Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides
Abstract
:1. Introduction
2. Collagen in the Extracellular Matrix
2.1. Structure of Collagen
2.2. Biochemical and Mechanical Properties of Collagen
2.3. Role of Collagen in Developmental Defects, Injuries, and Diseases
2.3.1. Developmental Defects
2.3.2. Injuries
2.3.3. Diseases
3. Collagen-Targeting Molecules
3.1. Collagen Binding Peptides
3.1.1. SILY
3.1.2. TKKTLRT
3.1.3. WREPSFMALS
3.2. Collagen-Targeting Antibodies
3.3. Collagen Hybridizing Peptides and Collagen Mimetic Peptides
4. Strategies for Targeting Collagen in Regenerative Medicine and Tissue Engineering
4.1. Delivery of Biologic Drugs/Growth Factors
4.2. Delivery of Peptides
4.3. Development of Bioactive Surfaces
4.4. Detection of Collagen Damage in Decellularized ECM Scaffolds
4.5. Delivery of Genetic Materials
5. Conclusions and Future Therapeutic Applications of Collagen-Targeting Molecules
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ECM | Extracellular matrix |
GAGs | Glycosaminoglycans |
dn-Col | Denatured collagen |
CBD | Collagen binding domain |
MMP | Matrix metalloproteinase |
MI | Myocardial infarction |
DS | Dermatan sulfate |
vWF | von Willeband’s factor |
TIMP | Tissue inhibitors of metalloproteinase |
CHP | Collagen hybridizing peptide |
CMP | Collagen mimetic peptide |
MAP | Mussel adhesive protein |
NP | Nanoparticles |
bFGF | Basic fibroblast growth factor |
VEGF | Vascular endothelial growth factor |
MK2 | Mitogen-activated protein kinase activated protein kinase 2 |
SDF-1α | Stromal cell-derived factor-1α |
QK | VEGF mimetic peptide |
Sub P | Substance P |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
PEGDA | Poly(ethylene glycol) diacrylate |
PV | Poly(vinyl alcohol) |
PEODA | Poly(ethylene oxide) diacrylate |
PLGA | Poly(lactide-co-glycolide) |
MSC | Mesenchymal stromal cell |
pMV-GLuc | Portal-mesenteric vein glucose |
References
- Asghar, A.; Henrickson, R.L. Chemical, Biochemical, Functional, and Nutritional Characteristics of Collagen in Food Systems. Adv. Food Res. 1982, 28, 231–372. [Google Scholar] [PubMed]
- Myllyharju, J.; Kivirikko, K.I. Collagens and collagen-related diseases. Ann. Med. 2001, 33, 7–21. [Google Scholar] [CrossRef]
- Li, Y.; Yu, S.M. Targeting and mimicking collagens via triple helical peptide assembly. Curr. Opin. Chem. Biol. 2013, 17, 968–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahyudi, H.; Reynolds, A.A.; Li, Y.; Owen, S.C.; Yu, S.M. Targeting collagen for diagnostic imaging and therapeutic delivery. J. Control. Release 2016, 240, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Chiquet, M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 1999. [Google Scholar] [CrossRef]
- Orgel, J.P.R.O.; Irving, T.C.; Miller, A.; Wess, T.J. Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001–9005. [Google Scholar] [CrossRef] [PubMed]
- Ploetz, C.; Zycband, E.I.; Birk, D.E. Collagen fibril assembly and deposition in the developing dermis: Segmental deposition in extracellular compartments. J. Struct. Biol. 1991, 106, 73–81. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Cremer, M.A.; Rosloniec, E.F.; Kang, A.H. The cartilage collagens: A review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J. Mol. Med. 1998, 76, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771. [Google Scholar] [CrossRef] [PubMed]
