Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Searches
2.2. Study Selection
- Biophysical energies
- Diabetic wound
- Cell or animal experiments
- Co-interventions (e.g., co-medication)
- No diabetic wounds
- Human studies
- Systematic review or meta-analysis
2.3. Data Extraction and Quality Assessment
2.4. Primary Outcomes
3. Results
3.1. Search Results
3.2. Characteristics of Studies
3.3. Methodological Characteristics
3.4. Efficacy of Biophysical Energy (BPEs) Stimulation
3.4.1. Pulsed Electromagnetic Field (PEMF)
3.4.2. Ultrasound (US)
3.4.3. Extracorporeal Shockwave (ECSW)
3.4.4. Electrical Stimulation (ES)
3.4.5. Photo Energies (PE)
Low Level Laser Therapy (LLL)
Polychromatic Light Emitting Diodes (LED)
Infrared (IR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BPEs | biophysical energies |
ES | electrical stimulation |
PEMF | pulsed electromagnetic field |
ECSW | extracorporeal shockwave |
LLL | low-level laser therapy |
US | ultrasound |
LED | light emitting diode |
NIR | infrared |
E | experimental group |
C | control group |
Appendix A
Detailed search strings
Basic search
Model
Electrical stimulation
Electromagnetics
Phototherapy
Ultrasound
Extracorporeal shockwave therapy
Filter
References
- American Diabetes Association. FAST FACTS—Data and Statistics about Diabetes. Available online: http://professional.diabetes.org/admin/UserFiles/0%20-%20Sean/Documents/Fast_Facts_3-2015.pdf (accessed on 18 December 2017).
- Margolis, D.J.; Malay, D.S.; Hoffstad, O.J.; Leonard, C.E.; MaCurdy, T.; de Nava, K.L.; Tan, Y.; Molina, T.; Siegel, K.L. Incidence of Diabetic Foot Ulcer and Lower Extremity Amputation among Medicare Beneficiaries, 2006 to 2008: Data Points #2. Available online: http://www.ncbi.nlm.nih.gov/books/NBK65149/ (accessed on 18 December 2017).
- Johannesson, A.; Larsson, G.U.; Ramstrand, N.; Turkiewicz, A.; Wirehn, A.B.; Atroshi, I. Incidence of lower-limb amputation in the diabetic and nondiabetic general population: A 10-year population-based cohort study of initial unilateral and contralateral amputations and reamputations. Diabetes Care 2009, 32, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Dubský, M.; Jirkovská, A.; Bem, R.; Fejfarová, V.; Skibová, J.; Schaper, N.C.; Lipsky, B.A. Risk factors for recurrence of diabetic foot ulcers: Prospective follow-up analysis in the Eurodiale subgroup. Int. Wound J. 2013, 10, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.; Tecilazich, F.; Kafanas, A.; Doupis, J.; Gnardellis, C.; Leal, E.; Tellechea, A.; Pradhan, L.; Lyons, T.E.; Giurini, J.M.; et al. Mechanisms Involved in the Development and Healing of Diabetic Foot Ulceration. Diabetes 2012, 61, 2937–2947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloth, L.C. Electrical Stimulation Technologies for Wound Healing. Adv. Wound Care 2014, 3, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Kwan, R.L.; Cheing, G.L.; Vong, S.K.; Lo, S.K. Electrophysical therapy for managing diabetic foot ulcers: A systematic review. Int. Wound J. 2013, 10, 121–131. [Google Scholar] [CrossRef]
- Thakral, G.; Kim, P.J.; LaFontaine, J.; Menzies, R.; Najafi, B.; Lavery, L.A. Electrical Stimulation as an Adjunctive Treatment of Painful and Sensory Diabetic Neuropathy. J. Diabetes Sci. Technol. 2013, 7, 1202–1209. [Google Scholar] [CrossRef] [Green Version]
- Kwan, R.L.; Wong, W.C.; Yip, S.L.; Chan, K.L.; Zheng, Y.P.; Cheing, G.L. Pulsed electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers: A pilot study. Adv. Skin Wound Care 2015, 28, 212–219. [Google Scholar] [CrossRef]
- Santamato, A.; Panza, F.; Fortunato, F.; Portincasa, A.; Frisardi, V.; Cassatella, G.; Valente, M.; Seripa, D.; Ranieri, M.; Fiore, P. Effectiveness of the frequency rhythmic electrical modulation system for the treatment of chronic and painful venous leg ulcers in older adults. Rejuvenation Res. 2012, 15, 281–287. [Google Scholar] [CrossRef]
- Musaev, A.V.; Guseinova, S.G.; Imamverdieva, S.S. The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with diabetic polyneuropathy. Neurosci. Behav. Physiol. 2003, 33, 745–752. [Google Scholar] [CrossRef]
- Cho, M.R.; Thatte, H.S.; Lee, R.C.; Golan, D.E. Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann. Biomed. Eng. 2000, 28, 234–243. [Google Scholar] [CrossRef]
- Ercan, B.; Kummer, K.M.; Tarquinio, K.M.; Webster, T.J. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomater. 2011, 7, 3003–3012. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jekal, S.-J.; Kwon, P.-S. 630 nm Light Emitting Diode Irradiation Improves Dermal Wound Healing in Rats. JKPT 2015, 27, 140–146. [Google Scholar] [CrossRef] [Green Version]
- de Vries, R.B.M.; Hooijmans, C.R.; Langendam, M.W.; van Luijk, J.; Leenaars, M.; Ritskes-Hoitinga, M.; Wever, K.E. A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies. Evid. Based Preclin. Med. 2015, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Hass, H.L. The therapeutic activity of the BIOPTRON-lamp in the treatment of disorders of wound healing. Diabetic gangrene. Krankenpfl. J. 1998, 36, 494–496. [Google Scholar] [PubMed]
- Kilik, R.; Bober, J.; Gal, P.; Vidinsky, B.; Mokry, M.; Longauer, F.; Sabo, J. The influence of laser irradiation with different power densities on incisional wound healing in healthy and diabetic rats. Rozhl Chir 2007, 86, 384–387. [Google Scholar] [PubMed]
- Callaghan, M.J.; Chang, E.I.; Seiser, N.; Aarabi, S.; Ghali, S.; Kinnucan, E.R.; Simon, B.J.; Gurtner, G.C. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 2008, 121, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, I.; Hajizadeh, S.; Salmani, M.E.; Abrari, K. Pulsed electromagnetic fields accelerate wound healing in the skin of diabetic rats. Bioelectromagnetics 2010, 31, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Cheing, G.L.; Li, X.; Huang, L.; Kwan, R.L.; Cheung, K.K. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats. Bioelectromagnetics 2014, 35, 161–169. [Google Scholar] [CrossRef]
- Choi, M.C.; Cheung, K.K.; Li, X.; Cheing, G.L. Pulsed electromagnetic field (PEMF) promotes collagen fibre deposition associated with increased myofibroblast population in the early healing phase of diabetic wound. Arch. Dermatol. Res. 2016, 308, 21–29. [Google Scholar] [CrossRef]
- Choi, H.M.C.; Cheing, A.K.K.; Ng, G.Y.F.; Cheing, G.L.Y. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS ONE 2018, 13, e0191074. [Google Scholar] [CrossRef]
- Thawer, H.A.; Houghton, P.E. Effects of ultrasound delivered through a mist of saline to wounds in mice with diabetes mellitus. J. Wound Care 2004, 13, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Maan, Z.N.; Januszyk, M.; Rennert, R.C.; Duscher, D.; Rodrigues, M.; Fujiwara, T.; Ho, N.; Whitmore, A.; Hu, M.S.; Longaker, M.T.; et al. Noncontact, low-frequency ultrasound therapy enhances neovascularization and wound healing in diabetic mice. Plast. Reconstr. Surg. 2014, 134, 402e–411e. [Google Scholar] [CrossRef]
