Inflammatory Response to Different Toxins in Experimental Sepsis Models
Abstract
:1. Introduction
2. Gram-Negative Toxins
2.1. Lipopolysaccharide
2.2. LPS Signaling
2.3. Variations of LPS
3. Gram-Positive Toxins
3.1. Peptidoglycan and Lipotechoic Acid
3.2. PG and LTA Signaling
4. Selected Bacterial PAMPs
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
LPS | Lipopolysaccharide |
PG | Peptidoglycan |
LTA | Lipotechoic acid |
PRR | Pattern recognition receptor |
PAMP | Pathogen-associated molecular pattern |
KDO | C-8-keto-deoxy-octonic acid |
S-LPS | Smooth lipopolysaccharide |
R-LPS | Rough lipopolysaccharide |
TLR | Toll-like receptor |
MD-2 | Myeloid-differentiation factor 2 |
mCD-14 | Membrane-associated CD-14 |
MAPK | Mitogen-activated protein kinase |
NAG | N-acetylglucosamine |
NAM | N-acetylmuramic acid |
MRSA | Methicillin-resistant Staphylococcus aureus |
NOD | Nucleotide-binding oligomerization domain-containing protein |
LBP | Lipopolysaccharide-binding proteins |
NAIP | NOD-like receptor apoptosis inhibitory protein |
HBP | Heptose-1,7-bisphosphate |
ALPK1 | Alpha-kinase 1 |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of Global Incidence and Mortality of Hospital-Treated Sepsis Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; He, V.; Anstey, N.M.; Condon, J.R. Long Term Outcomes Following Hospital Admission for Sepsis Using Relative Survival Analysis: A Prospective Cohort Study of 1092 Patients with 5 Year Follow Up. PLoS ONE 2014, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Quartin, A.A.; Schein, R.M.H.; Kett, D.H.; Peduzzi, P.N. Magnitude and Duration of the of Sepsis on Survival Effect. JAMA 1997, 277, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Coopersmith, C.M.; de Backer, D.; Deutschman, C.S.; Ferrer, R.; Lat, I.; Machado, F.R.; Martin, G.S.; Martin-Loeches, I.; Nunnally, M.E.; Antonelli, M.; et al. Surviving Sepsis Campaign: Research Priorities for Sepsis and Septic Shock. Intensive Care Med. 2018, 44, 1–27. [Google Scholar] [CrossRef]
- Grumaz, S.; Stevens, P.; Grumaz, C.; Decker, S.O.; Weigand, M.A.; Hofer, S.; Brenner, T.; von Haeseler, A.; Sohn, K. Next-Generation Sequencing Diagnostics of Bacteremia in Septic Patients. Genome Med. 2016, 8, 1–13. [Google Scholar] [CrossRef]
- Guidet, B.; Barakett, V.; Vassal, T.; Petit, J.C.; Offenstadt, G. Endotoxemia and Bacteremia in Patients with Sepsis Syndrome in the Intensive Care Unit. Chest 1994, 106, 1194–1201. [Google Scholar] [CrossRef]
- Hurley, J.C.; Nowak, P.; Öhrmalm, L.; Gogos, C.; Armaganidis, A.; Giamarellos-Bourboulis, E.J. Endotoxemia as a Diagnostic Tool for Patients with Suspected Bacteremia Caused by Gram-Negative Organisms: A Meta-Analysis of 4 Decades of Studies. J. Clin. Microbiol. 2015, 53, 1183–1191. [Google Scholar] [CrossRef]
- Wolff, S. Biological Effects of Bacterial Endotoxins in Man. J. Infect. Dis. 1973, 128, 259–264. [Google Scholar] [CrossRef]
- Chinwalla, A.T.; Cook, L.L.; Delehaunty, K.D.; Fewell, G.A.; Fulton, L.A.; Fulton, R.S.; Graves, T.A.; Hillier, L.D.W.; Mardis, E.R.; Mcpherson, J.D. Initial Sequencing and Comparative Analysis of the Mouse Genome. Nature 2002, 420, 520–562. [Google Scholar] [CrossRef]