- Wenger, M.P.E.; Bozec, L.; Horton, M.A.; Mesquida, P. Mechanical Properties of Collagen Fibrils. Biophys. J. 2007, 93, 1255. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.A.; Desai, R.; Solski, P.A.; Der, C.J.; Keely, P.J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 2003, 163, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Heino, J. The collagen family members as cell adhesion proteins. BioEssays 2007, 29, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.R.; Erler, J.T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis. Model. Mech. 2011, 4, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- GROSS, J.; LAPIERE, C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA 1962, 48, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Huang, Y.; Burwell, T.J.; Peterson, N.C.; Connor, J.; Weiss, S.J.; Yu, S.M.; Li, Y. In Situ Imaging of Tissue Remodeling with Collagen Hybridizing Peptides. ACS Nano 2017, 11, 9825–9835. [Google Scholar] [CrossRef] [PubMed]
- Byers, P.H.; Steiner, R.D. Osteogenesis Imperfecta. Annu. Rev. Med. 1992, 43, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Bateman, J.F.; Lamande, S.R.; Dahlq, H.-H.M.; Chan, D.; Mascara, T.; Cole, W.G. A Frameshift Mutation Results in a Truncated Nonfunctional Carboxyl-terminal Prod (1) Propeptide of Type I Collagen in. J. Biol. Chem. 1989, 264, 10960–10964. [Google Scholar]
- Chan, D.; Cole, W.G.; Chow, C.W.; Mundlos, S.; Bateman, J.F. A COL2A1 mutation in achondrogenesis type II results in the replacement of type II collagen by type I and III collagens in cartilage. J. Biol. Chem. 1995, 270, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Bönnemann, C.G.; Cox, G.F.; Shapiro, F.; Wu, J.J.; Feener, C.A.; Thompson, T.G.; Anthony, D.C.; Eyre, D.R.; Darras, B.T.; Kunkel, L.M. A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proc. Natl. Acad. Sci. USA 2000, 97, 1212–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawcett, J.W.; Schwab, M.E.; Montani, L.; Brazda, N.; MÜller, H.W. Defeating inhibition of regeneration by scar and myelin components. Handb. Clin. Neurol. 2012, 109, 503–522. [Google Scholar] [PubMed]
- Charlier, E.; Deroyer, C.; Ciregia, F.; Neuville, S.; Plener, Z.; Malaise, M. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem. Pharmacol. 2019, 165, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.S.; Sojka, J.H.; Kaeding, C.C.; Bertone, A.L.; Flanigan, D.C. The ACL injury response: A collagen-based analysis. Knee 2017, 24, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, S.U.; Schmidt, T.; Gangéy, I.; Dustmann, M.; Unterhauser, F.; Weiler, A. Fresh-Frozen Free-Tendon Allografts Versus Autografts in Anterior Cruciate Ligament Reconstruction: Delayed Remodeling and Inferior Mechanical Function During Long-term Healing in Sheep. Arthrosc. J. Arthrosc. Relat. Surg. 2008, 24, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Tomosugi, N.; Yamamoto, S.; Takeuchi, M.; Yonekura, H.; Ishigaki, Y.; Numata, N.; Katsuda, S.; Sakai, Y. Effect of Collagen Tripeptide on Atherosclerosis in Healthy Humans. J. Atheroscler. Thromb. 2017, 24, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Ding, L.; Zhao, Y.; Sun, W.; Chen, B.; Lin, H.; Wang, X.; Zhang, L.; Xu, B.; Dai, J. Collagen-Targeting Vascular Endothelial Growth Factor Improves Cardiac Performance After Myocardial Infarction. Circulation 2009, 119, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.-E.; Farr, R.; Lee, S.-W. Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer. Biomaterials 2014, 35, 9236–9245. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Diehn, M.; Bollen, A.W.; Israel, M.A.; Gupta, N. Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment. J. Neurooncol. 2008, 86, 133–141. [Google Scholar] [CrossRef]