- Roper, J.A.; Williamson, R.C.; Bally, B.; Cowell, C.A.; Brooks, R.; Stephens, P.; Harrison, A.J.; Bass, M.D. Ultrasonic Stimulation of Mouse Skin Reverses the Healing Delays in Diabetes and Aging by Activation of Rac1. J. Investig. Dermatol. 2015, 135, 2824–2851. [Google Scholar] [CrossRef]
- Kuo, Y.R.; Wang, C.T.; Wang, F.S.; Chiang, Y.C.; Wang, C.J. Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen. 2009, 17, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Luo, C.; Yan, X.; Cheng, L.; Chai, Y. Extracorporeal shock wave treatment improves incisional wound healing in diabetic rats. Tohoku J. Exp. Med. 2011, 225, 285–292. [Google Scholar] [CrossRef]
- Hayashi, D.; Kawakami, K.; Ito, K.; Ishii, K.; Tanno, H.; Imai, Y.; Kanno, E.; Maruyama, R.; Shimokawa, H.; Tachi, M. Low-energy extracorporeal shock wave therapy enhances skin wound healing in diabetic mice: A critical role of endothelial nitric oxide synthase. Wound Repair Regen. 2012, 20, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Zins, S.R.; Amare, M.F.; Tadaki, D.K.; Elster, E.A.; Davis, T.A. Comparative analysis of angiogenic gene expression in normal and impaired wound healing in diabetic mice: Effects of extracorporeal shock wave therapy. Angiogenesis 2010, 13, 293–304. [Google Scholar] [CrossRef]
- Smith, J.; Romansky, N.; Vomero, J.; Davis, R.H. The effect of electrical stimulation on wound healing in diabetic mice. J. Am. Podiatry Assoc. 1984, 74, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Thawer, H.A.; Houghton, P.E. Effects of electrical stimulation on the histological properties of wounds in diabetic mice. Wound Repair Regen. 2001, 9, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Cho, H.Y.; Lee, S.M. High-voltage pulsed current stimulation enhances wound healing in diabetic rats by restoring the expression of collagen, alpha-smooth muscle actin, and TGF-beta1. Tohoku J. Exp. Med. 2014, 234, 1–6. [Google Scholar] [CrossRef]
- Langoni Cassettari, L.; Colli Rocha Dias, P.; Natalia Lucchesi, A.; Ferraz de Arruda, M.; Veruska Paiva Ortolan, E.; Marques, M.E.; Spadella, C.T. Continuous electrical current and zinc sulphate administered by transdermal iontophoresis improves skin healing in diabetic rats induced by alloxan: Morphological and ultrastructural analysis. J. Diabetes Res. 2014, 2014, 980232. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Naim, J.O.; Lanzafame, R.J. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg. Med. 1997, 20, 56–63. [Google Scholar] [CrossRef]
- Danno, K.; Mori, N.; Toda, K.; Kobayashi, T.; Utani, A. Near-infrared irradiation stimulates cutaneous wound repair: Laboratory experiments on possible mechanisms. Photodermatol. Photoimmunol. Photomed. 2001, 17, 261–265. [Google Scholar] [CrossRef]
- Reddy, G.K.; Stehno-Bittel, L.; Enwemeka, C.S. Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 2001, 9, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Stadler, I.; Lanzafame, R.J.; Evans, R.; Narayan, V.; Dailey, B.; Buehner, N.; Naim, J.O. 830-nm irradiation increases the wound tensile strength in a diabetic murine model. Lasers Surg. Med. 2001, 28, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Al-Watban, F.A.; Andres, B.L. Polychromatic LED therapy in burn healing of non-diabetic and diabetic rats. J. Clin. Laser Med. Surg. 2003, 21, 249–258. [Google Scholar] [CrossRef]
- Reddy, G.K. Comparison of the photostimulatory effects of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rat wounds. Lasers Surg. Med. 2003, 33, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Whelan, H.T.; Buchmann, E.V.; Dhokalia, A.; Kane, M.P.; Whelan, N.T.; Wong-Riley, M.T.; Eells, J.T.; Gould, L.J.; Hammamieh, R.; Das, R.; et al. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J. Clin. Laser Med. Surg. 2003, 21, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, K.R.; Barna, L.; Chenault, V.M.; Waynant, R.W.; Ilev, I.K.; Longo, L.; Miracco, C.; Johnson, B.; Anders, J.J. Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes. Photomed. Laser Surg. 2004, 22, 281–290. [Google Scholar] [CrossRef]
- Kawalec, J.S.; Hetherington, V.J.; Pfennigwerth, T.C.; Dockery, D.S.; Dolce, M. Effect of a diode laser on wound healing by using diabetic and nondiabetic mice. J. Foot Ankle Surg. 2004, 43, 214–220. [Google Scholar] [CrossRef]
- Maiya, G.A.; Kumar, P.; Rao, L. Effect of low intensity helium-neon (He-Ne) laser irradiation on diabetic wound healing dynamics. Photomed. Laser Surg. 2005, 23, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Vinck, E.M.; Cagnie, B.J.; Cornelissen, M.J.; Declercq, H.A.; Cambier, D.C. Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed. Laser Surg. 2005, 23, 167–171. [Google Scholar] [CrossRef]
- Al-Watban, F.A.; Andres, B.L. Polychromatic LED in oval full-thickness wound healing in non-diabetic and diabetic rats. Photomed. Laser Surg. 2006, 24, 10–16. [Google Scholar] [CrossRef]
- Carvalho, P.T.; Mazzer, N.; dos Reis, F.A.; Belchior, A.C.; Silva, I.S. Analysis of the influence of low-power HeNe laser on the healing of skin wounds in diabetic and non-diabetic rats. Acta Cir. Bras. 2006, 21, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, S.B.; Villaverde, A.B.; Nicolau, R.; Salgado, M.C.; Melo Mda, S.; Pacheco, M.T. Comparison between wound healing in induced diabetic and nondiabetic rats after low-level laser therapy. Photomed. Laser Surg. 2006, 24, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Al-Watban, F.A.; Zhang, X.Y.; Andres, B.L. Low-level laser therapy enhances wound healing in diabetic rats: A comparison of different lasers. Photomed. Laser Surg. 2007, 25, 72–77. [Google Scholar] [CrossRef]
- Houreld, N.; Abrahamse, H. Irradiation with a 632.8 nm helium-neon laser with 5 J/cm2 stimulates proliferation and expression of interleukin-6 in diabetic wounded fibroblast cells. Diabetes Technol. Ther. 2007, 9, 451–459. [Google Scholar] [CrossRef]
- Houreld, N.; Abrahamse, H. In vitro exposure of wounded diabetic fibroblast cells to a helium-neon laser at 5 and 16 J/cm2. Photomed. Laser Surg. 2007, 25, 78–84. [Google Scholar] [CrossRef]
- Houreld, N.N.; Abrahamse, H. Effectiveness of helium-neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed. Laser Surg. 2007, 25, 474–481. [Google Scholar] [CrossRef]
- Mirzaei, M.; Bayat, M.; Mosafa, N.; Mohsenifar, Z.; Piryaei, A.; Farokhi, B.; Rezaei, F.; Sadeghi, Y.; Rakhshan, M. Effect of low-level laser therapy on skin fibroblasts of streptozotocin-diabetic rats. Photomed. Laser Surg. 2007, 25, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Houreld, N.N.; Abrahamse, H. Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner. Lasers Med. Sci. 2008, 23, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Meireles, G.C.; Santos, J.N.; Chagas, P.O.; Moura, A.P.; Pinheiro, A.L. Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third-degree burns in diabetic rats. Photomed. Laser Surg. 2008, 26, 47–54. [Google Scholar] [CrossRef]
- Al-Watban, F.A. Laser therapy converts diabetic wound healing to normal healing. Photomed. Laser Surg. 2009, 27, 127–135. [Google Scholar] [CrossRef]
