Inflammation and Coronary Microvascular Dysfunction in Autoimmune Rheumatic Diseases
Abstract
:1. Introduction
2. Imaging for Microvascular Dysfunction Screening
3. Systemic Lupus Erythematosus
4. Systemic Sclerosis
5. Rheumatoid Arthritis
6. Systemic Vasculitis and Idiopathic Inflammatory Myositis
7. Conclusions
Funding
Conflicts of Interest
References
- Pepine, C.J.; Anderson, R.D.; Sharaf, B.L.; Reis, S.E.; Smith, K.M.; Handberg, E.M.; Johnson, B.D.; Sopko, G.; Bairey Merz, C.N. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J. Am. Coll. Cardiol. 2010, 55, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Hermann, J.; Gabriel, S.E.; Weyand, C.M.; Mulvagh, S.; Mankad, R.; Oh, J.K.; Matteson, E.L.; Lerman, A. Cardiorheumatology: Cardiac involvement in systemic rheumatic disease. Nat. Rev. Cardiol. 2015, 12, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Faccini, A.; Kaski, J.C.; Camici, P.G. Coronary microvascular dysfunction in chronic inflammatory rheumatoid diseases. Eur. Heart J. 2016, 37, 1799–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumitriu, I.E. The life (and death) of CD4+ CD28(null) T cells in inflammatory diseases. Immunology 2015, 146, 185–193. [Google Scholar] [CrossRef]
- Camici, P.G.; d’Amati, G.; Rimoldi, O. Coronary microvascular dysfunction: Mechanisms and functional assessment. Nat. Rev. Cardiol. 2015, 12, 48–62. [Google Scholar] [CrossRef]
- Caiati, C.; Montaldo, C.; Zedda, N.; Bina, A.; Iliceto, S. New noninvasive method for coronary flow reserve assessment: Contrast-enhanced transthoracic second harmonic echo Doppler. Circulation 1999, 99, 771–778. [Google Scholar] [CrossRef]
- Vaccarino, V.; Khan, D.; Votaw, J.; Faber, T.; Veledar, E.; Jones, D.P.; Goldberg, J.; Raggi, P.; Quyyumi, A.A.; Bremner, J.D. Inflammation is related to coronary flow reserve detected by positron emission tomography in asymptomatic male twins. J. Am. Coll. Cardiol. 2011, 57, 1271–1279. [Google Scholar] [CrossRef]
- Winau, L.; Hinojar Baydes, R.; Braner, A.; Drott, U.; Burkhardt, H.; Sangle, S.; D’Cruz, D.P.; Carr-White, G.; Marber, M.; Schnoes, K.; et al. High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 1590–1598. [Google Scholar] [CrossRef]
- Rubinshtein, R.; Yang, E.H.; Rihal, C.S.; Prasad, A.; Lennon, R.J.; Best, P.J.; Lerman, L.O.; Lerman, A. Coronary microcirculatory vasodilator function in relation to risk factors among patients without obstructive coronary disease and low to intermediate Framingham score. Eur. Heart J. 2010, 31, 936–942. [Google Scholar] [CrossRef]
- Montisci, R.; Vacca, A.; Garau, P.; Colonna, P.; Ruscazio, M.; Passiu, G.; Iliceto, S.; Mathieu, A. Detection of early impairment of coronary flow reserve in patients with systemic sclerosis. Ann. Rheum. Dis. 2003, 62, 890–893. [Google Scholar] [CrossRef] [Green Version]
- Vacca, A.; Siotto, P.; Cauli, A.; Montisci, R.; Garau, P.; Ibba, V.; Mameli, A.; Passiu, G.; Iliceto, S.; Mathieu, A. Absence of epicardial coronary stenosis in patients with systemic sclerosis with severe impairment of coronary flow reserve. Ann. Rheum. Dis. 2006, 65, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.R.; Habazettl, H.; Ambrosio, G.; Hansen, P.R.; Kaski, J.C.; Schächinger, V.; Tillmanns, H.; Vassalli, G.; Tritto, I.; Weis, M.; et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc. Res. 2008, 80, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allanore, Y.; Meune, C. Primary myocardial involvement in systemic sclerosis: Evidence for a microvascular origin. Clin. Exp. Rheumatol. 2010, 28, S48–S53. [Google Scholar] [PubMed]
