef]
- Akerman, S.; Holland, P.R.; Goadsby, P.J. Diencephalic and brainstem mechanisms in migraine. Nat. Rev. Neurosci. 2011, 12, 570–584. [Google Scholar] [CrossRef]
- Pietrobon, D.; Moskowitz, M.A. Pathophysiology of migraine. Annu. Rev. Physiol. 2013, 75, 365–391. [Google Scholar] [CrossRef]
- Gupta, S.; Villalon, C.M. The relevance of preclinical research models for the development of antimigraine drugs: Focus on 5-HT(1B/1D) and cgrp receptors. Pharmacol. Ther. 2010, 128, 170–190. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 20 May 2019).
- Kalra, A.A.; Elliott, D. Acute migraine: Current treatment and emerging therapies. Ther. Clin. Risk Manag. 2007, 3, 449–459. [Google Scholar] [PubMed]
- Toldo, I.; De Carlo, D.; Bolzonella, B.; Sartori, S.; Battistella, P.A. The pharmacological treatment of migraine in children and adolescents: An overview. Expert Rev. Neurother. 2012, 12, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.L. Migraine overview and summary of current and emerging treatment options. Am. J. Manag. Care 2019, 25, S23–S34. [Google Scholar] [PubMed]
- Dahlstroem, A.; Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl. 1964, 232, 231–255. [Google Scholar]
- Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008, 195, 198–213. [Google Scholar] [CrossRef]
- Hoyer, D.; Humphrey, P.P. Nomenclature and classification of transmitter receptors: An integrated approach. J. Recept. Signal Transduct. Res. 1997, 17, 551–568. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.R.; De Vries, P.; Heiligers, J.P.; Bax, W.A.; Maassen VanDenBrink, A.; Yocca, F.D. Bms-181885, a 5-HT1B/1D receptor ligand, in experimental models predictive of antimigraine activity and coronary side-effect potential. Eur. J. Pharmacol. 1998, 351, 329–339. [Google Scholar] [CrossRef]
- Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 1994, 46, 157–203. [Google Scholar] [PubMed]
- Villalon, C.M.; Centurion, D.; Valdivia, L.F.; De Vries, P.; Saxena, P.R. An introduction to migraine: From ancient treatment to functional pharmacology and antimigraine therapy. Proc. West. Pharmacol. Soc. 2002, 45, 199–210. [Google Scholar]
- Tfelt-Hansen, P.; De Vries, P.; Saxena, P.R. Triptans in migraine: A comparative review of pharmacology, pharmacokinetics and efficacy. Drugs 2000, 60, 1259–1287. [Google Scholar] [CrossRef] [PubMed]
- Chugani, D.C.; Niimura, K.; Chaturvedi, S.; Muzik, O.; Fakhouri, M.; Lee, M.L.; Chugani, H.T. Increased brain serotonin synthesis in migraine. Neurology 1999, 53, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Nagata, E.; Shibata, M.; Hamada, J.; Shimizu, T.; Katoh, Y.; Gotoh, K.; Suzuki, N. Plasma 5-hydroxytryptamine (5-HT) in migraine during an attack-free period. Headache 2006, 46, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Deen, M.; Hougaard, A.; Hansen, H.D.; Svarer, C.; Eiberg, H.; Lehel, S.; Knudsen, G.M.; Ashina, M. Migraine is associated with high brain 5-ht levels as indexed by 5-HT4 receptor binding. Cephalalgia Int. J. Headache 2019, 39, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.G.; Arriza, J.L.; Leff, S.E.; Swanson, L.W.; Evans, R.M.; Rosenfeld, M.G. Expression in brain of a messenger rna encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 1985, 229, 1094–1097. [Google Scholar] [CrossRef]
- Brain, S.D.; Grant, A.D. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev. 2004, 84, 903–934. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.G.; Mermod, J.J.; Amara, S.G.; Swanson, L.W.; Sawchenko, P.E.; Rivier, J.; Vale, W.W.; Evans, R.M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific rna processing. Nature 1983, 304, 129–135. [Google Scholar] [CrossRef]
- Tsai, S.H.; Tew, J.M.; McLean, J.H.; Shipley, M.T. Cerebral arterial innervation by nerve fibers containing calcitonin gene-related peptide (CGRP): I. Distribution and origin of cgrp perivascular innervation in the rat. J. Comp. Neurol. 1988, 271, 435–444. [Google Scholar] [CrossRef]
- Edvinsson, L.; Gulbenkian, S.; Barroso, C.P.; Cunha e Sa, M.; Polak, J.M.; Mortensen, A.; Jorgensen, L.; Jansen-Olesen, I. Innervation of the human middle meningeal artery: Immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides 1998, 19, 1213–1225. [Google Scholar] [CrossRef]
