Interactions of Glutamatergic Neurotransmission and Brain-Derived Neurotrophic Factor in the Regulation of Behaviors after Nicotine Administration
Abstract
:1. Introduction
2. The Striatum Potentiates Glutamate Release after Nicotine Administration
3. Stimulation of α7 nAChRs in the Striatum is Required for Glutamate Release
4. Stimulation of Glutamate Receptors in GABAergic Output Neurons Increases Behavioral Sensitization and Nicotine-Seeking Behavior
5. Nicotine Increases Bidirectional BDNF Release in the Striatum
6. Nicotine Activates BDNF-Mediated TrkB Signaling Cascades in GABAergic Neurons
7. BDNF Differently Regulates Behavior According to the Conditions of Nicotine Exposure
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Akt | Protein Kinase B |
AMPAR | Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor |
BDNF | Brain-derived Neurotrophic Factor |
CaRE | Ca2+-responsive Element |
CDK5 | Cell Division Protein Kinase 5 |
CPu | Caudate and Putamen |
CREB | cAMP Response Element-binding Protein |
DAG | Diacylglycerol |
DhβE | Dihydro-β-erythroidine |
ER | Endoplasmic Reticulum |
ERK | Extracellular-signal-regulated Kinase |
GABA | Gamma Amino-butyric Acid |
GLUNR2B | Ionotropic Glutamate Receptor Subtype 2B |
GTP | Guanosine-5′-triphosphate |
Htt | Huntingtin |
iGluRs | Ionotropic Glutamate Receptors |
IP3 | Inositol Trisphosphate |
KAR | Kainate Receptor |
MAGE | Melanoma-associated Antigen |
mGluRs | Metabotropic Glutamate Receptors |
MLA | Methyllycaconitine |
MMP | Matrix-metalloproteinases |
mTOR | Mechanistic Target of Rapamycin |
NAc | Nucleus Accumbens |
nAChRs | Nicotinic Acetylcholine Receptors |
NMDAR | N-methyl-d-aspartate Receptor |
NRAGE | MAGE Homologue |
NRIF | Neurotrophin Receptor-interacting Factor |
Ras | Ras GTPase |
p75NTR | p75 Neurotrophin Receptor |
PC | Proprotein Convertases |
PFC | Prefrontal Cortex |
PI3K | Phosphoinositide 3-kinases |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
PKC | Protein Kinase C |
PLC | Phospholipase C |
RhoGDI | Rho GDP-dissociation Inhibitor |
SC1 | Schwann Cell Factor 1 |
SH-SY5Y | Thrice-cloned Sub-line of Bone Marrow Biopsy-derived Line SK-N-SH |
Shc | SHC-transforming Protein 1 |
SN | Substantia Nigra |
SNARE | SNAP REceptor |
SYT6 | Synpatotagamin-6 |
TGN | Trans-Golgi Network |
tPA | Tissue-plasminogen Activator |
TrkB | Tropomyosin Receptor Kinase B |
VTA | Ventral Tegmental Area |
References
- Rigotti, N.A. Smoking cessation in patients with respiratory disease: Existing treatments and future directions. Lancet Respir. Med. 2013, 3, 241–250. [Google Scholar] [CrossRef]
- Capelletto, E.; Rapetti, S.G.; Demichelis, S.; Galetta, D.; Catino, A.; Ricci, D.; Moretti, A.M.; Bria, E.; Pilotto, S.; Bruno, A.; et al. Final data of an Italian multicentric survey about counseling for smoking cessation in patients with diagnosis of a respiratory disease. Clin. Respir. J. 2018, 3, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Grady, S.R.; Salminen, O.; Laverty, D.C.; Whiteaker, P.; McIntosh, J.M.; Collins, A.C.; Marks, M.J. The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem. Pharmacol. 2007, 8, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, P.D.; Wonnacott, S. Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem. Pharmacol. 2009, 7, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Feduccia, A.A.; Chatterjee, S.; Bartlett, S.E. Neuronal nicotinic acetylcholine receptors: Neuroplastic changes underlying alcohol and nicotine addictions. Front. Mol. Neurosci. 2012, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Howe, W.M.; Young, D.A.; Bekheet, G.; Kozak, R. Nicotinic receptor subtypes differentially modulate glutamate release in the dorsal medial striatum. Neurochem. Int. 2016, 100, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Kalivas, P.W.; Lalumiere, R.T.; Knackstedt, L.; Shen, H. Glutamate transmission in addiction. Neuropharmacology 2009, 56 (Suppl. 1), 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerfen, C.R.; Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 2011, 34, 441–466. [Google Scholar] [CrossRef]