- Öhlund, D.; Lundin, C.; Ardnor, B.; Öman, M.; Naredi, P.; Sund, M. Type IV collagen is a tumour stroma-derived biomarker for pancreas cancer. Br. J. Cancer 2009, 101, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Santala, M.; Simojoki, M.; Risteli, J.; Risteli, L.; Kauppila, A. Type I and III collagen metabolites as predictors of clinical outcome in epithelial ovarian cancer. Clin. Cancer Res. 1999, 5, 4091–4096. [Google Scholar] [PubMed]
- Skovbjerg, H.; Anthonsen, D.; Lothe, I.M.; Tveit, K.M.; Kure, E.H.; Vogel, L.K. Collagen mRNA levels changes during colorectal cancer carcinogenesis. BMC Cancer 2009, 9, 136. [Google Scholar] [CrossRef]
- Raghupathi, W.; Raghupathi, V. An Empirical Study of Chronic Diseases in the United States: A Visual Analytics Approach to Public Health. Int. J. Environ. Res. Public Health 2018, 15, 431. [Google Scholar] [CrossRef]
- Paderi, J.E.; Panitch, A. Design of a Synthetic Collagen-Binding Peptidoglycan that Modulates Collagen Fibrillogenesis. Biomacromolecules 2008, 9, 2562–2566. [Google Scholar] [CrossRef]
- Svensson, L.; Heinegård, D.; Oldberg, A. Decorin-binding sites for collagen type I are mainly located in leucine-rich repeats 4-5. J. Biol. Chem. 1995, 270, 20712–20716. [Google Scholar] [CrossRef]
- Jennings, L.K. Role of Platelets in Atherothrombosis. Am. J. Cardiol. 2009, 103, 4A–10A. [Google Scholar] [CrossRef] [PubMed]
- Paderi, J.E.; Stuart, K.; Sturek, M.; Park, K.; Panitch, A. The inhibition of platelet adhesion and activation on collagen during balloon angioplasty by collagen-binding peptidoglycans. Biomaterials 2011, 32, 2516–2523. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Paderi, J.E.; Sturek, M.; Panitch, A. Decorin mimic inhibits vascular smooth muscle proliferation and migration. PLoS ONE 2013, 8, e82456. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Park, K.; Panitch, A. Water soluble polymer films for intravascular drug delivery of antithrombotic biomolecules. Eur. J. Pharm. Biopharm. 2013, 84, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Panitch, A. Decorin mimic regulates platelet-derived growth factor and interferon-γ stimulation of vascular smooth muscle cells. Biomacromolecules 2014, 15, 2090–2103. [Google Scholar] [CrossRef]
- de Souza, S.J.; Brentani, R. Collagen binding site in collagenase can be determined using the concept of sense-antisense peptide interactions. J. Biol. Chem. 1992, 267, 13763–13767. [Google Scholar] [PubMed]
- Ehrlich, M.G.; Houle, P.A.; Vigliani, G.; Mankin, H.J. CORRELATION BETWEEN ARTICULAR CARTILAGE COLLAGENASE ACTIVITY AND OSTEOARTHRITIS. Arthritis Rheum. 1978, 21, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, O.A.; Carmichael, D.F.; DeClerck, Y.A. Inhibition of Collagenolytic Activity and Metastasis of Tumor Cells by a Recombinant Human Tissue Inhibitor of Metalloproteinases. J. Natl. Cancer Inst. 1990, 82, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, B.; Li, X.; Lin, H.; Sun, W.; Zhao, Y.; Wang, B.; Zhao, Y.; Han, Q.; Dai, J. Vascularization and cellularization of collagen scaffolds incorporated with two different collagen-targeting human basic fibroblast growth factors. J. Biomed. Mater. Res. Part A 2007, 82, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Addi, C.; Murschel, F.; De Crescenzo, G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. Tissue Eng. Part B Rev. 2017, 23, 163–182. [Google Scholar] [CrossRef]
- Tan, Q.; Chen, B.; Yan, X.; Lin, Y.; Xiao, Z.; Hou, X.; Dai, J. Promotion of diabetic wound healing by collagen scaffold with collagen-binding vascular endothelial growth factor in a diabetic rat model. J. Tissue Eng. Regen. Med. 2014, 8, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Li, X.; Wang, B.; Chen, B.; Zhao, Y.; Sun, J.; Zhuang, Y.; Shi, J.; Shen, H.; Zhang, Z.; et al. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci. Rep. 2016, 6, 18205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.; Li, X.; Xiao, Z.; Zhao, Y.; Liang, H.; Wang, B.; Han, S.; Li, X.; Xu, B.; Wang, N.; et al. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater. 2017, 51, 304–316. [Google Scholar] [CrossRef]
