Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Distribution of Each Group by Principal Component Analysis (PCA) and Loading Plot Analysis
2.2. Identification of Differentially Expressed Proteins (Fold-Change > 1.5, p < 0.05) and Selection of Diagnostic Biomarkers
2.3. Functional Analysis of Identified DEPs (Fold-Change > 1.5, p < 0.05)
2.4. Selection of Target Peptide for MRM Analysis
2.5. MRM Analysis and Multivariate Analysis of the Multi-Marker Panel Using Individual Serum Samples
3. Discussion
4. Materials and Methods
4.1. Healthy controls and Patients
4.2. Depletion of Highly Abundant Serum Proteins
4.3. Information-Dependent Acquisition (IDA) by SCIEX TripleTOF 5600
4.4. Relative Quantification and Data Processing by SCIEX TripleTOF 5600
4.5. Absolute Quantification and Data Processing by SCIEX QTAP 5500
4.6. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RA | Rheumatoid arthritis |
RF | Rheumatoid factor |
ACPA | Anti-citrullinated protein antibodies |
MRM | Multiple reaction monitoring |
PLS-DA | Partial least squares-discriminant analysis |
DEPs | Differentially expressed genes |
References
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Tobon, G.J.; Youinou, P.; Saraux, A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. J. Autoimmu. 2010, 35, 10–14. [Google Scholar] [CrossRef]
- Nell, V.P.; Machold, K.P.; Eberl, G.; Stamm, T.A.; Uffmann, M.; Smolen, J.S. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology (Oxford) 2004, 43, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Van Nies, J.A.; Krabben, A.; Schoones, J.W.; Huizinga, T.W.; Kloppenburg, M.; van der Helm-van Mil, A.H. What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review. Ann. Rheum. Dis. 2014, 73, 861–870. [Google Scholar] [CrossRef]
- Monti, S.; Montecucco, C.; Bugatti, S.; Caporali, R. Rheumatoid arthritis treatment: The earlier the better to prevent joint damage. RMD Open 2015, 1, e000057. [Google Scholar] [CrossRef]
- Wollenhaupt, J. Rheumatoid arthritis: Early diagnosis and early therapy are essential. MMW Fortschr. Med. 2012, 154, 74–77. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis. Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Kroot, E.J.; de Jong, B.A.; van Leeuwen, M.A.; Swinkels, H.; van den Hoogen, F.H.; van’t Hof, M.; van de Putte, L.B.; van Rijswijk, M.H.; van Venrooij, W.J.; van Riel, P.L. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis. Rheum. 2000, 43, 1831–1835. [Google Scholar] [CrossRef]
- Yang, L.; Zou, Q.H.; Zhang, Y.; Shi, Y.; Hu, C.R.; Hui, C.X.; Liu, X.F.; Fang, Y.F. Proteomic analysis of plasma from rheumatoid arthritis patients with mild cognitive impairment. Clin. Rheumatol. 2018, 37, 1773–1782. [Google Scholar] [CrossRef]
- Hueber, W.; Tomooka, B.H.; Zhao, X.; Kidd, B.A.; Drijfhout, J.W.; Fries, J.F.; van Venrooij, W.J.; Metzger, A.L.; Genovese, M.C.; Robinson, W.H. Proteomic analysis of secreted proteins in early rheumatoid arthritis: Anti-citrulline autoreactivity is associated with up regulation of proinflammatory cytokines. Ann. Rheum. Dis. 2007, 66, 712–719. [Google Scholar] [CrossRef]
- Liao, H.; Wu, J.; Kuhn, E.; Chin, W.; Chang, B.; Jones, M.D.; O’Neil, S.; Clauser, K.R.; Karl, J.; Hasler, F.; et al. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum. 2004, 50, 3792–3803. [Google Scholar] [CrossRef]