- Kaufmann, P.A.; Camici, P.G. Myocardial blood flow measurement by PET: Technical aspects and clinical applications. J. Nucl. Med. 2005, 46, 75–88. [Google Scholar] [PubMed]
- Rodríguez-Reyna, T.S.; Morelos-Guzman, M.; Hernández-Reyes, P.; Montero-Duarte, K.; Martínez-Reyes, C.; Reyes-Utrera, C.; Vazquez-La Madrid, J.; Morales-Blanhir, J.; Núñez-Álvarez, C.; Cabiedes-Contreras, J. Assessment of myocardial fibrosis and microvascular damage in systemic sclerosis by magnetic resonance imaging and coronary angiotomography. Rheumatology 2015, 54, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Recio-Mayoral, A.; Mason, J.C.; Kaski, J.C.; Rubens, M.B.; Harari, O.A.; Camici, P.G. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur. Heart J. 2009, 30, 1837–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanneman, K.; Kadoch, M.; Guo, H.H.; Jamali, M.; Quon, A.; Iagaru, A.; Herfkens, R. Initial Experience with Simultaneous 18F-FDG PET/MRI in the Evaluation of Cardiac Sarcoidosis and Myocarditis. Clin. Nucl. Med. 2017, 42, e328–e334. [Google Scholar] [CrossRef]
- Pintér, T.; Faludi, R.; Magyari, B.; Vorobcsuk, A.; Kumánovics, G.; Minier, T.; Czirják, L.; Komócsi, A. Mechanism of coronary flow reserve reduction in systemic sclerosis: Insight from intracoronary pressure wire studies. Rheumatology 2011, 50, 781–788. [Google Scholar] [CrossRef]
- Galindo, M.; Chung, L.; Crockett, S.D.; Chakravarty, E.F. Coronary artery disease in patients with systemic lupus erythematosus. Nat. Clin. Pract. Rheumatol. 2005, 1, 55–59. [Google Scholar] [CrossRef]
- Siemianowicz, K.; Gminski, J.; Telega, A.; Wójcik, A.; Posielezna, B.; Grabowska-Bochenek, R.; Francuz, T. Blood antioxidant parameters in patients with diabetic retinopathy. Int. J. Mol. Med. 2004, 14, 433–437. [Google Scholar] [CrossRef]
- Manzi, S.; Meilahn, E.N.; Rairie, J.E.; Conte, C.G.; Medsger, T.A.; Jansen-McWilliams, L.; D’Agostino, R.B.; Kuller, L.H. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: Comparison with the Framingham Study. Am. J. Epidemiol. 1997, 145, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Kadirvelu, A.; Kinjo, M.; Sciacca, R.; Sugioka, K.; Otsuka, R.; Choy, A.; Chow, S.K.; Yoshiyama, M.; Yoshikawa, J.; et al. Altered coronary vasomotor function in young patients with systemic lupus erythematosus. Arthritis Rheum. 2007, 56, 1904–1909. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, S.; Caliskan, M.; Kulaksızoglu, S.; Ciftci, O.; Caliskan, Z.; Gullu, H.; Guven, A.; Muderrisoglu, H. Association between serum total antioxidant status and coronary microvascular functions in patients with SLE. Echocardiography 2012, 29, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Ishimori, M.L.; Martin, R.; Berman, D.S.; Goykhman, P.; Shaw, L.J.; Shufelt, C.; Slomka, P.J.; Thomson, L.E.; Schapira, J.; Yang, Y.; et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc. Imaging 2011, 4, 27–33. [Google Scholar] [CrossRef]
- Laganà, B.; Schillaci, O.; Tubani, L.; Gentile, R.; Danieli, R.; Coviello, R.; Baratta, L.; Scopinaro, F. Lupus carditis: Evaluation with technetium-99m MIBI myocardial SPECT and heart rate variability. Angiology 1999, 50, 143–148. [Google Scholar] [CrossRef]