- Copeland, S.; Warren, H.S.; Lowry, S.F.; Calvano, S.E.; Remick, D. Acute Inflammatory Response to Endotoxin in Mice and Humans. Clin. Vaccine Immunol. 2005, 12, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybicki, J.; Kisdi, E.; Anttila, J.V. Model of Bacterial Toxin-Dependent Pathogenesis Explains Infective Dose. Proc. Natl. Acad. Sci. USA 2018, 115, 10690–10695. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, R.; Akashi, S.; Ogata, H.; Nagai, Y.; Fukudome, K.; Miyake, K.; Kimoto, M. MD-2, a Molecule That Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4. J. Exp. Med. 1999, 189, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The Structural Basis of Lipopolysaccharide Recognition by the TLR4-MD-2 Complex. Nature 2009, 458, 1191–1195. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, I.; Ostuni, R.; Marek, L.R.; Barresi, S.; Barbalat, R.; Barton, G.M.; Granucci, F.; Kagan, J.C. CD14 Controls the LPS-Induced Endocytosis of Toll-like Receptor 4. Cell 2011, 147, 868–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trautmann, M. Antibiotic-Induced Release of Endotoxin: In-Vitro Comparison of Meropenem and Other Antibiotics. J. Antimicrob. Chemother. 1998, 41, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Leeson, M.C.; Morrison, D.C. Induction of Proinflammatory Responses in Human Monocytes by Particulate and Soluble Forms of Lipopolysaccharide. Shock. 1994, 2, 235–245. [Google Scholar] [CrossRef]
- Lepper, P.M.; Held, T.K.; Schneider, E.M.; Bölke, E.; Gerlach, H.; Trautmann, M. Clinical Implications of Antibiotic-Induced Endotoxin Release in Septic Shock. Intensive Care Med. 2002, 28, 824–833. [Google Scholar] [CrossRef]
- Moreland, J.G.; Bailey, G.; Nauseef, W.M.; Weiss, J.P. Organism-Specific Neutrophil-Endothelial Cell Interactions in Response to Escherichia Coli, Streptococcus Pneumoniae, and Staphylococcus Aureus. J. Immunol. 2004, 172, 426–432. [Google Scholar] [CrossRef]
- Muotiala, A.; Helander, I.M.; Pyhala, L.; Kosunen, T.U.; Moran, A.P. Low Biological Activity of Helicobacterpylori Lipopolysaccharide. Microbiology 1992, 60, 1714–1716. [Google Scholar]
- Lepper, P.M.; Triantafilou, M.; Schumann, C.; Schneider, E.M.; Triantafilou, K. Lipopolysaccharides from Helicobacter Pylori Can Act as Antagonists for Toll-like Receptor 4. Cell. Microbiol. 2005, 7, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilli, D.; Mobarez, A.M.; Salmanian, A.H.; Hosseini, A.Z. Bioactivity and Immunological Evaluation of LPS from Different Serotypes of Helicobacter Pylori. Iran. J. Microbiol. 2013, 5, 142–146. [Google Scholar]
- Skoglund, A.; Bäckhed, H.K.; Nilsson, C.; Björkholm, B.; Normark, S.; Engstrand, L. A Changing Gastric Environment Leads to Adaptation of Lipopolysaccharide Variants in Helicobacter Pylori Populations during Colonization. PLoS ONE 2009, 4, e5885. [Google Scholar] [CrossRef] [PubMed]
- Cullen, T.W.; Giles, D.K.; Wolf, L.N.; Ecobichon, C.; Boneca, I.G.; Trent, M.S. Helicobacter Pylori versus the Host: Remodeling of the Bacterial Outer Membrane Is Required for Survival in the Gastric Mucosa. PLoS Pathog. 2011, 7, e1002454. [Google Scholar] [CrossRef]
- Peri, F.; Piazza, M. Therapeutic Targeting of Innate Immunity with Toll-like Receptor 4 (TLR4) Antagonists. Biotechnol. Adv. 2012, 30, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.P.; Wasan, K.M.; Choo, E.; Yau, E.; Wong, N.; Rose, J.; Moran, J.; Lynn, M. Safety, Pharmacokinetics, Pharmacodynamics, and Plasma Lipoprotein Distribution of Eritoran (E5564) during Continuous Intravenous Infusion into Healthy Volunteers. Antimicrob. Agents Chemother. 2004, 48, 3233–3240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossignol, D.P.; Lynn, M. Antagonism of in Vivo and Ex Vivo Response to Endotoxin by E5564, a Synthetic Lipid a Analogue. J. Endotoxin Res. 2002, 8, 483–488. [Google Scholar] [CrossRef]
- Mullarkey, M.; Rose, J.R.; Bristol, J.; Kawata, T.; Kimura, A.; Kobayashi, S.; Przetak, M.; Chow, J.; Gusovsky, F.; Christ, W.J.; et al. Inhibition of Endotoxin Response by E5564, a Novel Toll-Like Receptor 4-Directed Endotoxin Antagonist. J. Pharmacol. Exp. Ther. 2003, 304, 1093–1102. [Google Scholar] [CrossRef]