- Tajti, J.; Uddman, R.; Moller, S.; Sundler, F.; Edvinsson, L. Messenger molecules and receptor mrna in the human trigeminal ganglion. J. Auton. Nerv. Syst. 1999, 76, 176–183. [Google Scholar] [CrossRef]
- Eftekhari, S.; Salvatore, C.A.; Calamari, A.; Kane, S.A.; Tajti, J.; Edvinsson, L. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 2010, 169, 683–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hokfelt, T.; Arvidsson, U.; Ceccatelli, S.; Cortes, R.; Cullheim, S.; Dagerlind, A.; Johnson, H.; Orazzo, C.; Piehl, F.; Pieribone, V.; et al. Calcitonin gene-related peptide in the brain, spinal cord, and some peripheral systems. Ann. N. Y. Acad. Sci. 1992, 657, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, D.; Hanisch, U.K.; Quirion, R. Neuroanatomical localization, pharmacological characterization and functions of cgrp, related peptides and their receptors. Neurosci. Biobehav. Rev. 1997, 21, 649–678. [Google Scholar] [CrossRef]
- Storer, R.J.; Akerman, S.; Goadsby, P.J. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br. J. Pharmacol. 2004, 142, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Goadsby, P.J. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol. Med. 2007, 13, 39–44. [Google Scholar] [CrossRef]
- Aiyar, N.; Rand, K.; Elshourbagy, N.A.; Zeng, Z.; Adamou, J.E.; Bergsma, D.J.; Li, Y. A cdna encoding the calcitonin gene-related peptide type 1 receptor. J. Boil. Chem. 1996, 271, 11325–11329. [Google Scholar] [CrossRef] [PubMed]
- McLatchie, L.M.; Fraser, N.J.; Main, M.J.; Wise, A.; Brown, J.; Thompson, N.; Solari, R.; Lee, M.G.; Foord, S.M. Ramps regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998, 393, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Chabot, J.G.; Powell, K.J.; Jhamandas, K.; Dickerson, I.M.; Quirion, R. Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience 2003, 120, 677–694. [Google Scholar] [CrossRef]
- Oliver, K.R.; Wainwright, A.; Edvinsson, L.; Pickard, J.D.; Hill, R.G. Immunohistochemical localization of calcitonin receptor-like receptor and receptor activity-modifying proteins in the human cerebral vasculature. J. Cereb. Blood Flow Metab. 2002, 22, 620–629. [Google Scholar] [CrossRef]
- Lennerz, J.K.; Ruhle, V.; Ceppa, E.P.; Neuhuber, W.L.; Bunnett, N.W.; Grady, E.F.; Messlinger, K. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. J. Comp. Neurol. 2008, 507, 1277–1299. [Google Scholar] [CrossRef]
- Tepper, S.J. History and review of anti-calcitonin gene-related peptide (CGRP) therapies: From translational research to treatment. Headache 2018, 58 (Suppl. 3), 238–275. [Google Scholar] [CrossRef] [PubMed]
- Lattanzi, S.; Brigo, F.; Trinka, E.; Vernieri, F.; Corradetti, T.; Dobran, M.; Silvestrini, M. Erenumab for preventive treatment of migraine: A systematic review and meta-analysis of efficacy and safety. Drugs 2019, 79, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Dodick, D.W.; Ashina, M.; Brandes, J.L.; Kudrow, D.; Lanteri-Minet, M.; Osipova, V.; Palmer, K.; Picard, H.; Mikol, D.D.; Lenz, R.A. Arise: A phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia Int. J. Headache 2018, 38, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Dodick, D.W.; Silberstein, S.D.; Bigal, M.E.; Yeung, P.P.; Goadsby, P.J.; Blankenbiller, T.; Grozinski-Wolff, M.; Yang, R.; Ma, Y.; Aycardi, E. Effect of fremanezumab compared with placebo for prevention of episodic migraine: A randomized clinical trial. Jama 2018, 319, 1999–2008. [Google Scholar] [CrossRef]
- Skljarevski, V.; Matharu, M.; Millen, B.A.; Ossipov, M.H.; Kim, B.K.; Yang, J.Y. Efficacy and safety of galcanezumab for the prevention of episodic migraine: Results of the evolve-2 phase 3 randomized controlled clinical trial. Cephalalgia Int. J. Headache 2018, 38, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Chen, D.; Zhu, L.N.; Tan, G.; Wang, H.J.; Zhang, Y.; Liu, L. Safety and tolerability of calcitonin-gene-related peptide binding monoclonal antibodies for the prevention of episodic migraine—A meta-analysis of randomized controlled trials. Cephalalgia Int. J. Headache 2019. [Google Scholar] [CrossRef] [PubMed]
- Biohaven Pharmaceuticals. Rimegepant. Available online: biohavenpharma.com/rimegepant-for-acute-treatment-ofmigraine (accessed on 25 October 2018).