- Al-Watban, F.A.; Zhang, X.Y.; Andres, B.L.; Al-Anize, A. Visible lasers were better than invisible lasers in accelerating burn healing on diabetic rats. Photomed. Laser Surg. 2009, 27, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Dall Agnol, M.A.; Nicolau, R.A.; de Lima, C.J.; Munin, E. Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med. Sci. 2009, 24, 909–916. [Google Scholar] [CrossRef]
- Gungormus, M.; Akyol, U.K. Effect of biostimulation on wound healing in diabetic rats. Photomed. Laser Surg. 2009, 27, 607–610. [Google Scholar] [CrossRef]
- Akyol, U.; Gungormus, M. The effect of low-level laser therapy on healing of skin incisions made using a diode laser in diabetic rats. Photomed. Laser Surg. 2010, 28, 51–55. [Google Scholar] [CrossRef]
- Carvalho Pde, T.; Silva, I.S.; Reis, F.A.; Perreira, D.M.; Aydos, R.D. Influence of ingaalp laser (660 nm) on the healing of skin wounds in diabetic rats. Acta Cir. Bras. 2010, 25, 71–79. [Google Scholar] [CrossRef]
- Chung, T.Y.; Peplow, P.V.; Baxter, G.D. Laser photobiostimulation of wound healing: Defining a dose response for splinted wounds in diabetic mice. Lasers Surg. Med. 2010, 42, 656–664. [Google Scholar] [CrossRef]
- Chung, T.Y.; Peplow, P.V.; Baxter, G.D. Laser photobiomodulation of wound healing in diabetic and non-diabetic mice: Effects in splinted and unsplinted wounds. Photomed. Laser Surg. 2010, 28, 251–261. [Google Scholar] [CrossRef]
- Houreld, N.; Abrahamse, H. Low-intensity laser irradiation stimulates wound healing in diabetic wounded fibroblast cells (WS1). Diabetes Technol. Ther. 2010, 12, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Houreld, N.N.; Sekhejane, P.R.; Abrahamse, H. Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg. Med. 2010, 42, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri Noudeh, Y.; Shabani, M.; Vatankhah, N.; Hashemian, S.J.; Akbari, K. A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed. Laser Surg. 2010, 28, 621–627. [Google Scholar] [CrossRef]
- Oliveira, P.C.; Pinheiro, A.L.; Reis Junior, J.A.; de Castro, I.C.; Gurgel, C.; Noia, M.P.; Meireles, G.C.; Cangussu, M.C.; Ramalho, L.M. Polarized light (lambda400-2000 nm) on third-degree burns in diabetic rats: Immunohistochemical study. Photomed. Laser Surg. 2010, 28, 613–619. [Google Scholar] [CrossRef]
- Santos, N.R.; dos Santos, J.N.; dos Reis, J.A., Jr.; Oliveira, P.C.; de Sousa, A.P.; de Carvalho, C.M.; Soares, L.G.; Marques, A.M.; Pinheiro, A.L. Influence of the use of laser phototherapy (lambda660 or 790 nm) on the survival of cutaneous flaps on diabetic rats. Photomed. Laser Surg. 2010, 28, 483–488. [Google Scholar] [CrossRef]
- Hegde, V.N.; Prabhu, V.; Rao, S.B.; Chandra, S.; Kumar, P.; Satyamoorthy, K.; Mahato, K.K. Effect of laser dose and treatment schedule on excision wound healing in diabetic mice. Photochem. Photobiol. 2011, 87, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.C.; Pinheiro, A.L.; de Castro, I.C.; Reis, J.A., Jr.; Noia, M.P.; Gurgel, C.; Teixeira Cangussu, M.C.; Pedreira Ramalho, L.M. Evaluation of the effects of polarized light (lambda400-200 nm) on the healing of third-degree burns in induced diabetic and nondiabetic rats. Photomed. Laser Surg. 2011, 29, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Peplow, P.V.; Chung, T.Y.; Ryan, B.; Baxter, G.D. Laser photobiostimulation of wound healing: Reciprocity of irradiance and exposure time on energy density for splinted wounds in diabetic mice. Lasers Surg. Med. 2011, 43, 843–850. [Google Scholar] [CrossRef]
- Sekhejane, P.R.; Houreld, N.N.; Abrahamse, H. Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro. Photomed. Laser Surg. 2011, 29, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Ayuk, S.M.; Houreld, N.N.; Abrahamse, H. Collagen production in diabetic wounded fibroblasts in response to low-intensity laser irradiation at 660 nm. Diabetes Technol. Ther. 2012, 14, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Dadpay, M.; Sharifian, Z.; Bayat, M.; Bayat, M.; Dabbagh, A. Effects of pulsed infra-red low level-laser irradiation on open skin wound healing of healthy and streptozotocin-induced diabetic rats by biomechanical evaluation. J. Photochem. Photobiol. Bbiol. 2012, 111, 1–8. [Google Scholar] [CrossRef]
- Houreld, N.N.; Masha, R.T.; Abrahamse, H. Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg. Med. 2012, 44, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Peplow, P.V.; Chung, T.Y.; Baxter, G.D. Laser photostimulation (660 nm) of wound healing in diabetic mice is not brought about by ameliorating diabetes. Lasers Surg. Med. 2012, 44, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Aparecida Da Silva, A.; Leal-Junior, E.C.; Alves, A.C.; Rambo, C.S.; Dos Santos, S.A.; Vieira, R.P.; De Carvalho Pde, T. Wound-healing effects of low-level laser therapy in diabetic rats involve the modulation of MMP-2 and MMP-9 and the redistribution of collagen types I and III. J. Cosmet. Laser Ther. 2013, 15, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Fathabadie, F.F.; Bayat, M.; Amini, A.; Bayat, M.; Rezaie, F. Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats. J. Cosmet. Laser 2013, 15, 294–304. [Google Scholar] [CrossRef]
- He, Y.; Yip, S.L.; Cheung, K.K.; Huang, L.; Wang, S.; Cheing, G.L. The effect of monochromatic infrared energy on diabetic wound healing. Int. Wound J. 2013, 10, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Dancakova, L.; Vasilenko, T.; Kovac, I.; Jakubcova, K.; Holly, M.; Revajova, V.; Sabol, F.; Tomori, Z.; Iversen, M.; Gal, P.; et al. Low-level laser therapy with 810 nm wavelength improves skin wound healing in rats with streptozotocin-induced diabetes. Photomed. Laser Surg. 2014, 32, 198–204. [Google Scholar] [CrossRef]
- Esmaeelinejad, M.; Bayat, M.; Darbandi, H.; Bayat, M.; Mosaffa, N. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums. Lasers Med. Sci. 2014, 29, 121–129. [Google Scholar] [CrossRef]
- Kilik, R.; Lakyova, L.; Sabo, J.; Kruzliak, P. Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and diabetic rats. Biomed. Res. Int. 2014, 2014, 269253. [Google Scholar] [CrossRef]
- Sharifian, Z.; Bayat, M.; Alidoust, M.; Farahani, R.M.; Bayat, M.; Rezaie, F.; Bayat, H. Histological and gene expression analysis of the effects of pulsed low-level laser therapy on wound healing of streptozotocin-induced diabetic rats. Lasers Med. Sci. 2014, 29, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- de Loura Santana, C.; Silva Dde, F.; Deana, A.M.; Prates, R.A.; Souza, A.P.; Gomes, M.T.; de Azevedo Sampaio, B.P.; Shibuya, J.F.; Bussadori, S.K.; Mesquita-Ferrari, R.A.; et al. Tissue responses to postoperative laser therapy in diabetic rats submitted to excisional wounds. PLoS ONE 2015, 10, e0122042. [Google Scholar] [CrossRef] [PubMed]
- Lau, P.; Bidin, N.; Krishnan, G.; AnaybBaleg, S.M.; Sum, M.B.; Bakhtiar, H.; Nassir, Z.; Hamid, A. Photobiostimulation effect on diabetic wound at different power density of near infrared laser. J. Photochem. Photobiology. B Biol. 2015, 151, 201–207. [Google Scholar] [CrossRef]