- Opal, S.M.; Laterre, P.F.; Francois, B.; LaRosa, S.P.; Angus, D.C.; Mira, J.P.; Wittebole, X.; Dugernier, T.; Perrotin, D.; Tidswell, M.; et al. Effect of Eritoran, an Antagonist of MD2-TLR4, on Mortality in Patients with Severe Sepsis: The ACCESS Randomized Trial. J. Am. Med. Assoc. 2013, 309, 1154–1162. [Google Scholar] [CrossRef]
- Steimle, A.; Autenrieth, I.B.; Frick, J.S. Structure and Function: Lipid A Modifications in Commensals and Pathogens. Int. J. Med. Microbiol. 2016, 306, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Kuzmich, N.N.; Sivak, K.V.; Chubarev, V.N.; Porozov, Y.B.; Savateeva-Lyubimova, T.N.; Peri, F. TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Vincent, J.L.; Angus, D.C.; Aikawa, N.; Demeyer, I.; Sainati, S.; Amlot, N.; Cao, C.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of TAK-242 for the Treatment of Severe Sepsis. Crit. Care Med. 2010, 38, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Chavarría-Velázquez, C.O.; Torres-Martínez, A.C.; Montaño, L.F.; Rendón-Huerta, E.P. TLR2 Activation Induced by H. Pylori LPS Promotes the Differential Expression of Claudin-4, -6, -7 and -9 via Either STAT3 and ERK1/2 in AGS Cells. Immunobiology 2017, 223, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Zendejas, V.E.; Torres-Martinez, A.C.; Salas-Morales, B.; Fortoul, T.I.; Montaño, L.F.; Rendon-Huerta, E.P. Claudin-6, 7, or 9 Overexpression in the Human Gastric Adenocarcinoma Cell Line AGS Increases Its Invasiveness, Migration, and Proliferation Rate. Cancer Investig. 2011, 29, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Kumar, P.; Cutler, C.W.; Mohamadzadeh, M.; Van Dyke, T.; Banchereau, J. Lipopolysaccharides from Distinct Pathogens Induce Different Classes of Immune Responses In Vivo. J. Immunol. 2001, 167, 5067–5076. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.; Murphy, K.M. Dendritic Cell Regulation of TH1-TH2 Development. Nat. Immunol. 2000, 1, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Shimauchi, H.; Ogawa, T.; Uchida, H.; Yoshida, J.; Ogoh, H.; Nozaki, T.; Okada, H. Splenic B-Cell Activation in Lipopolysaccharide-Non-Responsive C3H/HeJ Mice by Lipopolysaccharide of Porphyromonas Gingivalis. Experientia 1996, 52, 909–917. [Google Scholar] [CrossRef]
- Ogawa, T.; Uchida, H.; Amino, K. Immunobiological Activities of Chemically Defined Lipid A from Lipopolysaccharides of Porphyromonas Gingivalis. Microbiology 1994, 140, 1209–1216. [Google Scholar] [CrossRef]
- Biedroń, R.; Peruń, A.; Józefowski, S. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide. PLoS ONE 2016, 11, e0153558. [Google Scholar] [CrossRef]
- Zanoni, I.; Bodio, C.; Broggi, A.; Ostuni, R.; Caccia, M.; Collini, M.; Venkatesh, A.; Spreafico, R.; Capuano, G.; Granucci, F. Similarities and Differences of Innate Immune Responses Elicited by Smooth and Rough LPS. Immunol. Lett. 2012, 142, 41–47. [Google Scholar] [CrossRef] [PubMed]
- DeClue, A.E.; Johnson, P.J.; Day, J.L.; Amorim, J.R.; Honaker, A.R. Pathogen Associated Molecular Pattern Motifs from Gram-Positive and Gram-Negative Bacteria Induce Different Inflammatory Mediator Profiles in Equine Blood. Vet. J. 2012, 192, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Surbatovic, M.; Popovic, N.; Vojvodic, D.; Milosevic, I.; Acimovic, G.; Stojicic, M.; Veljovic, M.; Jevdjic, J.; Djordjevic, D.; Radakovic, S. Cytokine Profile in Severe Gram-Positive and Gram-Negative Abdominal Sepsis. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Tani, T.; Yokota, T.; Kodama, M. Detection of Peptidoglycan in Human Plasma Using the Silkworm Larvae Plasma Test. FEMS Immunol. Med. Microbiol. 2003, 35, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ge, M. Vancomycin Derivatives That Inhibit Peptidoglycan Biosynthesis Without Binding D-Ala-D-Ala. Science 1999, 284, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.G.; Elli, D.; Kim, H.K.; Hendrickx, A.P.A.; Sorg, J.A.; Schneewind, O.; Missiakas, D. Small Molecule Inhibitor of Lipoteichoic Acid Synthesis Is an Antibiotic for Gram-Positive Bacteria. Proc. Natl. Acad. Sci. USA 2013, 110, 3531–3536. [Google Scholar] [CrossRef] [PubMed]
- Schneewind, O.; Missiakas, D. Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria. J. Bacteriol. 2014, 196, 1133–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsburg, I.; Quie, P.G. Modulation of Human Polymorphonuclear Leukocyte Chemotaxis by Leukocyte Extracts, Bacterial Products, Inflammatory Exudates, and Polyelectrolytes. Inflammation 1980, 4, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.J.; Underhill, D.M. Peptidoglycan Recognition by the Innate Immune System. Nat. Rev. Immunol. 2018, 18, 243–254. [Google Scholar] [CrossRef]
- Asong, J.; Wolfert, M.A.; Maiti, K.K.; Miller, D.; Boons, G.J. Binding and Cellular Activation Studies Reveal That Toll-like Receptor 2 Can Differentially Recognize Peptidoglycan from Gram-Positive and Gram-Negative Bacteria. J. Biol. Chem. 2009, 284, 8643–8653. [Google Scholar] [CrossRef]
- Wolf, A.J.; Reyes, C.N.; Liang, W.; Becker, C.; Shimada, K.; Wheeler, M.L.; Cho, H.C.; Popescu, N.I.; Coggeshall, K.M.; Arditi, M.; et al. Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell 2016, 166, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Sanman, L.E.; Qian, Y.; Eisele, N.A.; Ng, T.M.; van der Linden, W.A.; Monack, D.M.; Weerapana, E.; Bogyo, M. Disruption of Glycolytic Flux Is a Signal for Inflammasome Signaling and Pyroptotic Cell Death. eLife 2016, 5, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Sacre, S.M.; Lundberg, A.M.C.; Andreakos, E.; Taylor, C.; Feldmann, M.; Foxwell, B.M. Selective Use of TRAM in Lipopolysaccharide (LPS) and Lipoteichoic Acid (LTA) Induced NF- B Activation and Cytokine Production in Primary Human Cells: TRAM Is an Adaptor for LPS and LTA Signaling. J. Immunol. 2007, 178, 2148–2154. [Google Scholar] [CrossRef]
- Cox, K.H.; Cox, M.E.; Woo-Rasberry, V.; Hasty, D.L. Pathways Involved in the Synergistic Activation of Macrophages by Lipoteichoic Acid and Hemoglobin. PLoS ONE 2012, 7, e47333. [Google Scholar] [CrossRef]
- Jeong, J.H.; Jang, S.; Jung, B.J.; Jang, K.S.; Kim, B.G.; Chung, D.K.; Kim, H. Differential Immune-Stimulatory Effects of LTAs from Different Lactic Acid Bacteria via MAPK Signaling Pathway in RAW 264.7 Cells. Immunobiology 2015, 220, 460–466. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, N.R.; Gim, M.G.; Lee, J.M.; Lee, S.Y.; Ko, M.Y.; Kim, J.Y.; Han, S.H.; Chung, D.K. Lipoteichoic Acid Isolated from Lactobacillus Plantarum Inhibits Lipopolysaccharide-Induced TNF- Production in THP-1 Cells and Endotoxin Shock in Mice. J. Immunol. 2008, 180, 2553–2561. [Google Scholar] [CrossRef] [PubMed]
- Villéger, R.; Saad, N.; Grenier, K.; Falourd, X.; Foucat, L.; Urdaci, M.C.; Bressollier, P.; Ouk, T.S. Characterization of Lipoteichoic Acid Structures from Three Probiotic Bacillus Strains: Involvement of d-Alanine in Their Biological Activity. Antonie Van Leeuwenhoek. 2014, 106, 693–706. [Google Scholar] [CrossRef]