- Biohaven Announces Robust Clinical Data with Single Dose Rimegepant That Defines Acute and Durable Benefits to Patients: The First Oral CGRP Receptor Antagonist to Deliver Positive Data on Pain Freedom and Most Bothersome Symptom in Two Pivotal Phase 3 Trials in Acute Treatment of Migraine [News Release]; Biohaven Pharmaceuticals: Los Angeles, CA, USA, 2018; Available online: www.biohavenpharma.com/investors/newsevents/press-releases/04-23-2018 (accessed on 25 October 2018).
- Martelletti, P.; Giamberardino, M.A. Advances in orally administered pharmacotherapy for the treatment of migraine. Expert Opin. Pharmacother. 2019, 20, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Kuca, B.; Silberstein, S.D.; Wietecha, L.; Berg, P.H.; Dozier, G.; Lipton, R.B.; Group, C.M.-S. Lasmiditan is an effective acute treatment for migraine: A phase 3 randomized study. Neurology 2018, 91, e2222–e2232. [Google Scholar] [CrossRef] [PubMed]
- Andreou, A.P.; Summ, O.; Charbit, A.R.; Romero-Reyes, M.; Goadsby, P.J. Animal models of headache: From bedside to bench and back to bedside. Expert Rev. Neurother. 2010, 10, 389–411. [Google Scholar] [CrossRef]
- Olesen, J.; Burstein, R.; Ashina, M.; Tfelt-Hansen, P. Origin of pain in migraine: Evidence for peripheral sensitisation. Lancet Neurol. 2009, 8, 679–690. [Google Scholar] [CrossRef]
- Bogduk, N. Anatomy and physiology of headache. Biomed. Pharmacother. 1995, 49, 435–445. [Google Scholar] [CrossRef]
- Munro, G.; Jansen-Olesen, I.; Olesen, J. Animal models of pain and migraine in drug discovery. Drug Discov. Today 2017, 22, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Oshinsky, M.L.; Gomonchareonsiri, S. Episodic dural stimulation in awake rats: A model for recurrent headache. Headache 2007, 47, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Melo-Carrillo, A.; Lopez-Avila, A. A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia Int. J. Headache 2013, 33, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Boyer, N.; Dallel, R.; Artola, A.; Monconduit, L. General trigeminospinal central sensitization and impaired descending pain inhibitory controls contribute to migraine progression. Pain 2014, 155, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Bates, E.A.; Nikai, T.; Brennan, K.C.; Fu, Y.H.; Charles, A.C.; Basbaum, A.I.; Ptacek, L.J.; Ahn, A.H. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia Int. J. Headache 2010, 30, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Markovics, A.; Kormos, V.; Gaszner, B.; Lashgarara, A.; Szoke, E.; Sandor, K.; Szabadfi, K.; Tuka, B.; Tajti, J.; Szolcsanyi, J.; et al. Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol. Dis. 2012, 45, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Brennan, K.C.; Bates, E.A.; Shapiro, R.E.; Zyuzin, J.; Hallows, W.C.; Huang, Y.; Lee, H.Y.; Jones, C.R.; Fu, Y.H.; Charles, A.C.; et al. Casein kinase idelta mutations in familial migraine and advanced sleep phase. Sci. Transl. Med. 2013, 5, 183ra156. [Google Scholar] [CrossRef]
- Greco, R.; Meazza, C.; Mangione, A.S.; Allena, M.; Bolla, M.; Amantea, D.; Mizoguchi, H.; Sandrini, G.; Nappi, G.; Tassorelli, C. Temporal profile of vascular changes induced by systemic nitroglycerin in the meningeal and cortical districts. Cephalalgia Int. J. Headache 2011, 31, 190–198. [Google Scholar] [CrossRef]
- Moye, L.S.; Pradhan, A.A.A. Animal model of chronic migraine-associated pain. Curr. Protoc. Neurosci. 2017, 80, 9–60. [Google Scholar]