- Kim, D.; Mun, S.; Lee, J.; Park, A.; Seok, A.; Chun, Y.-T.; Kang, H.-G. Proteomics analysis reveals differential pattern of widespread protein expression and novel role of histidine-rich glycoprotein and lipopolysaccharide-binding protein in rheumatoid arthritis. Int. J. Biol. Macromol. 2018, 109, 704–710. [Google Scholar] [CrossRef]
- Kuhn, E.; Wu, J.; Karl, J.; Liao, H.; Zolg, W.; Guild, B. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 2004, 4, 1175–1186. [Google Scholar] [CrossRef]
- Weinberg, J.B.; Pippen, A.M.; Greenberg, C.S. Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 1991, 34, 996–1005. [Google Scholar] [CrossRef]
- Zacharski, L.R.; Brown, F.E.; Memoli, V.A.; Kisiel, W.; Kudryk, B.J.; Rousseau, S.M.; Hunt, J.A.; Dunwiddie, C.; Nutt, E.M. Pathways of coagulation activation in situ in rheumatoid synovial tissue. Clin. Immunol. Immunopathol. 1992, 63, 155–162. [Google Scholar] [CrossRef]
- So, A.K.; Varisco, P.A.; Kemkes-Matthes, B.; Herkenne-Morard, C.; Chobaz-Peclat, V.; Gerster, J.C.; Busso, N. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J. Thromb. Haemost 2003, 1, 2510–2515. [Google Scholar] [CrossRef]
- Onuora, S. Blood coagulation factor drives arthritis pathogenesis. Nat. Rev. Rheumatol. 2014, 10, 700. [Google Scholar] [CrossRef]
- Ballanti, E.; Perricone, C.; di Muzio, G.; Kroegler, B.; Chimenti, M.S.; Graceffa, D.; Perricone, R. Role of the complement system in rheumatoid arthritis and psoriatic arthritis: Relationship with anti-TNF inhibitors. Autoimmu. Rev. 2011, 10, 617–623. [Google Scholar] [CrossRef]
- Walport, M.J. Complement. First of two parts. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef]
- Walport, M.J. Complement. Second of two parts. N. Engl. J. Med. 2001, 344, 1140–1144. [Google Scholar] [CrossRef]
- Li, Z.; Gao, J.; Ma, Y.; Li, Z.; Wang, M.; Qin, Z.; Yang, M.; Liu, S. Vitamin D-Binding Protein Acts in the Actin Scavenge System and Can Have Increased Expression During Aspirin Therapy. Curr. Neurovasc. Res. 2016, 1, 184–192. [Google Scholar] [CrossRef]
- White, P.; Cooke, N. The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol. Metab TEM 2000, 11, 320–327. [Google Scholar] [CrossRef]
- Speeckaert, M.; Huang, G.; Delanghe, J.R.; Taes, Y.E. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin. Chim. Acta 2006, 372, 33–42. [Google Scholar] [CrossRef]
- Lind, S.E.; Smith, D.B.; Janmey, P.A.; Stossel, T.P. Role of plasma gelsolin and the vitamin D-binding protein in clearing actin from the circulation. J. Clin. Investig. 1986, 78, 736–742. [Google Scholar] [CrossRef]
- Balakrishnan, L.; Bhattacharjee, M.; Ahmad, S.; Nirujogi, R.S.; Renuse, S.; Subbannayya, Y.; Marimuthu, A.; Srikanth, S.M.; Raju, R.; Dhillon, M.; et al. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. Clin. Proteom. 2014, 11, 1. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Kongsbak, M.; von Essen, M.R.; Levring, T.B.; Schjerling, P.; Woetmann, A.; Odum, N.; Bonefeld, C.M.; Geisler, C. Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol. 2014, 15, 35. [Google Scholar] [CrossRef]
