Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Efficiency of T. gondii RH Tachyzoites Invading DC2.4 Cells
2.2. Qualification and Quantification of the Exosomes
2.3. miRNA Sequencing and Analysis of the Differential Exosomal miRNAs (DEmiRs) from the DC2.4 Cells Uninfected and Infected with T.gondii RH Tachyzoites
2.4. Verification of the Stably Enriched DEmiRs with RT-qPCR
2.5. Prediction and Analysis of the Target Genes of the Stably Enriched DEmiRNAs
3. Discussion
4. Materials and Methods
4.1. Parasites and Cell Lines
4.2. Exosome Isolation
4.3. Detection of the Quality of Exosomes with a Transmission Electron Microscope (TEM)
4.4. Detection of the Size and Quantity of Exosomes by Nanoparticle Tracking Analysis (NTA)
4.5. Verification of Exosomal Proteins by Western Blotting
4.6. Construction of Small RNA Library, Sequencing of the miRNA, and Bioinformatics Analysis
4.7. The Screening of the Differentially Enriched miRNAs
4.8. Verification of the Differential miRNAs with RT-qPCR
4.9. Bioinformatics Analysis of the Differential Enriched miRNA Target Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DCs | Dendritic cells |
DEmiR | Differential exosomal miRNA |
APCs | Antigen-presenting cells |
PPI | Protein–protein interaction network |
KDA | Key driver analysis |
GO | Gene ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MOI | Multiplicity of infection |
TEM | Transmission electron microscope |
NTA | Nanoparticle tracking analysis |
FBS | Fetal bovine serum |
PVDF | Polyvinylidene fluoride |
References
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef]
- Hill, D.; Dubey, J.P. Toxoplasma gondii: Transmission, diagnosis and prevention. Clin. Microbiol. Infect. 2002, 8, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S.A.; Jones, J.L.; Conrad, P.A.; Patton, S.; Lindsay, D.S.; Dubey, J.P. Toxoplasma gondii: Epidemiology, feline clinical aspects, and prevention. Trends Parasitol. 2010, 26, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. Toxoplasmosis of animals and humans. J. Parasitol. 2010, 96, 940. [Google Scholar]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P. History of the discovery of the life cycle of Toxoplasma gondii. Int. J. Parasitol. 2009, 39, 877–882. [Google Scholar] [CrossRef]
- Campos, J.H.; Soares, R.P.; Ribeiro, K.; Andrade, A.C.; Batista, W.L.; Torrecilhas, A.C. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases. J. Immunol. Res. 2015, 2015, 832057. [Google Scholar] [CrossRef]
- Szempruch, A.J.; Dennison, L.; Kieft, R.; Harrington, J.M.; Hajduk, S.L. Sending a message: Extracellular vesicles of pathogenic protozoan parasites. Nat. Rev. Microbiol. 2016, 14, 669–675. [Google Scholar] [CrossRef]
- Steinman, R.M. Dendritic cells and the control of immunity: Enhancing the efficiency of antigen presentation. Mt. Sinai J. Med. N.Y. 2001, 68, 160. [Google Scholar]
- Fleur, A.; Daniel, B.; Sébastian, A.; Philippe, R.; Isabelle, D.P. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T.gondii infection. Infect. Immun. 2004, 72, 4127. [Google Scholar]
- Ines, A.G.; Miska, E.A. MicroRNA functions in animal development and human disease. Development 2005, 132, 4653–4662. [Google Scholar] [Green Version]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef]
- Li, Y.; Xiu, F.; Mou, Z.; Xue, Z.; Du, H.; Zhou, C.; Li, Y.; Shi, Y.; He, S.; Zhou, H. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway. Nanomedicine 2018, 13, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteom. 2010, 73, 1907–1920. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J. Manipulation of dendritic cell functions by human cytomegalovirus. Expert Rev. Mol. Med. 2008, 10, e35. [Google Scholar] [CrossRef]
- Hoshina, S.; Sekizuka, T.; Kataoka, M.; Hasegawa, H.; Hamada, H.; Kuroda, M.; Katano, H. Profile of Exosomal and Intracellular microRNA in Gamma-Herpesvirus-Infected Lymphoma Cell Lines. PLoS ONE 2016, 11, e0162574. [Google Scholar] [CrossRef]
- Chi, S.W.; Zang, J.B.; Mele, A.; Darnell, R.B. Ago HITS-CLIP decodes miRNA-mRNA interaction maps. Nature 2009, 460, 479. [Google Scholar] [CrossRef]
- Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Karbiener, M.; Pehserl, A.M.; Reicher, A.; Resel, M.; Heitzer, E.; Ivan, C.; Bullock, M.; Ling, H. miR-196b-5p Regulates Colorectal Cancer Cell Migration and Metastases through Interaction with HOXB7 and GALNT5. Clin. Cancer Res. 2017, 23, 5255. [Google Scholar] [CrossRef]
- Ren, D.; Lin, B.; Zhang, X.; Peng, Y.; Ye, Z.; Ma, Y.; Liang, Y.; Cao, L.; Li, X.; Li, R. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget 2017, 8, 49807–49823. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Chen, Z.; Peng, D.; Soutto, M.; Zhu, S.; Bates, A.; Zhang, S.; Elrifai, W. Methylation of the HOXA10 promoter directs miR-196b-5p dependent cell proliferation and invasion of gastric cancer cells. Mol. Cancer Res. 2018, 16, 696–706. [Google Scholar] [CrossRef]
- Li, D.B.; Liu, J.L.; Wang, W.; Li, R.Y.; Yu, D.J.; Lan, X.Y.; Li, J.P. Plasma Exosomal miR-422a and miR-125b-2-3p Serve as Biomarkers for Ischemic Stroke. Curr. Neurovascular Res. 2017, 14, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Pfizenmaier, J.; Junghans, L.; Teleki, A.; Takors, R. Hyperosmotic stimulus study discloses benefits in ATP supply and reveals miRNA/mRNA targets to improve recombinant protein production of CHO cells. Biotechnol. J. 2016, 11, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ai, Q.; Cao, H.; Liu, Q. MiR-185-3p and miR-324-3p Predict Radiosensitivity of Nasopharyngeal Carcinoma and Modulate Cancer Cell Growth and Apoptosis by Targeting SMAD7. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 2828–2836. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.; Guo, L.; Yang, N.; Su, Z.; Zhang, S.; Deng, T.; Ren, S.; Lu, S.; Tian, Y.; Yong, L. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma. Cancer Cell Int. 2017, 17, 2. [Google Scholar]
- Qi, L.; Huang, Y.; Mao, H.; Kogiso, M.; Zhao, X.; Du, Y.; Lindsay, H.; Baxter, P.; Man, C.; Perlaky, L. CBIO-34MiR-126 AND miR-369-5p are drivers of gbm invasion: An in vivo study in patient-tumor derived orthotopic xenograft mouse models. Neuro-Oncol. 2015, 17, v62. [Google Scholar] [CrossRef]
- Mcnally, M.E.; Collins, A.; Wojcik, S.E.; Liu, J.; Henry, J.C.; Jiang, J.; Schmittgen, T.; Bloomston, M. Concomitant dysregulation of microRNAs miR-151-3p and miR-126 correlates with improved survival in resected cholangiocarcinoma. Hpb Off. J. Int. Hepato Pancreato Biliary Assoc. 2013, 15, 260–264. [Google Scholar] [CrossRef]
- Yeh, T.C.; Huang, T.T.; Yeh, T.S.; Chen, Y.R.; Hsu, K.W.; Yin, P.H.; Lee, H.C.; Tseng, L.M. miR-151-3p Targets TWIST1 to Repress Migration of Human Breast Cancer Cells. PLoS ONE 2016, 11, e0168171. [Google Scholar] [CrossRef]
- Francesca, F.; Maddalena, M.; Pasquale, C.; Massimo, N.; George Adrian, C.; Gian Luca, G.; Daniela, P.; Carlo Maria, C.; Luigi, B.; Laura, G. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010, 70, 5184–5193. [Google Scholar]
- Chan, G.L.; Kim, Y.W.; Kim, E.H.; Meng, Z.; Huang, W.; Hwang, S.J.; Sang, G.K. Farnesoid X Receptor Protects Hepatocytes From Injury by Repressing miR-199a-3p, Which Increases Levels of LKB1. Gastroenterology 2012, 142, 1206–1217. [Google Scholar]
- Wang, Z.; Zhao, Z.; Yang, Y.; Luo, M.; Zhang, M.; Wang, X.; Liu, L.; Hou, N.; Guo, Q.; Song, T. MiR-99b-5p and miR-203a-3p Function as Tumor Suppressors by Targeting IGF-1R in Gastric Cancer. Sci. Rep. 2018, 8, 10119. [Google Scholar] [CrossRef]
- Singh, Y.; Kaul, V.; Mehra, A.; Chatterjee, S.; Tousif, S.; Dwivedi, V.P.; Suar, M.; Kaer, L.V.; Bishai, W.R.; Das, G. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity. J. Biol. Chem. 2013, 288, 5056–5061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guoping, D.; Liangjing, Z.; Yingming, Q.; Mingnian, F.; Jian, C.; Jionghuang, C.; Jianyang, X.; Zhengrong, W.; Guixing, J.; Liping, C. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015, 6, 29877. [Google Scholar]