- Tipton, A.F.; Tarash, I.; McGuire, B.; Charles, A.; Pradhan, A.A. The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia Int. J. Headache 2016, 36, 1048–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdener, S.E.; Dalkara, T. Modelling headache and migraine and its pharmacological manipulation. Br. J. Pharmacol. 2014, 171, 4575–4594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Felice, M.; Ossipov, M.H.; Wang, R.; Lai, J.; Chichorro, J.; Meng, I.; Dodick, D.W.; Vanderah, T.W.; Dussor, G.; Porreca, F. Triptan-induced latent sensitization: A possible basis for medication overuse headache. Ann. Neurol. 2010, 67, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Kopruszinski, C.M.; Xie, J.Y.; Eyde, N.M.; Remeniuk, B.; Walter, S.; Stratton, J.; Bigal, M.; Chichorro, J.G.; Dodick, D.; Porreca, F. Prevention of stress- or nitric oxide donor-induced medication overuse headache by a calcitonin gene-related peptide antibody in rodents. Cephalalgia Int. J. Headache 2017, 37, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Romero-Reyes, M.; Akerman, S. Update on animal models of migraine. Curr. Pain Headache Rep. 2014, 18, 462. [Google Scholar] [CrossRef]
- Chen, S.P.; Tolner, E.A.; Eikermann-Haerter, K. Animal models of monogenic migraine. Cephalalgia Int. J. Headache 2016, 36, 704–721. [Google Scholar] [CrossRef] [Green Version]
- Tolner, E.A.; Houben, T.; Terwindt, G.M.; de Vries, B.; Ferrari, M.D.; van den Maagdenberg, A.M. From migraine genes to mechanisms. Pain 2015, 156 (Suppl. 1), S64–S74. [Google Scholar] [CrossRef]
- Van den Maagdenberg, A.M.; Pietrobon, D.; Pizzorusso, T.; Kaja, S.; Broos, L.A.; Cesetti, T.; van de Ven, R.C.; Tottene, A.; van der Kaa, J.; Plomp, J.J.; et al. A cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004, 41, 701–710. [Google Scholar] [CrossRef]
- Van den Maagdenberg, A.M.; Pizzorusso, T.; Kaja, S.; Terpolilli, N.; Shapovalova, M.; Hoebeek, F.E.; Barrett, C.F.; Gherardini, L.; van de Ven, R.C.; Todorov, B.; et al. High cortical spreading depression susceptibility and migraine-associated symptoms in ca(v)2.1 s218l mice. Ann. Neurol. 2010, 67, 85–98. [Google Scholar] [CrossRef]
- Leo, L.; Gherardini, L.; Barone, V.; De Fusco, M.; Pietrobon, D.; Pizzorusso, T.; Casari, G. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011, 7, e1002129. [Google Scholar] [CrossRef]
- Mathew, R.; Andreou, A.P.; Chami, L.; Bergerot, A.; van den Maagdenberg, A.M.; Ferrari, M.D.; Goadsby, P.J. Immunohistochemical characterization of calcitonin gene-related peptide in the trigeminal system of the familial hemiplegic migraine 1 knock-in mouse. Cephalalgia Int. J. Headache 2011, 31, 1368–1380. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Moon, H.; Akerman, S.; Holland, P.R.; Lasalandra, M.P.; Andreou, A.P.; Ferrari, M.D.; van den Maagdenberg, A.M.; Goadsby, P.J. Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: A fos protein study. Neurobiol. Dis. 2014, 64, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; Clarke, S.E.; Drummond, T.E.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; Lacroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M.L.; Tuttle, A.H.; Baran, I.; Atlin, C.; Guindi, D.; Hathaway, G.; Israelian, N.; Levenstadt, J.; Low, D.; Macrae, L.; et al. Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic cacna1a mutant mice. Pain 2013, 154, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Oshinsky, M.L.; Sanghvi, M.M.; Maxwell, C.R.; Gonzalez, D.; Spangenberg, R.J.; Cooper, M.; Silberstein, S.D. Spontaneous trigeminal allodynia in rats: A model of primary headache. Headache 2012, 52, 1336–1349. [Google Scholar] [CrossRef]
- Rasmussen, B.K.; Olesen, J. Migraine with aura and migraine without aura: An epidemiological study. Cephalalgia Int. J. Headache 1992, 12, 221–228, discussion 186. [Google Scholar] [CrossRef] [PubMed]
- Eikermann-Haerter, K.; Moskowitz, M.A. Animal models of migraine headache and aura. Curr. Opin. Neurol. 2008, 21, 294–300. [Google Scholar] [CrossRef]
- Bolay, H.; Reuter, U.; Dunn, A.K.; Huang, Z.; Boas, D.A.; Moskowitz, M.A. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 2002, 8, 136–142. [Google Scholar] [CrossRef]
- Cui, Y.; Toyoda, H.; Sako, T.; Onoe, K.; Hayashinaka, E.; Wada, Y.; Yokoyama, C.; Onoe, H.; Kataoka, Y.; Watanabe, Y. A voxel-based analysis of brain activity in high-order trigeminal pathway in the rat induced by cortical spreading depression. NeuroImage 2015, 108, 17–22. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Zhao, M.; Tang, W.; Wang, X.; Dong, Z.; Yu, S. Depression and anxiety behaviour in a rat model of chronic migraine. J. Headache Pain 2017, 18, 27. [Google Scholar] [CrossRef]