- Francesco, P.; Francesco, C.; Michele, Z.; Gotti, C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Prog. Neurobiol. 2015, 124, 1–27. [Google Scholar] [CrossRef]
- Ahn, S.M.; Choe, E.S. Activation of group I metabotropic glutamate receptors increases serine phosphorylation of GluR1 alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in the rat dorsal striatum. J. Pharmacol. Exp. Ther. 2009, 3, 1117–1126. [Google Scholar] [CrossRef]
- Oh, J.H.; Yang, J.H.; Ahn, S.M.; Youn, B.; Choi, B.T.; Wang, J.Q.; Choe, E.S. Activation of protein kinase C is required for AMPA receptor GluR1 phosphorylation at serine 845 in the dorsal striatum following repeated cocaine administration. Psychopharmacology 2013, 3, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.Y.; Oh, J.H.; Choe, E.S. Protein kinase G increases AMPA receptor GluR1 phosphorylation at serine 845 after repeated cocaine administration in the rat nucleus accumbens. Neurosci. Lett. 2013, 544, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Ryu, I.S.; Kim, J.; Seo, S.Y.; Yang, J.H.; Oh, J.H.; Lee, D.K.; Cho, H.W.; Yoon, S.S.; Seo, J.W.; Chang, S.; et al. Behavioral changes after nicotine challenge are associated with α7 nicotinic acetylcholine receptor-stimulated glutamate release in the rat dorsal striatum. Sci. Rep. 2017, 1, 15009. [Google Scholar] [CrossRef] [PubMed]
- Ryu, I.S.; Kim, J.; Seo, S.Y.; Yang, J.H.; Oh, J.H.; Lee, D.K.; Cho, H.W.; Lee, K.; Yoon, S.S.; Seo, J.W.; et al. Repeated Administration of Cigarette Smoke Condensate Increases Glutamate Levels and Behavioral Sensitization. Front. Behav. Neurosci. 2018, 12, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correll, J.A.; Noel, D.M.; Sheppard, A.B.; Thompson, K.N.; Li, Y.; Yin, D.; Brown, R.W. Nicotine sensitization and analysis of brain-derived neurotrophic factor in adolescent beta-arrestin-2 knockout mice. Synapse 2009, 6, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Leão, R.M.; Cruz, F.C.; Carneiro-de-Oliveira, P.E.; Rossetto, D.B.; Valentini, S.R.; Zanelli, C.F.; Planeta, C.S. Enhanced nicotine-seeking behavior following pre-exposure to repeated cocaine is accompanied by changes in BDNF in the nucleus accumbens of rats. Pharmacol. Biochem. Behav. 2013, 104, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Perna, M.K.; Brown, R.W. Adolescent nicotine sensitization and effects of nicotine on accumbal dopamine release in a rodent model of increased dopamine D2 receptor sensitivity. Behav. Brain. Res. 2013, 242, 102–109. [Google Scholar] [CrossRef]
- Kittikun, V.; Sukumal, C. Activation of group I metabotropic glutamate receptors leads to brain-derived neurotrophic factor expression in rat C6 cells. Neurosci. Lett. 2019, 2, 127–130. [Google Scholar] [CrossRef]
- Kivinummi, T.; Kaste, K.; Rantamaki, T.; Castrén, E.; Ahtee, L. Alterations in BDNF and phospho-CREB levels following chronic oral nicotine treatment and its withdrawal in dopaminergic brain areas of mice. Neurosci. Lett. 2011, 2, 108–112. [Google Scholar] [CrossRef]
- Aydin, C.; Oztan, O.; Isgor, C. Nicotine-induced anxiety-like behavior in a rat model of the novelty-seeking phenotype is associated with long-lasting neuropeptidergic and neuroplastic adaptations in the amygdala: Effects of the cannabinoid receptor 1 antagonist AM251. Neuropharmacology 2012, 8, 1335–1345. [Google Scholar] [CrossRef]
- Patapoutian, A.; Reichardt, L.F. Trk receptors: Mediators of neurotrophin action. Curr. Opin. Neurobiol. 2001, 3, 272–280. [Google Scholar] [CrossRef]
- Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 2003, 2, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Machaalania, R.; Chen, H. Brain derived neurotrophic factor (BDNF), its tyrosine kinase receptor B (TrkB) and nicotine. Neurotoxicology 2018, 65, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, L.M.; Garcia, A.F.; Wunsch, A.M.; Ferguson, S.M. The ins and outs of the striatum: Role in drug addiction. Neuroscience 2015, 301, 529–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Lee, J.H.; Yun, K.; Kim, J.H. Alterations in Striatal Circuits Underlying Addiction-Like Behaviors. Mol. Cells 2017, 6, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Grilli, M.; Pittaluga, A.; Merlo-Pich, E.; Marchi, M. NMDA-mediated modulation of dopamine release is modified in rat prefrontal cortex and nucleus accumbens after chronic nicotine treatment. J. Neurochem. 2009, 2, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Lin, B.J.; Hsieh, T.H.; Kuo, T.T.; Miller, J.; Chou, Y.C.; Huang, E.Y.; Hoffer, B.J. Differences in Nicotine Encoding Dopamine Release between the Striatum and Shell Portion of the Nucleus Accumbens. Cell Transpl. 2019, 3, 248–261. [Google Scholar] [CrossRef]
- Ehlinger, D.G.; Burke, J.C.; McDonald, C.G.; Smith, R.F.; Bergstrom, H.C. Nicotine-induced and D1-receptor-dependent dendritic remodeling in a subset of dorsolateral striatum medium spiny neurons. Neuroscience 2017, 356, 242–254. [Google Scholar] [CrossRef]
- Marshall, D.L.; Redfern, P.H.; Wonnacott, S. Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: Comparison of naive and chronic nicotine-treated rats. J. Neurochem. 1997, 4, 1511–1519. [Google Scholar] [CrossRef]
- Reid, M.S.; Fox, L.; Ho, L.B.; Berger, S.P. Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: Neuropharmacological characterization. Synapse 2000, 2, 129–136. [Google Scholar] [CrossRef]
- Gotti, C.; Clementi, F. Neuronal nicotinic receptors: From structure to pathology. Prog. Neurobiol. 2004, 6, 363–396. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 1, 73–120. [Google Scholar] [CrossRef] [PubMed]
- Hurst, R.; Rollema, H.; Bertrand, D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol. Ther. 2013, 1, 22–54. [Google Scholar] [CrossRef] [PubMed]
- Dani, J.A.; Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 699–729. [Google Scholar] [CrossRef] [PubMed]
- Mansvelder, H.D.; McGehee, D.S. Cellular and synaptic mechanisms of nicotine addiction. J. Neurobiol. 2002, 4, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Changeux, J.P. Nicotine addiction and nicotinic receptors: Lessons from genetically modified mice. Nat. Rev. Neurosci. 2010, 6, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Shameem, M.; Patel, A.B. Glutamatergic and GABAergic metabolism in mouse brain under chronic nicotine exposure: Implications for addiction. PLoS ONE 2012, 7, e41824. [Google Scholar] [CrossRef]
- Couey, J.J.; Meredith, R.M.; Spijker, S.; Poorthuis, R.B.; Smit, A.B.; Brussaard, A.B.; Mansvelder, H.D. Distributed network actions by nicotine increase the threshold for spike timing-dependent plasticity in prefrontal cortex. Neuron 2007, 1, 73–87. [Google Scholar] [CrossRef]
- Puddifoot, C.A.; Wu, M.; Sung, R.J.; Joiner, W.J. Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling. J. Neurosci. 2015, 8, 3420–3430. [Google Scholar] [CrossRef]
- Jackson, A.; Papke, R.L.; Damaj, M.I. Pharmacological modulation of the α7 nicotinic acetylcholine receptor in a mouse model of mecamylamine-precipitated nicotine withdrawal. Psychopharmacology 2018, 7, 1897–1905. [Google Scholar] [CrossRef]
- Brunzell, D.H.; McIntosh, J.M. Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: Implications for smoking and schizophrenia. Neuropsychopharmacology 2012, 5, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, M.S.; Markou, A. The “stop” and “go” of nicotine dependence: Role of GABA and glutamate. Cold Spring Harb. Perspect. Med. 2013, 6, a012146. [Google Scholar] [CrossRef] [PubMed]
- Kew, J.N.; Kemp, J.A. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 2005, 1, 4–29. [Google Scholar] [CrossRef] [PubMed]