- Sandhu, V.K.; Wei, J.; Thomson, L.E.J.; Berman, D.S.; Schapira, J.; Wallace, D.; Weisman, M.H.; Bairey Merz, C.N.; Ishimori, M.L. A Five-Year Follow up of Coronary Microvascular Dysfunction and Coronary Artery Disease in SLE: Results from a Community-Based Lupus Cohort. Arthritis Care Res. 2019. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, L.M.; Wang, Z.; Shen, J.Y.; Su, X.; Wang, C.Q.; Gong, X.R.; Yan, Q.R.; He, Q.; Zhang, W.; et al. Early Detection of Silent Myocardial Impairment in Drug-Naive Patients with New-Onset Systemic Lupus Erythematosus: A Three-Center Prospective Study. Arthritis Rheumatol. 2018, 70, 2014–2024. [Google Scholar] [CrossRef]
- Gabrielli, A.; Avvedimento, E.V.; Krieg, T. Scleroderma. N. Engl. J. Med. 2009, 360, 1989–2003. [Google Scholar] [CrossRef]
- Zanatta, E.; Codullo, V.; Avouac, J.; Allanore, Y. Systemic sclerosis: Recent insight in clinical management. Jt. Bone Spine 2019. [Google Scholar] [CrossRef]
- Long, A.; Duffy, G.; Bresnihan, B. Reversible myocardial perfusion defects during cold challenge in scleroderma. Br. J. Rheumatol. 1986, 25, 158–161. [Google Scholar] [CrossRef]
- Mizuno, R.; Fujimoto, S.; Saito, Y.; Nakamura, S. Cardiac Raynaud’s phenomenon induced by cold provocation as a predictor of long-term left ventricular dysfunction and remodelling in systemic sclerosis: 7-year follow-up study. Eur. J. Heart Fail. 2010, 12, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Sulli, A.; Ghio, M.; Bezante, G.P.; Deferrari, L.; Craviotto, C.; Sebastiani, V.; Setti, M.; Barsotti, A.; Cutolo, M.; Indiveri, F. Blunted coronary flow reserve in systemic sclerosis. Rheumatology 2004, 43, 505–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faccini, A.; Agricola, E.; Oppizzi, M.; Margonato, A.; Galderisi, M.; Sabbadini, M.G.; Franchini, S.; Camici, P.G. Coronary microvascular dysfunction in asymptomatic patients affected by systemic sclerosis—Limited vs. diffuse form. Circ. J. 2015, 79, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, E.; Famoso, G.; Boscain, F.; Montisci, R.; Pigatto, E.; Polito, P.; Schiavon, F.; Iliceto, S.; Cozzi, F.; Doria, A.; et al. Nailfold avascular score and coronary microvascular dysfunction in systemic sclerosis: A newsworthy association. Autoimmun. Rev. 2019, 18, 177–183. [Google Scholar] [CrossRef]
- Allanore, Y.; Meune, C.; Vonk, M.C.; Airo, P.; Hachulla, E.; Caramaschi, P.; Riemekasten, G.; Cozzi, F.; Beretta, L.; Derk, C.T.; et al. Prevalence and factors associated with left ventricular dysfunction in the EULAR Scleroderma Trial and Research group (EUSTAR) database of patients with systemic sclerosis. Ann. Rheum. Dis. 2010, 69, 218–221. [Google Scholar] [CrossRef]
- Valentini, G.; Huscher, D.; Riccardi, A.; Fasano, S.; Irace, R.; Messiniti, V.; Matucci-Cerinic, M.; Guiducci, S.; Distler, O.; Maurer, B.; et al. Vasodilators and low-dose acetylsalicylic acid are associated with a lower incidence of distinct primary myocardial disease manifestations in systemic sclerosis: Results of the DeSScipher inception cohort study. Ann. Rheum. Dis. 2019, 78, 1576–1582. [Google Scholar] [CrossRef]