- Stucky, N.L.; Gregory, E.; Winter, M.K.; He, Y.Y.; Hamilton, E.S.; McCarson, K.E.; Berman, N.E. Sex differences in behavior and expression of cgrp-related genes in a rodent model of chronic migraine. Headache 2011, 51, 674–692. [Google Scholar] [CrossRef] [PubMed]
- Sufka, K.J.; Staszko, S.M.; Johnson, A.P.; Davis, M.E.; Davis, R.E.; Smitherman, T.A. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J. Headache Pain 2016, 17, 40. [Google Scholar] [CrossRef]
- Pradhan, A.A.; Smith, M.L.; McGuire, B.; Tarash, I.; Evans, C.J.; Charles, A. Characterization of a novel model of chronic migraine. Pain 2014, 155, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Yeo, J.H.; Yoon, S.Y.; Kwon, S.G.; Lee, J.H.; Beitz, A.J.; Roh, D.H. Differential development of facial and hind paw allodynia in a nitroglycerin-induced mouse model of chronic migraine: Role of capsaicin sensitive primary afferents. Boil. Pharm. Bull. 2018, 41, 172–181. [Google Scholar] [CrossRef]
- De Felice, M.; Ossipov, M.H.; Wang, R.; Dussor, G.; Lai, J.; Meng, I.D.; Chichorro, J.; Andrews, J.S.; Rakhit, S.; Maddaford, S.; et al. Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers. Brain J. Neurol. 2010, 133, 2475–2488. [Google Scholar] [CrossRef] [PubMed]
- Green, A.L.; Gu, P.; De Felice, M.; Dodick, D.; Ossipov, M.H.; Porreca, F. Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache. Cephalalgia Int. J. Headache 2014, 34, 594–604. [Google Scholar] [CrossRef]
- Ayata, C.; Jin, H.; Kudo, C.; Dalkara, T.; Moskowitz, M.A. Suppression of cortical spreading depression in migraine prophylaxis. Ann. Neurol. 2006, 59, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, V.B.; Chauvel, V.; Multon, S.; Makarchuk, M.Y.; Schoenen, J. Preventive antimigraine drugs differentially affect kcl-induced cortical spreading depression in rat. Cephalalgia Int. J. Headache 2009, 29, 131. [Google Scholar]
- Moye, L.S.; Tipton, A.F.; Dripps, I.; Sheets, Z.; Crombie, A.; Violin, J.D.; Pradhan, A.A. Delta opioid receptor agonists are effective for multiple types of headache disorders. Neuropharmacology 2019, 148, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.A.; Smith, M.L.; Zyuzin, J.; Charles, A. Delta-opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br. J. Pharmacol. 2014, 171, 2375–2384. [Google Scholar] [CrossRef] [PubMed]
- Hoehlig, K.; Johnson, K.W.; Pryazhnikov, E.; Maasch, C.; Clemens-Smith, A.; Purschke, W.G.; Vauleon, S.; Buchner, K.; Jarosch, F.; Khiroug, L.; et al. A novel CGRP-neutralizing spiegelmer attenuates neurogenic plasma protein extravasation. Br. J. Pharmacol. 2015, 172, 3086–3098. [Google Scholar] [CrossRef] [PubMed]
- Girotra, P.; Singh, S.K. Multivariate optimization of rizatriptan benzoate-loaded solid lipid nanoparticles for brain targeting and migraine management. AAPS PharmSciTech 2017, 18, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Hansraj, G.P.; Singh, S.K.; Kumar, P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int. J. Boil. Macromol. 2015, 81, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Girotra, P.; Singh, S.K. A comparative study of orally delivered pbca and apoe coupled bsa nanoparticles for brain targeting of sumatriptan succinate in therapeutic management of migraine. Pharm. Res. 2016, 33, 1682–1695. [Google Scholar] [CrossRef] [PubMed]
- Girotra, P.; Singh, S.K.; Kumar, G. Development of zolmitriptan loaded plga/poloxamer nanoparticles for migraine using quality by design approach. Int. J. Boil. Macromol. 2016, 85, 92–101. [Google Scholar] [CrossRef]
- Girotra, P.; Thakur, A.; Kumar, A.; Singh, S.K. Identification of multi-targeted anti-migraine potential of nystatin and development of its brain targeted chitosan nanoformulation. Int. J. Boil. Macromol. 2017, 96, 687–696. [Google Scholar] [CrossRef]
- Wang, P.H.; Zhao, L.X.; Wan, J.Y.; Zhang, L.; Mao, X.N.; Long, F.Y.; Zhang, S.; Chen, C.; Du, J.R. Pharmacological characterization of a novel gastrodin derivative as a potential anti-migraine agent. Fitoterapia 2016, 109, 52–57. [Google Scholar] [CrossRef]