- Fischer, R.; Trudgian, D.C.; Wright, C.; Thomas, G.; Bradbury, L.A.; Brown, M.A.; Bowness, P.; Kessler, B.M. Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis. Mol. Cell Proteom. MCP 2012, 11, M111. [Google Scholar] [CrossRef]
- Steel, L.F.; Shumpert, D.; Trotter, M.; Seeholzer, S.H.; Evans, A.A.; London, W.T.; Dwek, R.; Block, T.M. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics 2003, 3, 601–609. [Google Scholar] [CrossRef]
Variables | Discovery Set (LC-MS/MS) | Validation Set (MRM) | ||
---|---|---|---|---|
Healthy Controls (n = 20) | RA Patients (n = 20) | Healthy Controls (n = 43) | RA Patients (n = 50) | |
Sex (Female/Male) | 14/6 | 14/6 | 25/18 | 39/11 |
Age (Years) | 55.3 ± 3.9 | 59.2 ± 5.8 | 56.9 ± 4.7 | 59.9 ± 6.7 |
RF (IU/mL) | - | 97.95 ± 81.1 | - | 79.5 ± 67.4 |
RF-Positive, n | - | 16 | - | 40 |
RF-Negative, n | - | 4 | - | 10 |
ACPA (U/mL) | - | 161.2 ± 120.5 | - | 124.8 ± 112.6 |
ACPA-Positive, n | - | 15 | - | 35 |
ACPA-Negative, n | - | 5 | - | 15 |
DAS28 | - | 3.3 ± 1.2 | - | 2.7 ± 1.2 |
Low activity, n (DAS28 < 3.2) | - | 12 | - | 37 |
Moderate activity, n (3.2 ≤ DAS28 > 5.1) | - | 6 | - | 9 |
High activity, n (DAS28 > 5.1) | - | 2 | - | 3 |
Compound Name | Gene Name | Peptide Sequence | Q1 (m/z) | Q3 (m/z) | Q3 Ion Type | Q3 Ion Charge | DP (volts) | CE (volts) | CXP (volts) |
---|---|---|---|---|---|---|---|---|---|
Angiotensinogen | ANGT | ALQDQLVLVAAK | 634.882 | 956.578 | Y9 | 2 | 77.4 | 31.7 | 11 |
600.408 | y6 | 2 | 77.4 | 31.7 | 11 | ||||
289.187 | Y3 | 2 | 77.4 | 31.7 | 11 | ||||
Complement C3 | CO3 | ISLPESLK | 443.776 | 573.3 | y5 | 2 | 61 | 19 | 28 |
686.3 | y6 | 2 | 61 | 17 | 30 | ||||
773.3 | y7 | 2 | 61 | 19 | 40 | ||||
Kallistatin | KAIN | LGFTDLFSK | 514.3 | 609.3 | y5 | 2 | 66 | 23 | 42 |
710.3 | y6 | 2 | 66 | 23 | 36 | ||||
857.4 | y7 | 2 | 66 | 21 | 42 | ||||
Serum amyloid A4 protein | SAA4 | FRPDGLPK | 465.3 | 516.2 | b4 | 2 | 65 | 25 | 32 |
573.2 | b5 | 2 | 65 | 27 | 14 | ||||
244.1 | y2 | 2 | 65 | 27 | 14 | ||||
Vitamin D-binding protein | VTDB | THLPEVFLSK | 585.83 | 819.461 | y7 | 2 | 73.8 | 29.9 | 11 |
239.114 | b2 | 2 | 73.8 | 29.9 | 11 | ||||
352.198 | b3 | 2 | 73.8 | 29.9 | 11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, S.; Lee, J.; Park, A.; Kim, H.-J.; Lee, Y.-J.; Son, H.; Shin, M.; Lim, M.-K.; Kang, H.-G. Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry. Int. J. Mol. Sci. 2019, 20, 4368. https://doi.org/10.3390/ijms20184368
Mun S, Lee J, Park A, Kim H-J, Lee Y-J, Son H, Shin M, Lim M-K, Kang H-G. Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry. International Journal of Molecular Sciences. 2019; 20(18):4368. https://doi.org/10.3390/ijms20184368
Chicago/Turabian StyleMun, Sora, Jiyeong Lee, Arum Park, Hyo-Jin Kim, Yoo-Jin Lee, Hyunsong Son, Miji Shin, Mi-Kyoung Lim, and Hee-Gyoo Kang. 2019. "Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry" International Journal of Molecular Sciences 20, no. 18: 4368. https://doi.org/10.3390/ijms20184368
APA StyleMun, S., Lee, J., Park, A., Kim, H. -J., Lee, Y. -J., Son, H., Shin, M., Lim, M. -K., & Kang, H. -G. (2019). Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry. International Journal of Molecular Sciences, 20(18), 4368. https://doi.org/10.3390/ijms20184368