- Firat, E.T.; Dag, A.; Gunay, A.; Kaya, B.; Karadede, M.I.; Kanay, B.E.; Ketani, A.; Evliyaoglu, O.; Uysal, E. The effects of low-level laser therapy on palatal mucoperiosteal wound healing and oxidative stress status in experimental diabetic rats. Photomed. Laser Surg. 2013, 31, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Franca, C.M.; de Loura Santana, C.; Takahashi, C.B.; Alves, A.N.; De Souza Mernick, A.P.; Fernandes, K.P.; de Fatima Teixeira da Silva, D.; Bussadori, S.K.; Mesquita-Ferrari, R.A. Effect of laser therapy on skeletal muscle repair process in diabetic rats. Lasers Med Sci. 2013, 28, 1331–1338. [Google Scholar] [CrossRef]
- Masha, R.T.; Houreld, N.N.; Abrahamse, H. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed. Laser Surg. 2013, 31, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Kang, K.L. Effect of 980-nm GaAlAs diode laser irradiation on healing of extraction sockets in streptozotocin-induced diabetic rats: A pilot study. Lasers Med. Sci. 2012, 27, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Lau, P.S.; Bidin, N.; Krishnan, G.; Nassir, Z.; Bahktiar, H. Biophotonic effect of diode laser irradiance on tensile strength of diabetic rats. J. Cosmet. Laser Ther. 2015, 17, 86–89. [Google Scholar] [CrossRef]
- Wu, X.; Alberico, S.; Saidu, E.; Rahman Khan, S.; Zheng, S.; Romero, R.; Sik Chae, H.; Li, S.; Mochizuki, A.; Anders, J. Organic light emitting diode improves diabetic cutaneous wound healing in rats. Wound Repair Regen. 2015, 23, 104–114. [Google Scholar] [CrossRef]
- Fekrazad, R.; Mirmoezzi, A.; Kalhori, K.A.M.; Arany, P. The effect of red, green and blue lasers on healing of oral wounds in diabetic rats. J. Photochem. Photobiol. B Biol. 2015, 148, 242–245. [Google Scholar] [CrossRef]
- Ayuk, S.M.; Abrahamse, H.; Houreld, N.N. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J. Photochem. Photobiol. B Biol. 2016, 161, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Ayuk, S.M.; Houreld, N.N.; Abrahamse, H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med. Sci. 2018, 33, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- de Loura Santana, C.; de Fatima Teixeira Silva, D.; de Souza, A.P.; Jacinto, M.V.; Bussadori, S.K.; Mesquita-Ferrari, R.A.; Fernandes, K.P.; Franca, C.M. Effect of laser therapy on immune cells infiltrate after excisional wounds in diabetic rats. Lasers Surg. Med. 2016, 48, 45–51. [Google Scholar] [CrossRef]
- Denadai, A.S.; Aydos, R.D.; Silva, I.S.; Olmedo, L.; de Senna Cardoso, B.M.; da Silva, B.A.K.; de Carvalho, P.T.C. Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds. J. Exp. Ther. Oncol. 2017, 11, 85–89. [Google Scholar] [PubMed]
- Eissa, M.; Salih, W.H.M. The influence of low-intensity He-Ne laser on the wound healing in diabetic rats. Lasers Med. Sci. 2017, 32, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Goralczyk, K.; Szymanska, J.; Szot, K.; Fisz, J.; Rosc, D. Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med. Sci. 2016, 31, 825–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjbar, R.; Takhtfooladi, M.A. The effects of photobiomodulation therapy on Staphylococcus aureus infected surgical wounds in diabetic rats. A microbiological, histopathological, and biomechanical study. Acta Cir. Bras. 2016, 31, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Tatmatsu-Rocha, J.C.; Ferraresi, C.; Hamblin, M.R.; Damasceno Maia, F.; do Nascimento, N.R.; Driusso, P.; Parizotto, N.A. Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J. Photochem. Photobiol. B Biol. 2016, 164, 96–102. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Wu, H.-C.; Tai, N.-H.; Wang, T.-W. Carbon Nanotube Rope with Electrical Stimulation Promotes the Differentiation and Maturity of Neural Stem Cells. Small 2012, 8, 2869–2877. [Google Scholar] [CrossRef]
- Langelaan, M.L.P.; Boonen, K.J.M.; Rosaria-Chak, K.Y.; van der Schaft, D.W.J.; Post, M.J.; Baaijens, F.P.T. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells. J. Tissue Eng. Regen. Med. 2011, 5, 529–539. [Google Scholar] [CrossRef]
- Omar, M.T.; Alghadir, A.; Al-Wahhabi, K.K.; Al-Askar, A.B. Efficacy of shock wave therapy on chronic diabetic foot ulcer: A single-blinded randomized controlled clinical trial. Diabetes Res. Clin. Pract. 2014, 106, 548–554. [Google Scholar] [CrossRef]
- Isakov, E.; Ring, H.; Mendelevich, I.; Boduragin, N.; Susak, Z.; Kupfert, Y.; Marchetti, N. Electromagnetic stimulation of stump wounds in diabetic amputees. J. Rehabil. Sci. 1996, 9, 46–48. [Google Scholar]
- Peplow, P.V.; Chung, T.Y.; Baxter, G.D. Laser photobiomodulation of wound healing: A review of experimental studies in mouse and rat animal models. Photomed. Laser Surg. 2010, 28, 291–325. [Google Scholar] [CrossRef] [PubMed]
- Ud-Din, S.; Bayat, A. Non-animal models of wound healing in cutaneous repair: In silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin. Wound Repair Regen. 2017, 25, 164–176. [Google Scholar] [CrossRef]
- Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Hochwalt, P.C.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: A model for the study of chronic wounds. Wound Repair Regen. 2010, 18, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model. Wound Repair Regen. 2012, 20, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Parsons, N.; Kadyszewski, E.; Festing, M.F.; Cuthill, I.C.; Fry, D.; Hutton, J.; Altman, D.G. Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS ONE 2009, 4, e7824. [Google Scholar] [CrossRef]
Reference | Study Type | Sample Type | Parameters | Outcome Measure | Main Results |
---|---|---|---|---|---|
Callaghan et al., 2008 [19] | In vivo | db/db mice (n = 6 in each group) | E: Asymmetric; 4.5 ms pulses; 15 Hz; magnetic flux density increased from 0 to 12 G in 200 μs and return to 0 in 24 μs; custom designed cage; 8 hrs daily C: Identical cages with inactive generators |
|
|
C57BL6 mice (n = 6 in each group) | |||||
FGF-2 knockout mice (n = 6) | |||||
In vitro | Human umbilical vein endothelial cells | (No of plates = 6) 50 Hz inside the incubators measured less than 2 mG; harvested at each time point (0 to 12 h) |
|
| |
Goudarzi et al., 2010 [20] | In vivo | Male Wistar rats | E (n = 7): 20 Hz, 4 ms, 8 mT, 1 h/day for 10 days, with restrainer in energized coil C (n = 7): caged for same time without exposure to electromagnetic fields | On Days 0, 4, 8, 12, and 16
|
|
Cheing et al., 2014 [21] | In vivo | Male Sprague-Dawley rats | E (n = 28): 5 mT, 25 Hz, 1 h daily, sinusoidal pulses, 40 ms, in plastic cylindrical container C (n = 28): in plastic cylindrical container without exposure to electromagnetic fields |
|
|
Choi et al., 2016 [22] | In vivo | Male Sprague-Dawley rats | E (n = 20): 5 mT, 25 Hz, 1 h daily, sinusoidal pulses, 40 ms, in plastic cylindrical container C (n = 20): in plastic cylindrical container without exposure to electromagnetic fields |
|
|
Choi et al., 2018 [23] | In vivo | Male Sprague-Dawley rats | E1: 2 mT, 25 Hz, 1 h daily E2: 10 mT, 25 Hz, 1 h daily C: in plastic restrainer bag without exposure to electromagnetic fields |
|
|