- Zhao, Y.; Martins-Oliveira, M.; Akerman, S.; Goadsby, P.J. Comparative effects of traditional chinese and western migraine medicines in an animal model of nociceptive trigeminovascular activation. Cephalalgia Int. J. Headache 2018, 38, 1215–1224. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, X.; Wu, H.; Zhang, M.; Hu, G.; Dong, Z.; Yu, S. Dynamic changes in cgrp, pacap, and pacap receptors in the trigeminovascular system of a novel repetitive electrical stimulation rat model: Relevant to migraine. Mol. Pain 2019, 15, 1744806918820452. [Google Scholar] [CrossRef]
- Tepper, S.J.; Rezai, A.; Narouze, S.; Steiner, C.; Mohajer, P.; Ansarinia, M. Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation. Headache 2009, 49, 983–989. [Google Scholar] [CrossRef]
- Barloese, M.C.; Jurgens, T.P.; May, A.; Lainez, J.M.; Schoenen, J.; Gaul, C.; Goodman, A.M.; Caparso, A.; Jensen, R.H. Cluster headache attack remission with sphenopalatine ganglion stimulation: Experiences in chronic cluster headache patients through 24 months. J. Headache Pain 2016, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Pei, P.; Liu, L.; Zhao, L.; Cui, Y.; Qu, Z.; Wang, L. Effect of electroacupuncture pretreatment at gb20 on behaviour and the descending pain modulatory system in a rat model of migraine. Acupunct. Med. J. Br. Med. Acupunct. Soc. 2016, 34, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Verkest, C.; Piquet, E.; Diochot, S.; Dauvois, M.; Lanteri-Minet, M.; Lingueglia, E.; Baron, A. Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br. J. Pharmacol. 2018, 175, 4154–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Cao, Y.Q. Over-expression of TRESK K+ channels reduces the excitability of trigeminal ganglion nociceptors. PLoS ONE 2014, 9, e87029. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, M.; Erdelyi, F.; Pergel, E.; Balint-Polonka, A.; Dobolyi, A.; Bozsaki, P.; Dux, M.; Kiraly, K.; Hegedus, T.; Czirjak, G.; et al. Chemically modified derivatives of the activator compound cloxyquin exert inhibitory effect on tresk (k2p18.1) background potassium channel. Mol. Pharmacol. 2019, 95, 652–660. [Google Scholar] [CrossRef] [PubMed]
Medication | Mechanism of Action | Potential Common Side Effects | Ref. |
---|---|---|---|
NSAIDs (nonsteroidal anti-inflammatory drugs) | Inhibition of the synthesis of prostanoids; cyclooxygenase enzymes (COX-1 and/or COX-2) inhibitors. | Nausea or vomiting, dyspepsia and diarrhea. | [13,14] |
Ergotamine and dihydroergotamine (DHE) | Agonist to: 5-HT -1B, -1D and -1F receptors; D -1, -2, dopamine receptors. Partial agonists to alpha -1A, -1B, 1D adrenergic receptors. | Nausea and vomiting. | [13,14] |
beta-blockers (metoprolol, propranolol, timolol) | beta -1, -2, -3, adrenergic receptors blockers. | Bradycardia, hypotension, nausea, diarrhea, bronchospasm, dyspnea, fatigue, insomnia, and dizziness. | [13,14] |
Triptans | Agonists to 5-HT -1B,1D receptors | Dizziness, fatigue, dry mouth, flushing, feeling hot or cold, chest pain. | [13,14] |
Opioids | Agonist µ opioid receptors | Constipation, itchiness, and nausea. | [13,14] |
Antiepileptic drugs (divalproex sodium, valproate sodium, topiramate) | Sodium channel blockade Calcium channel blockade GABA agonism/potentiation | Nausea, vomiting, dizziness, diarrhea, drowsiness, constipation and dry mouth. | [13,14] |
Antiemetics (metoclopramide, prochlorperazine) | Dopamine receptor antagonists (at D1, D2, D3 and D4 receptors) | Fatigue, constipation, ringing in the ears, dry mouth, restlessness, and muscle spasms. | [13,14] |
New Drugs | FDA Evaluation | Administration | Mechanism of Action | Dosage | Response to Treatment | Common AEs | Ref. |
---|---|---|---|---|---|---|---|
Erenumab | Approved | SC | IgG2 CGRP receptor blocker | 70 or 140 mg monthly | The percentage of patients with at least a 50% reduction in migraine days per month, was about 40% and 50% for both dosages in EM and CM. | Injection site pain, URI, fatigue, Nasopharyngitis, constipation, nausea. | [43,44] |