- Takagi, J.; Asai, H.; Saito, Y. A collagen/gelatin-binding decapeptide derived from bovine propolypeptide of von Willebrand factor. Biochemistry 1992, 31, 8530–8534. [Google Scholar] [CrossRef]
- Sadler, J.E. BIOCHEMISTRY AND GENETICS OF VON WILLEBRAND FACTOR. Annu. Rev. Biochem. 1998, 67, 395–424. [Google Scholar] [CrossRef] [PubMed]
- Andrades, J.A.; Wu, L.T.; Hall, F.L.; Nimni, M.E.; Becerra, J. Engineering, Expression, and Renaturation of a Collagen-Targeted Human bFGF Fusion Protein. Growth Factors 2001, 18, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Freimark, B.; Clark, D.; Pernasetti, F.; Nickel, J.; Myszka, D.; Baeuerle, P.A.; Van Epps, D. Targeting of humanized antibody D93 to sites of angiogenesis and tumor growth by binding to multiple epitopes on denatured collagens. Mol. Immunol. 2007, 44, 3741–3750. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.M.; Caunt, M.; Cretu, A.; Akalu, A.; Policarpio, D.; Li, X.; Gagne, P.; Formenti, S.; Brooks, P.C. Inhibition of Experimental Metastasis by Targeting the HUIV26 Cryptic Epitope in Collagen. Am. J. Pathol. 2006, 168, 1576–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.M.; Li, Y.; Kim, D. Collagen mimetic peptides: Progress towards functional applications. Soft Matter 2011, 7, 7927. [Google Scholar] [CrossRef] [PubMed]
- Urello, M.A.; Kiick, K.L.; Sullivan, M.O. A CMP-based method for tunable, cell-mediated gene delivery from collagen scaffolds. J. Mater. Chem. 2014, 2, 8174–8185. [Google Scholar] [CrossRef]
- Li, Y.; Yu, S.M. In Situ Detection of Degraded and Denatured Collagen via Triple Helical Hybridization: New Tool in Histopathology; Humana Press: New York, NY, USA, 2019; pp. 135–144. [Google Scholar]
- Li, Y.; Foss, C.A.; Summerfield, D.D.; Doyle, J.J.; Torok, C.M.; Dietz, H.C.; Pomper, M.G.; Yu, S.M. Targeting collagen strands by photo-triggered triple-helix hybridization. Proc. Natl. Acad. Sci. USA 2012, 109, 14767–14772. [Google Scholar] [CrossRef] [Green Version]
- Bennink, L.L.; Li, Y.; Kim, B.; Shin, I.J.; San, B.H.; Zangari, M.; Yoon, D.; Yu, S.M. Visualizing collagen proteolysis by peptide hybridization: From 3D cell culture to in vivo imaging. Biomaterials 2018, 183, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Persikov, A.V.; Ramshaw, J.A.; Kirkpatrick, A.; Brodsky, B. Amino Acid Propensities for the Collagen Triple-Helix. Biochemistry 2000, 9, 14960–14967. [Google Scholar]
- Wang, A.Y.; Leong, S.; Liang, Y.-C.; Huang, R.C.C.; Chen, C.S.; Yu, S.M. Immobilization of Growth Factors on Collagen Scaffolds Mediated by Polyanionic Collagen Mimetic Peptides and Its Effect on Endothelial Cell Morphogenesis. Biomacromolecules 2008, 9, 2929–2936. [Google Scholar] [CrossRef]
- Hwang, D.S.; Gim, Y.; Yoo, H.J.; Cha, H.J. Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials 2007, 28, 3560–3568. [Google Scholar] [CrossRef]
- Jeon, E.Y.; Choi, B.-H.; Jung, D.; Hwang, B.H.; Cha, H.J. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration. Biomaterials 2017, 134, 154–165. [Google Scholar] [CrossRef] [PubMed]
- McMasters, J.; Panitch, A. Collagen-Binding Nanoparticles for Extracellular Anti-Inflammatory Peptide Delivery Decrease Platelet Activation, Promote Endothelial Migration, and Suppress Inflammation. Acta Biomater. 2017, 49, 78. [Google Scholar] [CrossRef]