Reference | Study Type | Sample Type | Parameters | Outcome Measure | Main Results |
---|---|---|---|---|---|
Thawer et al., 2004 [24] | In vivo | Male CD-1 mice | E (n = 27): alternate days, via vapor of 15 mL prewarmed saline, perpendicular for no more than 1 cm from wound bed, 1.5 min, 5 treatments over 10 days, 45 kHz, 0.1 Watt/cm2 C (n = 23): via intravenous drip of 15 mL prewarmed saline, perpendicular for no more than 1 cm from wound bed, 1.5 min, 5 treatments over 10 days, |
|
|
Mann et al., 2014 [25] | In vivo | Male BKS.Cg-Dock7m +/+ Leprdb /J) mice (n = 3 mice and n = 6 wound per group per time point) | E: 40 kHz with saline vapor, at distance 5 to 15 mm, 3 min, 3 times/week C: Change dressing |
|
|
In vitro | Dermal fibroblasts from db/db mice | Cell proliferation | Increased fibroblast proliferation (E: 42 ± 2 vs C: 22 ± 2; p < 0.001) | ||
Roper et al., 2015 [26] | In vivo | Male Syndecan-4 wild-type; knockout C57BL/6J mice | E: 2.5 cm diameter transducer; water-based gel; 30 mWcm−2; 1.5 MHz; pulsed at 1 kHz, 20 min C: transducer applied but not activated |
|
|
In vitro | Fibroblasts from wound tissue | Speed and persistent migration | Ultrasound switched the random migration to persistent migration in Sdc4 -/- fibroblasts. |
Reference | Study Type | Sample Type | Parameters | Outcome Measure | Main Results |
---|---|---|---|---|---|
Kuo et al., 2009 [27] | In vivo | Male Wistar Rats | E1 (n = 10): 1 session of defocused ESWT on postoperative Day 3 E2 (n = 10): 2 sessions of defocused ESWT on postoperative Day 3 and 7 E3 (n = 10): 3 sessions of defocused ESWT on postoperative Day 3, 7 and 10 C1 (n = 10): normal control without shockwave C2 (n = 10): diabetic control without shockwave [E1–E3: 100 impulses/area, 8 areas in all wound edges] |
|
|
Zins et al., 2010 [30] | In vivo | Female BALB/c, homozygous Bk.Cg-m Lepr db+/db+ | E: 200 impulses, 0.1 mJ/mm2, 5 pulses per second, 45 s C: sham treatment |
|
|
Yang et al., 2011 [28] | In vivo | Male Sprague-Dawley rats | E1 (n = 12): 1 session of ECSW on Day 1 E2 (n = 12): 3 sessions of ECSW on Days 1, 3 and 5 C1 (n = 12): normal control without shockwave C2 (n = 12): diabetic control without shockwave [E1–E2: 100 impulses per cm wound length; 0.11 mJ/mm2; 3 Hz] |
|
|
Hayashi et al., 2012 [29] | In vivo | Endothelial nitric oxide synthase-knockout (eNOS-KO) mice; C578l/6 mice | E1 (n = 7): eNOS-KO E2 (n = 11): C578l/6 C1 (n = 6): eNOS-KO, sham C2 (n = 8): C578l/6, sham [E1–E2: 70.25 mJ/mm2; 4 Hz; 100 impulses on surface of 4 cm2 per side] |
|
|
Reference | Study Type | Sample Type | Parameters | Outcome Measure | Main Results |
---|---|---|---|---|---|
Smith et al., 1984 [31] | In vivo | Male mice | E1 (n = 15): Diabetic mice, 20 volt, 20 ma E2 (n = 10): Diabetic mice, 1 volt, 10 ma E3 (n = 10): Normal mice, 20 volt, 20 ma E4 (n = 10): Normal mice, 1 volt, 10 ma C1 (n = 10): Diabetic mice, no charge C2 (n = 10): Normal mice without ES [E1–E3: Daily, 1 min interval, 5 days a week for 2 weeks; C1–C2: Electrode placement without charge] |
|
|
Thawer et al., 2001 [32] | In vivo | CD-1 mice (n = 55) | E1: Diabetic 12.5 V E2: Normal 12.5 V C1: Diabetic 0 V C2: Normal 0 V [E1–E2: restrained by flexible fiberglass narrow cone; monophasic pulsed current; pulse duration 200 ms, 200 Hz; negative electrode as treatment probe soaked in saline; 15 mins; alternate days; C1–C2: same setting except the electrode was not activated |
|
|
Kim et al., 2014 [33] | In vivo | Male Sprague-Dawley rats | E (n = 10): diabetic rats with high voltage pulsed current stimulation daily, 100 pps, 40 min, monophasic, twin-peak pulses for 140 μs, voltage from 35 to 50 V; negative pole for first 3 days and positive for next 4 days C1 (n = 10): diabetic rats with sham stimulation C2 (n = 10): normal rats with sham stimulation |
|
|
Langoni Cassettari et al., 2014 [34] | In vivo | Male Wistar rats | E1 (n = 20): normal with continuous ES E2 (n = 20): diabetic with continuous ES C1 (n = 20): normal without stimulation C2 (n = 20): diabetic without stimulation C3 (n = 20): normal with zinc sulfate by transdermal iontophoresis C4 (n = 20): diabetic with zinc sulfate by transdermal iontophoresis [E1–E2: 2 mA, 10 min; at immediate after surgical incision, Days 1, 2 and 3] |
|
|
Reference | Sample Type | Parameters | Outcome Measure | Main Results |
---|---|---|---|---|
Low-level laser | ||||
Yu et al., 1997 [35] | C57BL/Ksj/db/db mice (n = 40, wound = 80) | 630 nm, 20 ± 8 mW/cm2, 2 cm diameter, 250 s at each treatment session and received fluence of 5 J/cm2 |
|
|
Reddy et al., 2001 [37] | Male Sprague-Dawley rats | Left side wounds; 1.0 J/cm2 He-Ne laser at 632.8 nm; 5 days/week until wound closed |
|
|
Reddy, 2003 [40] | Male Sprague-Dawley rats (n = 15) | Continuous infrared radiation at 904 nm produced by Ga-As laser, 7 mW, 1.0 J/cm2, once a day, 5 days/week until wound closed |
|
|
Danno et al., 2001 [36] | Male ICR mice (n = 20); Female C57BL/KsJ-db/db mice (n = 20) | Daily, 30 min, at distance of 20 cm, 54 J/cm2 | Wound area | The rate of wound closure significantly accelerated. |
Stadler et al., 2001 [38] | C57BL/Ksj/db/db mice; Heterozygous littermates as control (n = 20) | Class IIIb 830 nm laser; 79 mW/cm2, daily, 5 J/cm2/wound; 5 consecutive days; 0–4 days or 3–7 days | Tensile strength | Tensile strength at 11 days was significant between diabetic laser group (2.16 ± 0.47 g/mm2) and sham (1.28 ± 0.32 g/mm2). Tensile strength at 23 days E than in C (2.72 ± 0.56 g/mm2 vs 1.5 ± 0.3 g/mm2). |
Byrnes et al., 2004 [42] | Psammomys obesus (Sand rats) | Diabetic, 4 J/cm2, He-Ne gas laser: 632.8 nm, daily for 3 consecutive days, at left wound |
|
|
Kawalec et al., 2004 [43] | C57BLKS/J mice (n = 56) | E1: 5 W every 2 days, 18 J/cm2 E2: 5 W every 4 days, 18 J/cm2 E3: 10 W every 2 days, 36 J/cm2 E4: 10 W every 4 days, 36 J/cm2 GaAIAs diode laser, 980 nm, 1 s |
|
|
Maiya et al., 2005 [44] | Male Wistar rats (n = 48) | 632.8 nm, 4.8 J/cm2, He-Ne laser, 5 days per week until closed |
|
|
Carvalho et al., 2006 [47] | Male Wistarrats | 632.8 nm HeNe laser, 4 J/cm2, 60 s/wound, continuous, 5 mW | Histology | Significant difference in collagen. |
Rabelo et al., 2006 [48] | Male Wistar rats (n = 50) | 3 times/week, continuous, 632.8 nm HeNe laser, 10 J/cm2, 17 s |
|
|
AI-Watban et al., 2007 [49] | Male Sprague-Dawley rats (n = 52) | E1: 532 nm, 5 J/cm2 E2: 633 nm, 5 J/cm2 E3: 810 nm, 5 J/cm2 E4: 980 nm, 5 J/cm2 E5: 532 nm, 10 J/cm2 E6: 633 nm, 10 J/cm2 E7: 810 nm, 10 J/cm2 E8: 980 nm, 10 J/cm2 E9: 532 nm, 20 J/cm2 E10: 633 nm, 20 J/cm2 E11: 810 nm, 20 J/cm2 E12: 980 nm, 20 J/cm2 E13: 532 nm, 30 J/cm2 E14: 633 nm, 30 J/cm2 E15: 810 nm, 30 J/cm2 E16: 980 nm, 30 J/cm2 | Wound healing percentage | The percentage of wound healing acceleration is higher in all treatment groups than the control groups. The optimum wavelength and incident dose was at E6. |