Fremanezumab | IgG2 CGRP ligand antagonist | 225 mg monthly or 675 mg every 3 months | For both dosages the percentage of patients with at least a 50% reduction in migraine days per month, was about 40% of CM and 45 % for EM. | Injection site erythema, injection site induration, diarrhea, anxiety, depression. | [45] | ||
Galcanezumab | IgG4 CGRP ligand antagonist | 240 mg loading dose (2 subsequent injections of 120 mg) | The percentage of patients with at least a 50% reduction in migraine days per month was about 30% of CM and 60 % for EM for both dosages. | Nasopharyngitis, URI, diarrhea, injection site pruritus, injection site erythema. | [46] | ||
Eptinezumab | Not yet approved | IV | IgG1 CGRP ligand antagonist | Dosage ranges 30 to 300 mg | For EM, decreased the average number of migraine-days (30 mg = −4.0; 100 mg = −3.9; and 300 mg = −4.3). For CM, the mean change in migraine days was −8.2 in the 300-mg group. | Nausea, influenza, dizziness, fatigue, URI, UTI. | [47] |
Rimegepant | Oral | CGRP receptor agonist | Dosage ranges 10 to 600 mg | At 2 h post dose, freedom from the most bothersome associated symptoms (MBS) and freedom from pain were reached. Improvements in functional disability were observed, with many patients reporting normal function. | Nausea, UTI. | [48,49] | |
Ubrogepant | CGRP receptor agonist | Dosage ranges 50 to 100 mg | For both doses, the percentage of patients free from pain at 2 h post administration was about 20% and the percentage of patients free from MBS at 2 h post administration was about 40%. In addition, phonophobia and photophobia resolution at 2 h post administration was reached. | Nausea, somnolence, dizziness. | [50] | ||
Lasmiditan | 5-HT1F receptor agonist | Dosage ranges 50 to 200 mg | The percentage of patients free from headache 2 h post dose was about 30% for 50 and 100 mg, and about 40% for 200 mg. The percentage of patients free from MBS 2 h post dose was about 40% and 45% for 50 and 100 mg, and about 50% for 200 mg. In addition, photophobia and phonophobia resolution was reached. | Dizziness, somnolence, paresthesia, fatigue, and nausea. | [51] |
Animal Models | Route of Administration | Description | Response to Treatment | Ref. |
---|---|---|---|---|
Inflammatory soup | Dural cannulation | Mechanical hyperalgesia; reduced locomotor activities; nociceptive behavior; unilateral hind paw; facial grooming; anxiety- and depression-like behaviors; altered CGRP-related genes in the TG and TNC. | Zolmitriptan reduced nociceptive behaviors. Ketorolac reduced the nociceptive behavior, ipsilateral hind paw and facial grooming. Amitriptyline reversed the allodynia and decreased depression- and anxiety-like behaviors. | [56,57,83,84] |
NTG | Intravenously or intraperitoneally | Mechanical hyperalgesia; thermal and mechanical allodynia; photophobia; meningeal blood flow; reduced locomotor activities; facial expressions of pain. | Propranolol, topiramate, and amiloride inhibited mechanical hyperalgesia. Valproic acid were ineffective. Sumatriptan inhibited hypoactivity and grimace scale scores in rats, but resulted in hyperalgesia. | [64,85,86,87] |
MOH | Intraperitoneally | Mechanical hyperalgesia; CSD-related bioelectrical alterations; activation of inflammatory markers in the TG. | Topiramate blocked the enhanced Fos expression in the TNC and inhibited cutaneous allodynia. | [66,88,89] |
Genetic model | - | Spontaneous episodic trigeminal allodynia. | Valproic acid prevented the spontaneous changes in trigeminal allodynia. | [78] |
Transgenic models (FHM-1, FHM-2) | - | Photophobia; unilateral head grooming; lateralized winking/blinking. | Rizatriptan reduced head grooming. | [73,77] |