- Gao, J.J.; Xue, Q.; Zuvanich, E.G.; Haghi, K.R.; Morrison, D.C. Commercial Preparations of Lipoteichoic Acid Contain Endotoxin That Contributes to Activation of Mouse Macrophages in Vitro. Infect. Immun. 2001, 69, 751–757. [Google Scholar] [CrossRef]
- Yipp, B.G.; Andonegui, G.; Howlett, C.J.; Robbins, S.M.; Hartung, T.; Ho, M.; Kubes, P. Profound Differences in Leukocyte-Endothelial Cell Responses to Lipopolysaccharide Versus Lipoteichoic Acid. J. Immunol. 2002, 168, 4650–4658. [Google Scholar] [CrossRef]
- Sharma, P.; Dube, D.; Sinha, M.; Yadav, S.; Kaur, P.; Sharma, S.; Singh, T.P. Structural Insights into the Dual Strategy of Recognition by Peptidoglycan Recognition Protein, PGRP-S: Structure of the Ternary Complex of PGRP-S with Lipopolysaccharide and Stearic Acid. PLoS ONE 2013, 8, e53756. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Locksley, R.M. Innate Immune Responses in Peptidoglycan Recognition Protein L-Deficient Mice. Mol. Cell. Biol. 2004, 24, 7949–7957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, J.R.; Freyer, D.; Alexander, C.; Schröder, N.W.; Reiss, A.; Küster, C.; Pfeil, D.; Tuomanen, E.I.; Schumann, R.R. Recognition of Pneumococcal Peptidoglycan. Immunity 2004, 19, 269–279. [Google Scholar] [CrossRef]
- Van Langevelde, P.; Van Dissel, J.T.; Ravensbergen, E.; Appelmelk, B.J.; Schrijver, I.A.; Groeneveld, P.H.P. Antibiotic-Induced Release of Lipoteichoic Acid and Peptidoglycan from Staphylococcus Aureus: Quantitative Measurements and Biological Reactivities. Antimicrob. Agents Chemother. 1998, 42, 3073–3078. [Google Scholar] [CrossRef]
- Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A. The Innate Immune Response to Bacterial Flagellin Is Mediated by Toll-like Receptor 5. Nature 2001, 410, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Maaser, C.; Heidemann, J.; von Eiff, C.; Lugering, A.; Spahn, T.W.; Binion, D.G.; Domschke, W.; Lugering, N.; Kucharzik, T. Human Intestinal Microvascular Endothelial Cells Express Toll-Like Receptor 5: A Binding Partner for Bacterial Flagellin. J. Immunol. 2004, 172, 5056–5062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen-Nissen, E.; Smith, K.D.; Strobe, K.L.; Barrett, S.L.R.; Cookson, B.T.; Logan, S.M.; Aderem, A. Evasion of Toll-like Receptor 5 by Flagellated Bacteria. Proc. Natl. Acad. Sci. USA 2005, 102, 9247–9252. [Google Scholar] [CrossRef]
- Reyes Ruiz, V.M.; Ramirez, J.; Naseer, N.; Palacio, N.M.; Siddarthan, I.J.; Yan, B.M.; Boyer, M.A.; Pensinger, D.A.; Sauer, J.D.; Shin, S. Broad Detection of Bacterial Type III Secretion System and Flagellin Proteins by the Human NAIP/NLRC4 Inflammasome. Proc. Natl. Acad. Sci. USA 2017, 114, 13242–13247. [Google Scholar] [CrossRef]
- Elena, G.; Giovanna, D.; Brunella, P.; Anna, D.F.; Alessandro, M.; Antonietta, T.M. Proinflammatory Signal Transduction Pathway Induced by Shigella Flexneri Porins in Caco-2 Cells. Braz. J. Microbiol. 2009, 40, 701–713. [Google Scholar] [CrossRef]
- Singleton, T.E.; Massari, P.; Wetzler, L.M. Activation Is MyD88 and TLR2 Dependent Neisserial Porin-Induced Dendritic Cell Neisserial Porin-Induced Dendritic Cell Activation Is MyD88 and TLR2 Dependent. J. Immunol. 2005, 174, 3545–3550. [Google Scholar] [CrossRef]
- Sakharwade, S.C.; Mukhopadhaya, A. Vibrio Cholerae Porin OmpU Induces LPS Tolerance by Attenuating TLR-Mediated Signaling. Mol. Immunol. 2015, 68, 312–324. [Google Scholar] [CrossRef]
- Vassiliou, A.G.; Maniatis, N.A.; Orfanos, S.E.; Mastora, Z.; Jahaj, E.; Paparountas, T.; Armaganidis, A.; Roussos, C.; Aidinis, V.; Kotanidou, A. Induced Expression and Functional Effects of Aquaporin-1 in Human Leukocytes in Sepsis. Crit. Care 2013, 17, 1. [Google Scholar] [CrossRef]