Meireles et al., 2008 [55] | Male Wistar rats (n = 55) | E1: 660 nm, 20 J/cm2 E2: 780 nm, 20 J/cm2 | Histology | At Day 7, E1 as necrosis extended down to epidermis, and E2 has extending down to dermis. On Day 14, E1 and E2 showed moderate amount of neo-angiogenesis. On Day 21, E1 showed advanced re-epithelialization, but E2 showed no epithelialization. |
Gungormus and Akyol, 2009 [59] | Female Wistar rats | Class IV, medical class IIB, 20 W, 50 Hz, GaA1As 808 nm, continuous, 0.1 W/cm2, 10 J/cm2, on Days 2, 4, 6, and 8 | Degree of re-epithelialization and inflammation | Significant between-group difference was found in re-epithelialization and inflammation on Day 10, but not on Day 20. |
Akyol and Gungӧrmuş, 2010 [60] | Wistar rats (n = 54) | Diode laser; 808 nm, 0.1 W/cm2, Day 0,2,4,6 and 8, 10 J/cm2, 20 s per session | Histology analysis | Significant difference found in post hoc analysis between E and C in re-epithelialization and inflammation on Day 10. |
Carvalho pde et al., 2010 [61] | Male Wistar rats | InGaA1P diode laser, continuous, 100 mW, 660 nm, 10 J/cm2 |
|
|
Chung et al., 2010a [63] | BKS.Cg-m+/+Leprdb/J (n = 47) | E1: 660 nm, 20 s, 18 mW, 7 consecutive days, 0.36 J/day E2: 660 nm, 20 s, 80 mW, 7 consecutive days, 1.6 J/day |
|
|
Chung et al., 2010b [62] | BKS.Cg-m+/+Leprdb/J | E1: 660 nm, 0 s, 80 mW, 7 consecutive days, 0 J/day E2: 660 nm, 10 s, 80 mW, 7 consecutive days, 0.8 J/day E3: 660 nm, 20 s, 80 mW, 7 consecutive days, 1.6 J/day E4: 660 nm, 30 s, 80 mW, 7 consecutive days, 3.2 J/day | Histological analysis | In splinted wound, the mean dermal gap and epithelial gap for E3 was significantly different from E1, 2 and 3. All wounds in E3 completely re-epithelized, and granulation tissue with collagen fibers filled or almost filled the whole of wound bed in splinted wound. |
Jahangiri Noudeh et al., 2010 [66] | Male Wistar rats (n = 19) | GaA1InP laser, 670 nm, 10 J/cm2; combined with 810 nm GaA1As laser, 250 mW, 12 J, 50 s, 1.33 J/cm2, performed every 3 days | Wound area | No statistical significance in wound area throughout repeated measurements in the study time period. |
Santos et al., 2010 [68] | Male Wistar rats (n = 12) | E1: 680 nm, 40 J/cm2 per session E2: 790 nm, 40 J/cm2 per session | Histological analysis | Fibroblast number and angiogenesis was higher in E2. Necrosis was more evident in E1. |
Hegde et al., 2011 [69] | Male Swiss albino mice | E1: 4 min, 15 s−1 J cm−2 E2: 8 min, 32 s−2 J cm−2 E3: 12 min, 46 s−3 J cm−2 E4: 17 min, 3 s−4 J cm−2 E5: 21 min, 17 s−5 J cm−2 [E1–E5: 632.8 nm HeNe laser] | Biochemical analysis | Hydroxyproline content in granulation tissue on Day 6 and Day 12 revealed a significant increase in the collagen content in all treatment groups. Rise in glucosamine levels was observed in all experimental groups on Day 6 but subsequently decreased linearly. |
Peplow et al., 2011 [71] | BKS.Cg-m+/+Leprdb/J | E1: 100 mW, 233–313 mW/cm2 E2: 50 mW, 116–156 mW/cm2 E3: 25 mW, 58–78 mW/cm2 [E1–E3: 660 nm] | Histological analysis | All splinted wounds were completely re-epithelized, and granulation tissue with collage fibers filled or almost filled the whole wound bed. |
Dadpay et al., 2012 [74] | Male Wistar rats (n = 18) | 0.2 J/cm2, pulsed infrared diode laser, 1.08 W/cm−2, 890 nm, 80 Hz | Biomechanical examination | Significant increases in maximum load and accelerate wound healing. |
Park and Kang, 2012 [89] | Male Sprague-Dawley rats (n = 48) | 980 GaA1As diode laser, 60 s every day, 0.01 W, 13.95 J/cm2 |
| Histological observations and gene expression analyses revealed a faster initial healing and more alveolar bone formation. |
Peplow et al., 2012 [76] | BKS.Cg-m+/+Leprdb/J | 660 nm, 100 mW, 20 s/day, 7 days |
|
|
Aparecida Da Silva et al., 2013 [77] | Male Wistar rats (n = 120) | InGaA1P, 50 mW, 660 nm, 4 J/cm2 |
|
|
Fathabadie et al., 2013 [78] | Male Wistar rats (n = 72) | Once daily for 6 days a week, pulsed infrared laser, 75 W, 1.08 W/cm2, 890 nm, 80 Hz, 180 ns pulse duration, 200 s, 0.2 J/cm2 | Morphometric examination | Significantly increased the number of mast cells on Days 4 and 15 after surgery. |
Firat et al., 2013 [86] | Male Wistar rats (n = 42) | GaA1As laser, 940 nm, 10 J/cm2, 0.1 W, continuous for 9 s, first dose at 2 h after wounding, then at 2 days interval for 4 sessions |
|
|
Franca et al., 2013 [87] | Male Wistar rats (n = 65) | 780 nm, 5 J/cm2, 10 s/point, 0.2 J |
|
|
Dancáková et al., 2014 [80] | Male Sprague-Dawley rats (n = 21) | 810 nm laser |
|
|
Kilík et al., 2014 [82] | Male Sprague-Dawley rats (n = 48) | GaA1As 635 nm, three times daily, 5 J/cm2; 1st wound: 1 mW/cm2; 2nd wound: 5 mW/cm2; 3rd wound: 15 mW/cm2 | Histopathological evaluation | The synthesis and organization of collagen fibers were consecutively enhanced in the 15 mW/cm2 group. A significant difference in the number of newly formed capillaries. |
Sharifian et al., 2014 [83] | Male Wistar rats (n = 24) | 890 nm, 6 days per week, pulsed infrared laser, 80 Hz, 0.2 J/cm2 |
|
|
De Loura Santana et al., 2015 [84] | Female Wistar rats (n = 90) | E1: laser 1 J/cm2, 26 s, 4 times E2: laser 4 J/cm2, 26 s, 1 time Gallium-aluminum-arsenide diode laser, 660 nm |
|
|
Lau et al., 2015 [85] | Male Sprague Dawley rats (n = 120) | E1: 100 mW, 50 s, 0.1 W/cm2 E2: 200 mW, 25 s, 0.2 W/cm2 E3: 300 mW, 17 s, 0.3 W/cm2 808 nm diode laser, continuous mode, 5 J/cm2, once daily |
|
|
Lau et al., 2015 [90] | Male rats (n = 21) | E1: 110 mW, 30 s E2: 110 mW, 60 s E3: 110 mW, 120 s E4: 510 mW, 30 s E5: 510 mW, 60 s E6: 510 mW, 120 s 808 nm diode laser, continuous mode |
|
|
Fekrazad et al., 2015 [92] | Male Wistar rats (n = 40) | E1: blue (425 nm) laser, 50 mW/cm2, 2 J/cm2 E2: green (532 nm) laser, 55 mW/cm2, 2 J/cm2 E3: red (630 nm) laser, 50 mW/cm2, 2 J/cm2 | Wound healing | Significant difference in the mean slope of wound healing between E and C. |
de Loura Santana et al., 2016 [95] | Female Wistar rats (n = 90) | E1: Single dose laser, 4 J/cm2, 104 s, 3.12 J, Day 1 E2: Fractionated-dose laser, 1 J/cm2, 26 s, 0.78 J, Days 1, 3, 8 and 10 660 nm, 30 mW, 38 mW/cm2 |
|
|
Ranjbar et al., 2016 [99] | Male Wistar rats (n = 30) | 685 nm InGaA1P laser, 15 mW, 3 J/cm2, 0.028 cm2 |
|
|
Tatmatsu Rocha et al., 2016 [100] | Male Swiss mice (n = 20) | 904 nm GaAs diode laser, 5 days, 40 mW, 60 s |
|
|
Denadai et al.,2017 [96] | Wistar rats (n = 36) | 660 nm InGaAlP, 100 mW, 60 s, 6 J/cm2, 0.028 cm2 | Malondialdehyde levels | Significant lower level of malondialdehyde. |
Eissa and Salih, 2017 [97] | Wistar rats (n = 14; 6 males, 8 females) | 632.8 nm He-Ne laser, continuous, aperture ~2.3 × 10−6 mm, 4 mW/cm2, 4 min, 6 mm away from skin, 5 days/week until wound healed | Wound diameter | E healed on average on Day 21, whereas C healed after 40 days of 60 days. |
Polychromatic light emitting diodes (LED) energy | ||||
AI-Watban and Andres, 2003 [39] | Sprague-Dawley rats (n = 30) | E1: 5 J/cm2 E2: 10 J/cm2 E3: 20 J/cm2 E4: 30 J/cm2 25-LED array (510–543 nm; 594–599 nm; 626–639 nm; 640–670 nm; 842–872 nm); 13.6 mW/cm2; 3 times/week; 3 consecutive weeks | Healing rate | Healing accelerated at 5 and 10 J/cm2, but no significant inhibition seen at 20 and 30 J/cm2. |