CSD model | Injections of KCl on the cerebral cortex, or electrical or mechanical stimulation of the cortex | Induced dural activation, vasodilation of meningeal blood vessels. Enhanced neuronal activation at the level of trigemino nuclear complex and in higher cerebral areas of the trigeminal pain pathway. | Valproate, topiramate, propranolol, amitriptyline and methysergide were shown to suppress SD susceptibility. Lamotrigine was also shown to block KCl-induced CSD. | [90,91] |
Experimental Models | Compounds | Type of Administration | Response to Treatment | Ref. |
---|---|---|---|---|
CM (NTG-induced) | SNC80 | IP | The administration of the compound showed in all four models to induce a reduction of peripheral and cephalic allodynia | [92] |
PTH (closed head weight drop method combined to NTG) | ||||
MOH (sumatriptan-induced) | ||||
OIH (morphine-induced) | ||||
NTG model | SNC80 or ARM390 or JNJ20788560 | IP | Reduction of NTG-evoked hyperalgesia | [93] |
Gas-D | IG | Reduced head-scratching behavior | [100] | |
CSD (KCl-evoked) | SNC80 | IP | Reduced number of CSD events | [93] |
Electrically evoked meningeal PPE | NOX-L41 | IV or SC | Inhibition of neurogenic meningeal PPE | [94] |
Behavioral studies | RB-SLNs | Orally | The brain uptake potential was 18.43-folds higher with respect to the pure drug in its free form, 2 h post the drug administration. Higher effectiveness in minimizing the number of writhings than the standard pure drug group. Enhanced time spent by animals in the light compartment of the light/dark box model (p < 0.001). | [95] |
SS-chitosan SLNs | The brain uptake potential was 4.54-folds increase in drug targeted to brain, compared to plasma, after 2 h of drug administration. A reduction of the number of writhings (p < 0.001) and enhanced time spent in lit box of light/dark box model (p < 0.001) compared to control groups was observed. | [96] | ||
SS-BSA-ApoE NPs | The brain uptake potential of SS was 12.67-folds higher compared to controls, 2 h post drug administration. Reduced writhings events compared to control groups. Enhanced tolerance to light in the light compartment of the light/dark box model compared to controls. | [97] | ||
ZNPs | An increase of 14.13-folds of drug that reached the brain compared to the pure drug was observed. The treatment reduced significantly the number of writhings compared to control (p < 0.001). Significant reduction (p < 0.001) of photophobia was achieved by enhancing the time spent in lit compartment of the light/dark box model. | [98] | ||
Nystatin-NPs | IP | Major accumulation of NPs in the brain than the other organs considered i.e., liver and spleen, indicating that nanoformulation was successful in reaching the brain through i.p. administration. The nanoformulation induced a decrease in the number of writhings in the acetic acid induced writhings test compared to controls (p < 0.001). The time spent in lit compartment by animals treated with Nystatin-NPs was higher than controls (p < 0.001), indicating the successful brain targeting through its nanoformulation. | [99] | |
Model of nociceptive durovascular trigeminal activation | Gastrodin, ligustrazine | IV | Gastrodin showed to inhibit nociceptive dural-evoked neuronal firing in the TCC. Ligustrazine showed no relevant effect on spontaneous activity in the TCC. | [101] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardiolo, G.; Bramanti, P.; Mazzon, E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int. J. Mol. Sci. 2019, 20, 2932. https://doi.org/10.3390/ijms20122932
Tardiolo G, Bramanti P, Mazzon E. Migraine: Experimental Models and Novel Therapeutic Approaches. International Journal of Molecular Sciences. 2019; 20(12):2932. https://doi.org/10.3390/ijms20122932
Chicago/Turabian StyleTardiolo, Giuseppe, Placido Bramanti, and Emanuela Mazzon. 2019. "Migraine: Experimental Models and Novel Therapeutic Approaches" International Journal of Molecular Sciences 20, no. 12: 2932. https://doi.org/10.3390/ijms20122932
APA StyleTardiolo, G., Bramanti, P., & Mazzon, E. (2019). Migraine: Experimental Models and Novel Therapeutic Approaches. International Journal of Molecular Sciences, 20(12), 2932. https://doi.org/10.3390/ijms20122932