- Ferraguti, F.; Shigemoto, R. Metabotropic glutamate receptors. Cell Tissue Res. 2006, 2, 483–504. [Google Scholar] [CrossRef] [PubMed]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 3, 405–496. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013, 6, 383–400. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Steketee, J.D.; Sharp, B.M. Upregulation of ionotropic glutamate receptor subunits within specific mesocorticolimbic regions during chronic nicotine self-administration. Neuropsychopharmacology 2007, 1, 103–109. [Google Scholar] [CrossRef]
- Nakajima, A.; Kinugasa, Y.; Torii, J.; Hishinuma, T.; Tomioka, Y.; Yamada, K.; Yamakuni, T. Repeated treatment with nicotine induces phosphorylation of NMDA receptor NR2B subunit in the brain regions involved in behavioral sensitization. Neurosci. Lett. 2012, 2, 133–138. [Google Scholar] [CrossRef]
- Ávila-Ruiz, T.; Carranza, V.; Gustavo, L.L.; Limón, D.I.; Martínez, I.; Flores, G.; Flores-Hernández, J. Chronic administration of nicotine enhances NMDA-activated currents in the prefrontal cortex and core part of the nucleus accumbens of rats. Synapse 2014, 6, 248–256. [Google Scholar] [CrossRef]
- Kenny, P.J.; Chartoff, E.; Roberto, M.; Carlezon, W.A., Jr.; Markou, A. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: Role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 2009, 2, 266–281. [Google Scholar] [CrossRef]
- Bespalov, A.Y.; Dravolina, O.A.; Sukhanov, I.; Zakharova, E.; Blokhina, E.; Zvartau, E.; Danysz, W.; van Heeke, G.; Markou, A. Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology 2005, 49, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Paterson, N.E.; Markou, A. The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology 2005, 1, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Tronci, V.; Vronskaya, S.; Montgomery, N.; Mura, D.; Balfour, D.J. The effects of the mGluR5 receptor antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) on behavioral responses to nicotine. Psychopharmacology 2010, 1, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Yararbas, G.; Keser, A.; Kanit, L.; Pogun, S. Nicotine-induced conditioned place preference in rats: Sex differences and the role of mGluR5 receptors. Neuropharmacology 2010, 2, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Kenny, P.J.; Markou, A. The ups and downs of addiction: Role of metabotropic glutamate receptors. Trends Pharmacol. Sci. 2004, 5, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Guo, M.; Jin, D.; Xue, B.; Wang, J.Q. Group III metabotropic glutamate receptors and drug addiction. Front. Med. 2013, 4, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.X.; Baker, D.A.; Shen, H.; Carson, D.S.; Kalivas, P.W. Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens. J. Pharmacol. Exp. Ther. 2002, 1, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; D’Souza, M.S.; Niño, A.M.; Doherty, J.; Cross, A.; Markou, A. Attenuation of nicotine-taking and nicotine-seeking behavior by the mGlu2 receptor positive allosteric modulators AZD8418 and AZD8529 in rats. Psychopharmacology 2016, 10, 1801–1814. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, L.; Tanja, B. Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neurosci. Res. 2009, 1, 11–22. [Google Scholar] [CrossRef]
- Chen, K.W.; Chen, L. Epigenetic regulation of BDNF gene during development and diseases. Int. J. Mol. Sci. 2017, 18, 571. [Google Scholar] [CrossRef]
- Benarroch, E.E. Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology 2015, 16, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 2002, 10, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, L.R.; Nillni, E.A. Discovery of new peptides from old prohormones: Insights for energy balance and beyond. Front. Biosci. 2007, 12, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.R.; Charrin, B.C.; Borrell-Pages, M.; Dompierre, J.P.; Rangone, H.; Cordelières, F.P.; De Mey, J.; MacDonald, M.E.; Lessmann, V.; Humbert, S.; et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004, 1, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, N.; Lu, H.; Fukata, Y.; Noritake, J.; Gao, H.; Mukherjee, S.; Nemoto, T.; Fukata, M.; Poo, M.M. Differential activity dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J. Neurosci. 2009, 45, 14185–14198. [Google Scholar] [CrossRef]