- Chan, T.R.; Stahl, P.J.; Li, Y.; Yu, S.M. Collagen-gelatin mixtures as wound model, and substrates for VEGF-mimetic peptide binding and endothelial cell activation. Acta Biomater. 2015, 15, 164–172. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Guthrie, K.M.; Teixeira, L.; Murphy, C.J.; Dubielzig, R.R.; McAnulty, J.F.; Raines, R.T. Anchoring a cytoactive factor in a wound bed promotes healing. J. Tissue Eng. Regen. Med. 2016, 10, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Stahl, P.J.; Chan, T.R.; Shen, Y.-I.; Sun, G.; Gerecht, S.; Yu, S.M. Capillary Network-Like Organization of Endothelial Cells in PEGDA Scaffolds Encoded with Angiogenic Signals via Triple Helical Hybridization. Adv. Funct. Mater. 2014, 24, 3213–3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, H.; Yamaoka, T.; Mahara, A.; Morimoto, N.; Suzuki, S. Tissue-engineered submillimeter-diameter vascular grafts for free flap survival in rat model. Biomaterials 2018, 179, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Mahara, A.; Somekawa, S.; Kobayashi, N.; Hirano, Y.; Kimura, Y.; Fujisato, T.; Yamaoka, T. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials 2015, 58, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, D.; Buttery, L.D.; Shakesheff, K.M.; Roberts, S.J. Tissue engineering: Strategies, stem cells and scaffolds. J. Anat. 2008, 213, 66–72. [Google Scholar] [CrossRef]
- Krishnan, R.; Oommen, B.; Walton, E.B.; Maloney, J.M.; Van Vliet, K.J. Modeling and simulation of chemomechanics at the cell-matrix interface. Cell Adh. Migr. 2008, 2, 83–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latour, R.A. Biomaterials: Protein-Surface Interactions. Encycl. Biomater. Biomed. Eng. 2005, 270, 270–284. [Google Scholar]
- Ahadian, S.; Khademhosseini, A. Smart scaffolds in tissue regeneration. Regen. Biomater. 2018, 5, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Tai, B.C.U.; Du, C.; Gao, S.; Wan, A.C.A. Synthetic Poly(Vinylalcohol)-Based Membranes for Cartilage Surgery and Repair. Biotechnol. J. 2017, 12, 1700134. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Yu, C.; Chansakul, T.; Hwang, N.S.; Varghese, S.; Yu, S.M.; Elisseeff, J.H. Enhanced Chondrogenesis of Mesenchymal Stem Cells in Collagen Mimetic Peptide-Mediated Microenvironment. Tissue Eng. 2008, 14, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Foss, C.A.; Leong, S.; Mo, X.; Pomper, M.G.; Yu, S.M. Spatio-temporal modification of collagen scaffolds mediated by triple helical propensity. Biomacromolecules 2008, 9, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Hoshiba, T.; Lu, H.; Kawazoe, N.; Chen, G. Decellularized matrices for tissue engineering. Expert Opin. Biol. Ther. 2010, 10, 1717–1728. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yan, Z.; Ren, J.; Qu, X. Manipulating cell fate: Dynamic control of cell behaviors on functional platforms. Chem. Soc. Rev. 2018, 47, 8639–8684. [Google Scholar] [CrossRef]
- Fu, R.-H.; Wang, Y.-C.; Liu, S.-P.; Shih, T.-R.; Lin, H.-L.; Chen, Y.-M.; Sung, J.-H.; Lu, C.-H.; Wei, J.-R.; Wang, Z.-W.; et al. Decellularization and Recellularization Technologies in Tissue Engineering. Cell Transplant. 2014, 23, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Bonvillain, R.W.; Danchuk, S.; Sullivan, D.E.; Betancourt, A.M.; Semon, J.A.; Eagle, M.E.; Mayeux, J.P.; Gregory, A.N.; Wang, G.; Townley, I.K.; et al. A Nonhuman Primate Model of Lung Regeneration: Detergent-Mediated Decellularization and Initial in Vitro Recellularization with Mesenchymal Stem Cells. Tissue Eng. 2012, 18, 2437–2452. [Google Scholar] [CrossRef]
- Dahl, S.L.M.; Koh, J.; Prabhakar, V.; Niklason, L.E. Decellularized Native and Engineered Arterial Scaffolds for Transplantation. Cell Transplant. 2003, 12, 659–666. [Google Scholar] [CrossRef]