Whelan et al., 2003 [41] | BKS.Cg-m +/+Leprdb (n = 80) | 670 nm LED with restrainer; daily for 14 days; 4 J/cm2; 28 mW/cm2 for 2 min and 24 s |
|
|
Oliveira et al., 2010 [67] | Male Wistar rats (n = 30) | E1: Polarized light 400–2000 nm, 20 J/cm2 E2: Polarized light 400–2000 nm, 40 J/cm2 | Histological analysis | Significant difference in revascularization and re-epithelialization. |
Oliveira et al., 2011 [70] | Male Wistar rats (n = 90) | E1: polarized light 400–2000 nm, 10.2 J/cm2 E2: polarized light 400–2000 nm, 20.4 J/cm2 | Histological analysis | 10.2 J/cm2 caused higher deposition of collagen, quicker inflammatory reaction and improved revascularization than 20.4 J/cm2. |
Monochromatic infrared energy (MIRE) | ||||
He et al., 2013 [79] | Male Sprague-Dawley rats (n = 30) | 890 nm, intensity set at level 6, 85% of full power, 30 min, three times a week before euthanized |
|
|
Comparing different photo energies | ||||
AI-Watban and Andres, 2006 [46] | Male Sprague-Dawley rats (n = 61) | E1: 5 J/cm2 E2: 10 J/cm2 E3: 20 J/cm2 E4: 30 J/cm2 25-LED array (510–543 nm; 594–599 nm; 626–639 nm; 640–670 nm; 842–872 nm); 13.6 mW/cm2; 3 times/week; 3 consecutive weeks | Wound healing percentage | Wound healing percentage was significant for E1 (16 ± 3.1%, p = 0.01) but not significant for E2, 3 and 4 (7 ± 3.4, 3.4 ± 3.5, 0.9 ± 3.6%). |
AI-Watban, 2009 [56] | Sprague-Dawley rats (n = 893) | E1: 5 J/cm2 E2: 10 J/cm2 E3: 20 J/cm2 E4: 30 J/cm2 [E1–E4: laser 532 nm, 143 mW, 20.4 mW/cm2] E5: 5 J/cm2 E6: 10 J/cm2 E7: 20 J/cm2 E8: 30 J/cm2 [E5–E8: laser 633 nm, 140 mW, 15.56 mW/cm2] E9: 5 J/cm2 E10: 10 J/cm2 E11: 20 J/cm2 E12: 30 J/cm2 [E9–E12: laser 810 nm, 200 mW, 22.22 mW/cm2] E13: 5 J/cm2 E14: 10 J/cm2 E15: 20 J/cm2 E16: 30 J/cm2 [E13–E16: laser 980 nm, 200 mW, 22.22 mW/cm2] E17: 5 J/cm2 E18: 10 J/cm2 E19: 20 J/cm2 E20: 30 J/cm2 [E17–E20: laser 10,600 nm, 300 mW, 66.37 mW/cm2] E21: 5 J/cm2 E22: 10 J/cm2 E23: 20 J/cm2 E24: 30 J/cm2 [E21–E24: Polychromatic LEDs 510–872 nm, 272 mW, 13.6 mW/cm2] [three times per week] | Wound area | The best effects on wound healing was shown in E5–E8, followed by E1–E4 > E13–E16 > E9–E12 > E21–E24 > E17–E20. |
AI-Watban et al., 2009 [57] | Male Sprague-Dawley rats | E1: 5 J/cm2 E2: 10 J/cm2 E3: 20 J/cm2 E4: 30 J/cm2 [E1–E4: laser 532 nm, 143 mW, 20.4 mW/cm2] E5: 5 J/cm2 E6: 10 J/cm2 E7: 20 J/cm2 E8: 30 J/cm2 [E5–E8: laser 633 nm, 140 mW, 15.56 mW/cm2] E9: 5 J/cm2 E10: 10 J/cm2 E11: 20 J/cm2 E12: 30 J/cm2 [E9–E12: laser 670 nm, 120 mW, 22.86 mW/cm2] E13: 5 J/cm2 E14: 10 J/cm2 E15: 20 J/cm2 E16: 30 J/cm2 [E13–E16: laser 810 nm, 200 mW, 22.22 mW/cm2] E17: 5 J/cm2 E18: 10 J/cm2 E19: 20 J/cm2 E20: 30 J/cm2 [E17–E20: laser 980 nm, 200 mW, 22.22 mW/cm2] [three times per week] | Relative healing | Significant difference in the mean percentage of healing acceleration between the visible laser and invisible laser. |
Dall Agnol et al., 2009 [58] | Male Wistarrats | E1: GaA1As LED, 40 nm bandwidth centered at 640 nm, 30 mW E2: indium-gallium-aluminum-phosphide (InGaA1P) laser, 660 nm, 30 mW, 6 J/cm2 |
|
|
Wu et al., 2015 [91] | Male Zucker Diabetic Fatty rats (n = 30) | E1: Organic light-emitting diode E2: 635 nm laser [10 mW/cm2, 5 J/cm2, 8 mins 20 s, Daily for 7 consecutive days] |
|
|
Reference | Sample Type | Parameters | Outcome Measure | Main Results |
---|---|---|---|---|
Low-level laser | ||||
Houreld and Abrahamse, 2007a [50] | Human skin fibroblast cells | E1: 26 min 33 s, 5 J/cm2 E2: 84 min 23 s, 16 J/cm2 Exposed once on Days 1 and 4, HeNe laser 632.8 nm, 3 mW/cm2 |
|
|
Houreld and Abrahamse, 2007b [51] | Human skin fibroblast cells | E1: 37 min, 5 J/cm2 E2: 2 h, 16 J/cm2 HeNe laser 632.8 nm, 2.206 mW/cm2 |
|
|
Houreld and Abrahamse, 2007c [52] | Human skin fibroblast cells | E1: 27 min 46 s, 5 J/cm2, at 30 min and 24 h E2: 2 h, 16 J/cm2, at 30 min and 72 h HeNe laser 632.8 nm, 3.034 mW/cm2 |
|
|
Mirzaei et al., 2007 [53] | Cultures of fibroblast-like cells from Wistar rats | E1 (wells n = 10): 0.09 J/cm2, 30 s, 4 times/day E2 (wells n = 10): 0.09 J/cm2, 30 s, 4 times at 2 days E3 (wells n = 10): 1 J/cm2, 330 s, 4 times at 2 days E4 (wells n = 10): 1 J/cm2, 100 s, 4 times at 4 days E5 (wells n = 10): 4 J/cm2, 1320 s, 4 times at 4 days [E1–E5: HeNe laser 632.8 nm, 0.6 mW] |
|
|
Houreld and Abrahamse, 2008 [54] | Human skin fibroblast cells | E1: HeNe 632.8 nm, 5 J/cm2, 23 mW, 2.206 mW/cm2 E2: HeNe 632.8 nm, 16 J/cm2, 23 mW, 2.206 mW/cm2 E3: diode 830 nm, 5 J/cm2, 55 mW, 6 mW/cm2 E4: diode 830 nm, 16 J/cm2, 55 mW, 6 mW/cm2 E5: Nd:YAG 1064 nm, 5 J/cm2, 1 W, 12.7 mW/cm2 E6: Nd:YAG 1064 nm, 16 J/cm2, 1 W, 12.7 mW/cm2 |
|
|
Houreld and Abrahamse, 2010 [64] | Human skin fibroblast cells | E1: HeNe 632.8 nm, 5 J/cm2, 23 mW, 2.206 mW/cm2 E2: diode 830 nm, 5 J/cm2, 55 mW, 6 mW/cm2 E3: Nd:YAG 1064 nm, 5 J/cm2, 1 W, 12.7 mW/cm2 |
|
|
Houreld et al., 2010 [65] | Human skin fibroblast cells (n = 6) | 830 nm, 40 mW, 5 J/cm2 |
|
|
Sekhejane et al., 2011 [72] | Diabetic wounded and hypoxic human skin fibroblast cells (WS1) | 636 nm, continuous, 5 J/cm2, 476 s and incubated for 1 or 24 h |
|
|
Ayuk et al., 2012 [73] | Diabetic wounded human skin fibroblast | 660 nm, continuous, 10.22 mW/cm2, 5 J/cm2, 8 min 9 s and incubated for 48 or 72 h |
| Significant increase in cell migration, viability, proliferation and collagen production. |
Houreld et al., 2012 [75] | Human skin fibroblast | E1: 5 J/cm2 E2: 15 J/cm2 660 nm, continuous, 11 mW/cm2 |
|
|
Esmaeelinejad et al., 2014 [81] | Human skin fibroblasts | E1: 757 s, 0.5 J/cm2 E2: 1512 s, 1 J/cm2 E3: 3024 s, 2 J/cm2 HeNe laser, 1.5 mW, 632.8 nm, 0.66 mW/cm2 |
|
|
Masha et al., 2013 [88] | Human skin fibroblast cells (WS1) | 660 nm, continuous, 100 mW, 11 mW/cm2, 5 J/cm2, 7 min 35 s | Gene expression | Upregulated the expression of mitochondrial genes COX6B2 (complex IV), COX6C (complex IV), PPA1 (complex V), ATP4B (complex V) and ATP5G2 (complex V), ATP5F1 (complex V), NDUFA11 (complex I), and NDUFS7 (complex I). |
Goralczyk et al., 2016 [98] | Human umbilical vein endothelial cells | E1: 635 nm, 30 mW, 1066 s, 1.875 mW/cm2 E2: 830 nm, 60 mW, 533 s, 3.75 mW/cm2 80 cm2 irradiated area, 10 cm distance |
|
|
Ayuk et al., 2016 [93] | Human skin fibroblasts | 830 nm, 5 J/cm2, continuous, 98 mW, 9.1 cm2, 10.76 mW/cm2, 7 min 43 s | Gene expression profiling | Stimulatory effect on cadherins, integrins, selectins and immunoglobulins. |
Ayuk et al., 2018 [94] | Human skin fibroblast cells (WS1) | 660 nm, 5 J/cm2, continuous, 102 mW, 9.1 cm2, 11.23 mW/cm2, 7 min 25 s |
|
|
Near-infrared | ||||
Danno et al., 2001 [36] | Human foreskin keratinocytes; human foreskin microvascular endothelial cells; human newborn foreskin fibroblasts | Halolamps with 0.7–1.3 μm near infrared, 30 mW/cm2, 20–60 min at distance of 20 cm |
|
|
Polychromatic light emitting diode (LED) energy | ||||
Vinck et al., 2005 [45] | Chicken embryos fibroblast cultures (n = 256) | Green light of 570 nm, continuous mode, 0.1 J/cm2, 3 min, 10 mW, once per day for 3 days | Fibroblast survival and proliferation | Significantly higher rate of proliferation in hyperglycemia circumstances after irradiation. |