- Kwinter, D.M.; Lo, K.; Mafi, P.; Silverman, M.A. Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience 2009, 4, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Kermani, P.; Teng, K.K.; Hempstead, B.L. Regulation of cell survival by secreted proneurotrophins. Science 2001, 5548, 1945–1948. [Google Scholar] [CrossRef]
- Nikulina, E.M.; Lacagnina, M.J.; Fanous, S.; Wang, J.; Hammer, R.P., Jr. Intermittent social defeat stress enhances mesocorticolimbic ΔFosB/BDNF co-expression and persistently activates corticotegmental neurons: Implication for vulnerability to psychostimulants. Neuroscience 2012, 212, 38–48. [Google Scholar] [CrossRef]
- Hartmann, M.; Heumann, R.; Lessmann, V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 2001, 21, 5887–5897. [Google Scholar] [CrossRef]
- Alder, J.; Thakker-Varia, S.; Crozier, R.A.; Shaheen, A.; Plummer, M.R.; Black, I.B. Early presynaptic and late postsynaptic components contribute independently to brain-derived neurotrophic factor-induced synaptic plasticity. J. Neurosci. 2005, 12, 3080–3085. [Google Scholar] [CrossRef]
- Park, H.; Popescu, A.; Poo, M.M. Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP. Neuron 2014, 5, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C. Cellular and molecular neurobiology. In The Metabotropic Glutamate Receptors; Bhave, G., Gereau, R., Eds.; Academic Press: Amsterdam, The Netherland, 2003; pp. 314–326. [Google Scholar]
- Wong, Y.H.; Lee, C.M.; Xie, W.; Cui, B.; Poo, M.M. Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc. Natl. Acad. Sci. USA 2015, 32, E4475–E4484. [Google Scholar] [CrossRef] [PubMed]
- Besusso, D.; Geibel, M.; Kramer, D.; Schneider, T.; Pendolino, V.; Picconi, B.; Calabresi, P.; Bannerman, D.M.; Minichiello, L. BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nat. Commun. 2013, 4, 2031. [Google Scholar] [CrossRef] [PubMed]
- Sasi, M.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 2017, 5–6, 593–610. [Google Scholar] [CrossRef]
- Panja, D.; Bramham, C.R. BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology 2014, 76 Pt C, 664–676. [Google Scholar] [CrossRef]
- Panja, D.; Kenney, J.W.; D’Andrea, L.; Zalfa, F.; Vedeler, A.; Wibrand, K.; Fukunaga, R.; Bagni, C.; Proud, C.G.; Bramham, C.R. Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK. Cell Rep. 2014, 4, 1430–1445. [Google Scholar] [CrossRef]
- D’Amore, D.E.; Tracy, B.A.; Parikh, V. Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacology 2013, 75, 312–323. [Google Scholar] [CrossRef]
- Teng, H.K.; Teng, K.K.; Lee, R.; Wright, S.; Tevar, S.; Almeida, R.D.; Kermani, P.; Torkin, R.; Chen, Z.Y.; Lee, F.S.; et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 2005, 22, 5455–5463. [Google Scholar] [CrossRef]
- Yang, J.; Harte-Hargrove, L.C.; Siao, C.J.; Marinic, T.; Clarke, R.; Ma, Q.; Jing, D.; Lafrancois, J.J.; Bath, K.G.; Mark, W.; et al. ProBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014, 3, 796–806. [Google Scholar] [CrossRef]
- Altar, C.A.; DiStefano, P.S. Neurotrophin trafficking by anterograde transport. Trends Neurosci. 1998, 10, 433–437. [Google Scholar] [CrossRef]
- Serres, F.; Carney, S.L. Nicotine regulates SH-SY5Y neuroblastoma cell proliferation through the release of brain-derived neurotrophic factor. Brain Res. 2006, 1, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Formaggio, E.; Fumagalli, G.; Chiamulera, C. Choline up-regulates BDNF and down-regulates TrkB neurotrophin receptor in rat cortical cell culture. Neuroreport 2009, 9, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Xiaoyu, W. The exposure to nicotine affects expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in neonate rats. Neurol Sci. 2015, 2, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Reimers, J.M.; Loweth, J.A.; Wolf, M.E. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons. Eur. J. Neurosci. 2014, 7, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Magby, J.P.; Bi, C.; Chen, Z.Y.; Lee, F.S.; Plummer, M.R. Single-cell characterization of retrograde signaling by brain-derived neuro- trophic factor. J. Neurosci. 2006, 26, 13531–13536. [Google Scholar] [CrossRef] [PubMed]