- Hamabata, T.; Liu, C.; Takeda, Y. Positive and Negative Regulation of Water Channel Aquaporins in Human Small Intestine by Cholera Toxin. Microb. Pathog. 2002, 32, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Leu, H.; Inoue, N.; Shimizu, M.; Toma, T.; Kuroda, M.; Saito, T.; Wada, T.; Yachie, A. The Critical Role of Lipopolysaccharide in the Upregulation of Aquaporin 4 in Glial Cells Treated with Shiga Toxin. J. Biomed. Sci. 2015, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Glogauer, M.; Ellen, R.P.; Loitto, V.M.; Magnusson, K.E.; Magalhaes, M.A.O. Aquaporin 9 Phosphorylation Mediates Membrane Localization and Neutrophil Polarization. J. Leukoc. Biol. 2011, 90, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, M.C.; Saadoun, S.; Verkman, A.S. Aquaporins and Cell Migration. Pflugers Arch. 2008, 456, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Takeuchi, O.; Akira, S. Recognition of Lipopeptides by Toll-like Receptors. J. Endotoxin Res. 2002, 8, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Peterson, J.W.; Niesel, D.W.; Klimpel, G.R.; Zhang, H.; Peterson, J.W.; Niesel, D.W.; Klimpel, G.R. Bacterial Lipoprotein and Lipopolysaccharide Act Synergistically to Induce Lethal Shock and Proinflammatory Cytokine Production. J. Immunol. 1997, 159, 4868–4878. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Doyle, M.; Manning, B.J.; Blankson, S.; Wu, Q.D.; Power, C.; Cahill, R.; Redmond, H.P. Cutting Edge: Bacterial Lipoprotein Induces Endotoxin-Independent Tolerance to Septic Shock. J. Immunol. 2003, 170, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Deiters, U.; Gumenscheimer, M.; Galanos, C.; Mühlradt, P.F. Toll-like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS D. Infect. Immun. 2003, 71, 4456–4462. [Google Scholar] [CrossRef]
- Guyton, K.; Bond, R.; Romeo, C.; Southern, R.; Cochran, J.; Teti, G.; Cook, J.A. Endotoxin-Induced Cross-Tolerance to Gram-Positive Sepsis. J. Endotoxin Res. 1999, 5, 119–126. [Google Scholar] [CrossRef]
- Zhou, P.; She, Y.; Dong, N.; Li, P.; He, H.; Borio, A.; Wu, Q.; Lu, S.; Ding, X.; Cao, Y.; et al. Alpha-Kinase 1 Is a Cytosolic Innate Immune Receptor for Bacterial ADP-Heptose. Nature 2018, 561, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Milivojevic, M.; Dangeard, A.S.; Kasper, C.A.; Tschon, T.; Emmenlauer, M.; Pique, C.; Schnupf, P.; Guignot, J.; Arrieumerlou, C. ALPK1 Controls TIFA/TRAF6-Dependent Innate Immunity against Heptose-1,7-Bisphosphate of Gram-Negative Bacteria. PLoS Pathog. 2017, 13, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, R.G.; Sintsova, A.; Buckwalter, C.M.; Leung, N.; Cochrane, A.; Li, J.; Gray-Owen, S.D. Cytosolic Detection of the Bacterial Metabolite HBP Activates TIFA-Dependent Innate Immunity. Science 2015, 348, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dickson, K.; Lehmann, C. Inflammatory Response to Different Toxins in Experimental Sepsis Models. Int. J. Mol. Sci. 2019, 20, 4341. https://doi.org/10.3390/ijms20184341
Dickson K, Lehmann C. Inflammatory Response to Different Toxins in Experimental Sepsis Models. International Journal of Molecular Sciences. 2019; 20(18):4341. https://doi.org/10.3390/ijms20184341
Chicago/Turabian StyleDickson, Kayle, and Christian Lehmann. 2019. "Inflammatory Response to Different Toxins in Experimental Sepsis Models" International Journal of Molecular Sciences 20, no. 18: 4341. https://doi.org/10.3390/ijms20184341
APA StyleDickson, K., & Lehmann, C. (2019). Inflammatory Response to Different Toxins in Experimental Sepsis Models. International Journal of Molecular Sciences, 20(18), 4341. https://doi.org/10.3390/ijms20184341