Wu et al., 2015 [91] | Primary human dermal fibroblasts in 180 mM glucose concentration | Organic light-emitting diode, 623 nm peak wavelength; 7 or 10 mW/cm2, 0.2, 1 or 5 J/cm2 |
|
|
Reference | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|---|
Pulsed electromagnetic field | ||||||||||
Callaghan et al., 2008 [19] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Goudarzi et al., 2010 [20] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Cheing et al., 2014 [21] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Choi et al., 2016 [22] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Choi et al., 2018 [23] | Yes | Yes | Unclear | Unclear | Unclear | Yes | Unclear | Yes | Yes | Yes |
Ultrasound | ||||||||||
Thawer et al., 2004 [24] | Unclear | Yes | Yes | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Mann et al., 2014 [25] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Roper et al., 2015 [26] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Shockwave | ||||||||||
Kuo et al., 2009 [27] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Zins et al., 2010 [30] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Yang et al., 2011 [28] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Hayashi et al., 2012 [29] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | No | Yes | Yes |
Electrical stimulation | ||||||||||
Smith et al., 1984 [31] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | No | Yes | Yes |
Thawer et al., 2001 [32] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Kim et al., 2014 [33] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Langoni et al., 2014 [34] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Photo energy | ||||||||||
Yu et al., 1997 [35] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Danno et al., 2001 [36] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Reddy et al., 2001 [37] | No | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | No |
Stadler et al., 2001 [38] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
AI-Watban and Andres, 2003 [39] | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Reddy, 2003 [40] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No |
Whelan et al., 2003 [41] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Byrnes et al., 2004 [42] | No | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | No |
Kawalec et al., 2004 [43] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Maiya et al., 2005 [44] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
AI-Watban and Andres, 2006 [46] | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Carvalho et al., 2006 [47] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Rabelo et al., 2006 [48] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
AI-Watban et al., 2007 [49] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Meireles et al., 2008 [55] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
AI-Watban, 2009 [56] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
AI-Watban et al., 2009 [57] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Dall Agnol et al., 2009 [58] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Gungormus and Akyol, 2009 [59] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No |
Akyol and Gungӧrmuş, 2010 [60] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | No |
Carvalho pde et al., 2010 [61] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Chung et al., 2010a [63] | Unclear | Yes | Unclear | No | Unclear | Unclear | Yes | Yes | Yes | Yes |
Chung et al., 2010b [62] | Unclear | Yes | Unclear | No | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Jahangiri Noudeh et al., 2010 [66] | Unclear | Yes | Unclear | No | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Oliveira et al., 2010 [67] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Santos et al., 2010 [68] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Hegde et al., 2011 [69] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Oliveira et al., 2011 [70] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Peplow et al., 2011 [71] | Unclear | Yes | Unclear | No | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Dadpay et al., 2012 [74] | No | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No |
Park and Kang, 2012 [89] | No | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No |
Peplow et al., 2012 [76] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Aparecida Da Silva et al., 2013 [77] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Firat et al., 2013 [86] | Unclear | Yes | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes | Yes |
Franca et al., 2013 [87] | Unclear | Yes | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes | Yes |
He et al., 2013 [79] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Masha et al., 2013 [88] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Dancáková et al., 2014 [80] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Kilík et al., 2014 [82] | No | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No |
Sharifian et al., 2014 [83] | No | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No |
De Loura Santana et al., 2015 [84] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes | Yes |
Fekrazad et al., 2015 [92] | Unclear | Yes | Unclear | No | Unclear | Unclear | Yes | Unclear | Yes | Yes |
Lau et al., 2015 [85] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Lau et al., 2015 [90] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes |
Wu et al., 2015 [91] | No | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No |
de Loura Santana et al., 2016 [95] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Unclear | Yes | Yes |
Ranjbar et al., 2016 [99] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Unclear | Yes | Yes |
Tatmatsu Rocha et al., 2016 [100] | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Unclear | Yes | Yes |
Denadai et al.,2017 [96] | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes |
Eissa and Salih, 2017 [97] | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwan, R.L.-C.; Lu, S.; Choi, H.M.-C.; Kloth, L.C.; Cheing, G.L.-Y. Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review. Int. J. Mol. Sci. 2019, 20, 368. https://doi.org/10.3390/ijms20020368
Kwan RL-C, Lu S, Choi HM-C, Kloth LC, Cheing GL-Y. Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review. International Journal of Molecular Sciences. 2019; 20(2):368. https://doi.org/10.3390/ijms20020368
Chicago/Turabian StyleKwan, Rachel Lai-Chu, Song Lu, Harry Ming-Chun Choi, Luther C. Kloth, and Gladys Lai-Ying Cheing. 2019. "Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review" International Journal of Molecular Sciences 20, no. 2: 368. https://doi.org/10.3390/ijms20020368
APA StyleKwan, R. L. -C., Lu, S., Choi, H. M. -C., Kloth, L. C., & Cheing, G. L. -Y. (2019). Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review. International Journal of Molecular Sciences, 20(2), 368. https://doi.org/10.3390/ijms20020368