- Crozier, R.A.; Bi, C.; Han, Y.R.; Plummer, M.R. BDNF modulation of NMDA receptors is activity dependent. J. Neurophysiol. 2008, 6, 3264–3274. [Google Scholar] [CrossRef] [PubMed]
- Horger, B.A.; Iyasere, C.A.; Berhow, M.T.; Messer, C.J.; Nestler, E.J.; Taylor, J.R. Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J. Neurosci. 1999, 10, 4110–4122. [Google Scholar] [CrossRef]
- Williams, S.N.; Undieh, A.S. Dopamine D1-like receptor activation induces brain-derived neurotrophic factor protein expression. Neuroreport 2009, 6, 606–610. [Google Scholar] [CrossRef]
- Verheij, M.M.; Vendruscolo, L.F.; Caffino, L.; Giannotti, G.; Cazorla, M.; Fumagalli, F.; Riva, M.A.; Homberg, J.R.; Koob, G.F.; Contet, C. Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex. J. Neurosci. 2016, 31, 8149–8159. [Google Scholar] [CrossRef]
- Bobadilla, A.C.; Garcia-Keller, C.; Chareunsouk, V.; Hyde, J.; Camacho, D.M.; Heinsbroek, J.A.; Kalivas, P.W. Accumbens brain-derived neurotrophic factor (BDNF) transmission inhibits cocaine seeking. Addict. Biol. 2018. [Google Scholar] [CrossRef]
- Gottmann, K.; Mittmann, T.; Lessmann, V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp. Brain Res. 2009, 3–4, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Pickens, C.L.; Airavaara, M.; Theberge, F.; Fanous, S.; Hope, B.T.; Shaham, Y. Neurobiology of the incubation of drug craving. Trends. Neurosci. 2011, 8, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yang, J.H.; Ryu, I.S.; Seo, S.Y.; Son, S.; Kim, S.; Choe, E.S. Challenge nicotine upregulates mature-BDNF expression in the dorsal striatum via mGluR5-mediated MMP2/9 activation. (unpublished; manuscript in preparation).
- Berglind, W.J.; Whitfield, T.W., Jr.; LaLumiere, R.T.; Kalivas, P.W.; McGinty, J.F. A single intra-PFC infusion of BDNF pre- vents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J. Neurosci. 2009, 12, 3715–3719. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.L.; Coleman, N.T.; Zelek-Molik, A.; Barry, S.M.; Whitfield, T.W., Jr.; McGinty, J.F. Relapse to cocaine-seeking after abstinence Is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict. Biol. 2014, 1, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Go, B.S.; Barry, S.M.; McGinty, J.F. Glutamatergic neurotransmission in the prefrontal cortex mediates the suppressive effect of intra-prelimbic cortical infusion of BDNF on cocaine-seeking. Eur. Neuropsychopharmacol. 2016, 12, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Yang, J.H.; Ryu, I.S.; Sohn, S.; Kim, S.; Choe, E.S. Interactions of Glutamatergic Neurotransmission and Brain-Derived Neurotrophic Factor in the Regulation of Behaviors after Nicotine Administration. Int. J. Mol. Sci. 2019, 20, 2943. https://doi.org/10.3390/ijms20122943
Kim J, Yang JH, Ryu IS, Sohn S, Kim S, Choe ES. Interactions of Glutamatergic Neurotransmission and Brain-Derived Neurotrophic Factor in the Regulation of Behaviors after Nicotine Administration. International Journal of Molecular Sciences. 2019; 20(12):2943. https://doi.org/10.3390/ijms20122943
Chicago/Turabian StyleKim, Jieun, Ju Hwan Yang, In Soo Ryu, Sumin Sohn, Sunghyun Kim, and Eun Sang Choe. 2019. "Interactions of Glutamatergic Neurotransmission and Brain-Derived Neurotrophic Factor in the Regulation of Behaviors after Nicotine Administration" International Journal of Molecular Sciences 20, no. 12: 2943. https://doi.org/10.3390/ijms20122943
APA StyleKim, J., Yang, J. H., Ryu, I. S., Sohn, S., Kim, S., & Choe, E. S. (2019). Interactions of Glutamatergic Neurotransmission and Brain-Derived Neurotrophic Factor in the Regulation of Behaviors after Nicotine Administration. International Journal of Molecular Sciences, 20(12), 2943. https://doi.org/10.3390/ijms20122943