- Suárez-Arriaga, M.C.; Torres, J.; Camorlinga-Ponce, M.; Gómez-Delgado, A.; Piña-Sánchez, P.; Valdez-Salazar, H.A.; Ribas-Aparicio, R.M.; Fuentes-Pananá, E.M. A proposed method for the relative quantification of levels of circulating microRNAs in the plasma of gastric cancer patients. Oncol. Lett. 2017, 13, 3109–3117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.O.; Jung, S.S.; Kim, S.Y.; Kim, T.Y.; Shin, D.W.; Lee, J.H.; Lee, Y.H. Inhibition of Lewis lung carcinoma growth by Toxoplasma gondii through induction of Th1 immune responses and inhibition of angiogenesis. J. Korean Med. Sci. 2007, 22, S38. [Google Scholar] [CrossRef]
- Ng, A.; Xavier, R.J. Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity. Autophagy 2011, 7, 1082–1084. [Google Scholar] [CrossRef] [Green Version]
- Kobe, B.; Deisenhofer, J. Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol. 1995, 5, 409–416. [Google Scholar] [CrossRef]
- Ng, A.C.; Eisenberg, J.M.; Heath, R.J.; Huett, A.; Robinson, C.M.; Nau, G.J.; Xavier, R.J. Human leucine-rich repeat proteins: A genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. USA 2011, 108, 4631–4638. [Google Scholar] [CrossRef]
miRNA ID | Sequence |
---|---|
mmu-miR-151-3p | CUAGACUGAGGCUCCUUGAGG |
mmu-miR-199a-3p | ACAGUAGUCUGCACAUUGGUUA |
mmu-miR-99b-5p | CACCCGUAGAACCGACCUUGCG |
mmu-miR-125b-2-3p | ACAAGUCAGGUUCUUGGGACCU |
mmu-miR-129-5p | CUUUUUGCGGUCUGGGCUUGC |
mmu-miR-132-5p | AACCGUGGCUUUCGAUUGUUAC |
mmu-miR-196b-5p | UAGGUAGUUUCCUGUUGUUGGG |
mmu-miR-212-3p | UAACAGUCUCCAGUCACGGCCA |
mmu-miR-3109-3p | UAGGGCCAUCUCAUCCAGAUA |
mmu-miR-32-5p | UAUUGCACAUUACUAAGUUGCA |
mmu-miR-324-3p | CCACUGCCCCAGGUGCUGCU |
mmu-miR-369-5p | AGAUCGACCGUGUUAUAUUCGC |
miRNA ID | Reverse Transcription Primer (5′ to 3′) | qPCR Forward Primer (5′ to 3′) |
---|---|---|
mmu-miR-151-3p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG CCTCAAGG | ACACTCCAGCTGGGCTAGACTGAGGCTCC |
mmu-miR-199a-3p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG TAACCAAT | ACACTCCAGCTGGGACAGTAGTCTGCACAT |
mmu-miR-99b-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG CGCAAGGT | ACACTCCAGCTGGGCACCCGTAGAACCGAC |
mmu-miR-125b-2-3p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG AGGTCCCA | ACACTCCAGCTGGGACAAGTCAGGTTCTTG |
mmu-miR-129-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG GCAAGCCC | ACACTCCAGCTGGGCTTTTTGCGGTCTGG |
mmu-miR-132-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG GTAACAAT | ACACTCCAGCTGGGAACCGTGGCTTTCGAT |
mmu-miR-196b-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG CCCAACAA | ACACTCCAGCTGGGTAGGTAGTTTCCTGTT |
mmu-miR-212-3p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG TGGCCGTG | ACACTCCAGCTGGGTAACAGTCTCCAGTCA |
mmu-miR-3109-3p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG TATCTGGA | ACACTCCAGCTGGGTAGGGCCATCTCATC |
mmu-miR-32-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG TGCAACTT | ACACTCCAGCTGGGTATTGCACATTACTAA |
mmu-miR-324-3p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG AGCAGCAC | ACACTCCAGCTGGGCCACTGCCCCAGGT |
mmu-miR-369-5p | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG GCGAATAT | ACACTCCAGCTGGGAGATCGACCGTGTTAT |
Universal Reverse primer for qPCR (URP) | TGGTGTCGTGGAGTCG | |
U6 F | CTCGCTTCGGCAGCACA | |
U6 R | AACGCTTCACGAATTTGCGT | AACGCTTCACGAATTTGCGT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-L.; Zou, W.-H.; Deng, S.-Q.; Peng, H.-J. Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection. Int. J. Mol. Sci. 2019, 20, 5506. https://doi.org/10.3390/ijms20215506
Li D-L, Zou W-H, Deng S-Q, Peng H-J. Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection. International Journal of Molecular Sciences. 2019; 20(21):5506. https://doi.org/10.3390/ijms20215506
Chicago/Turabian StyleLi, Dong-Liang, Wei-Hao Zou, Sheng-Qun Deng, and Hong-Juan Peng. 2019. "Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection" International Journal of Molecular Sciences 20, no. 21: 5506. https://doi.org/10.3390/ijms20215506
APA StyleLi, D. -L., Zou, W. -H., Deng, S. -Q., & Peng, H. -J. (2019). Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection. International Journal of Molecular Sciences, 20(21), 5506. https://doi.org/10.3390/ijms20215506