- Gilpin, A.; Yang, Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Res. Int. 2017, 2017, 9831534. [Google Scholar] [CrossRef]
- Böer, U.; Lohrenz, A.; Klingenberg, M.; Pich, A.; Haverich, A.; Wilhelmi, M. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 2011, 32, 9730–9737. [Google Scholar] [CrossRef] [PubMed]
- Grauss, R.; Hazekamp, M.; Oppenhuizen, F.; Vanmunsteren, C.; Gittenbergerdegroot, A.; Deruiter, M. Histological evaluation of decellularised porcine aortic valves: Matrix changes due to different decellularisation methods. Eur. J. Cardio-Thoracic Surg. 2005, 27, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Hoshiba, T.; Kawazoe, N.; Chen, G. Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three-dimensional cell culture. J. Biomed. Mater. Res. Part A 2012, 100, 2507–2516. [Google Scholar] [CrossRef] [PubMed]
- Lumpkins, S.B.; Pierre, N.; McFetridge, P.S. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 2008, 4, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Woods, T.; Gratzer, P.F. Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials 2005, 26, 7339–7349. [Google Scholar] [CrossRef] [PubMed]
- Agmon, G.; Christman, K.L. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr. Opin. Solid State Mater. Sci. 2016, 20, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.; San, B.H.; Turner, N.J.; White, L.J.; Faulk, D.M.; Badylak, S.F.; Li, Y.; Yu, S.M. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomater. 2017, 53, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.W.; Solorio, L.D.; Alsberg, E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol. Adv. 2014, 32, 462–484. [Google Scholar] [CrossRef] [Green Version]
- Urello, M.A.; Kiick, K.L.; Sullivan, M.O. ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen. Acta Biomater. 2017, 62, 167–178. [Google Scholar] [CrossRef]
Collagen- Targeting Molecule | Target | Functional Group | Regenerative Application | Ref. |
---|---|---|---|---|
CHP | dn-Col | QK | Angiogenesis | [64,66] |
SubP | Wound healing | [65] | ||
SILY | Type I Col | MAP | Scarless skin regeneration | [62] |
KAFAK-loaded NP | Anti-inflammatory regulation | [63] | ||
TKKTLRT | Type I Col | VEGF | Neovascularization, cardiac repair post-MI | [27,45,46] |
bFGF | Neovascularization, uterine horn reconstruction, bladder regeneration, chondrogenesis | [45] | ||
BMP-2 | Mineralized bone matrix regeneration | [45] | ||
WREPSFMALS | Type I Col | EGF | Intestinal crypt regeneration | [45] |
bFGF | Diabetic wound healing | [51] | ||
BMP-2 | Mature bone regeneration | [45] | ||
POG7G3REDV (CMP7) | dn-Col | REDV | Endothelialization | [67,68] |
mAb HUIV26 | Thermally dn-Col IV | n/a | Inhibition of tumor growth | [53] |
D93 | Enzymatically dn-Col IV | n/a | Inhibition of tumor growth | [52] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldbloom-Helzner, L.; Hao, D.; Wang, A. Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides. Int. J. Mol. Sci. 2019, 20, 4072. https://doi.org/10.3390/ijms20174072
Goldbloom-Helzner L, Hao D, Wang A. Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides. International Journal of Molecular Sciences. 2019; 20(17):4072. https://doi.org/10.3390/ijms20174072
Chicago/Turabian StyleGoldbloom-Helzner, Leora, Dake Hao, and Aijun Wang. 2019. "Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides" International Journal of Molecular Sciences 20, no. 17: 4072. https://doi.org/10.3390/ijms20174072
APA StyleGoldbloom-Helzner, L., Hao, D., & Wang, A. (2019). Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides. International Journal of Molecular Sciences, 20(17), 4072. https://doi.org/10.3390/ijms20174072