- Ntusi, N.A.; Piechnik, S.K.; Francis, J.M.; Ferreira, V.M.; Rai, A.B.; Matthews, P.M.; Robson, M.D.; Moon, J.; Wordsworth, P.B.; Neubauer, S.; et al. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis—A clinical study using myocardial T1-mapping and extracellular volume quantification. J. Cardiovasc. Magn. Reson. 2014, 16, 21. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Koutsogeorgopoulou, L.; Karabela, G.; Stavropoulos, E.; Katsifis, G.; Raftakis, J.; Plastiras, S.; Noutsias, M.; Markousis-Mavrogenis, G.; Kolovou, G. Silent myocarditis in systemic sclerosis detected by cardiovascular magnetic resonance using Lake Louise criteria. BMC Cardiovasc. Disord. 2017, 17, 187. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Schwitter, J.; Gargani, L.; Pepe, A.; Monti, L.; Allanore, Y.; Matucci-Cerinic, M. Cardiovascular magnetic resonance in systemic sclerosis: “Pearls and pitfalls”. Semin. Arthritis Rheum. 2017, 47, 79–85. [Google Scholar] [CrossRef]
- Pieroni, M.; De Santis, M.; Zizzo, G.; Bosello, S.; Smaldone, C.; Campioni, M.; De Luca, G.; Laria, A.; Meduri, A.; Bellocci, F.; et al. Recognizing and treating myocarditis in recent-onset systemic sclerosis heart disease: Potential utility of immunosuppressive therapy in cardiac damage progression. Semin. Arthritis Rheum. 2014, 43, 526–535. [Google Scholar] [CrossRef]
- Mueller, K.A.; Mueller, I.I.; Eppler, D.; Zuern, C.S.; Seizer, P.; Kramer, U.; Koetter, I.; Roecken, M.; Kandolf, R.; Gawaz, M.; et al. Clinical and histopathological features of patients with systemic sclerosis undergoing endomyocardial biopsy. PLoS ONE 2015, 10, e0126707. [Google Scholar] [CrossRef] [PubMed]
- England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, O.; Yilmaz, S.; Topcu, S.; Caliskan, M.; Gullu, H.; Erdogan, D.; Pamuk, B.O.; Yildirir, A.; Muderrisoglu, H. Impaired coronary microvascular function and increased intima-media thickness in rheumatoid arthritis. Atherosclerosis 2008, 198, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Tzortzis, S.; Andreadou, I.; Paraskevaidis, I.; Katseli, C.; Katsimbri, P.; Pavlidis, G.; Parissis, J.; Kremastinos, D.; Anastasiou-Nana, M.; et al. Increased benefit of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ. Cardiovasc. Imaging 2014, 7, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.; Crowson, C.S.; Gabriel, S.E. Cardiovascular comorbidity in rheumatic diseases: A focus on heart failure. Heart Fail. Clin. 2014, 10, 339–352. [Google Scholar] [CrossRef]
- Toutouzas, K.; Sfikakis, P.P.; Karanasos, A.; Aggeli, C.; Felekos, I.; Kitas, G.; Zampeli, E.; Protogerou, A.; Stefanadis, C. Myocardial ischaemia without obstructive coronary artery disease in rheumatoid arthritis: Hypothesis-generating insights from a cross-sectional study. Rheumatology 2013, 52, 76–80. [Google Scholar] [CrossRef]
- Amigues, I.; Russo, C.; Giles, J.T.; Tugcu, A.; Weinberg, R.; Bokhari, S.; Bathon, J.M. Myocardial Microvascular Dysfunction in Rheumatoid Arthritis. Circ. Cardiovasc. Imaging 2019, 12, e007495. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Bourgarit, A.; Le Toumelin, P.; Pagnoux, C.; Cohen, P.; Mahr, A.; Le Guern, V.; Mouthon, L.; Guillevin, L.; French Vasculitis Study Group. Deaths occurring during the first year after treatment onset for polyarteritis nodosa, microscopic polyangiitis, and Churg-Strauss syndrome: A retrospective analysis of causes and factors predictive of mortality based on 595 patients. Medicine 2005, 84, 323–330. [Google Scholar] [CrossRef]
- Hazebroek, M.R.; Kemna, M.J.; Schalla, S.; Sanders-van Wijk, S.; Gerretsen, S.C.; Dennert, R.; Merken, J.; Kuznetsova, T.; Staessen, J.A.; Brunner-La Rocca, H.P.; et al. Prevalence and prognostic relevance of cardiac involvement in ANCA-associated vasculitis: Eosinophilic granulomatosis with polyangiitis and granulomatosis with polyangiitis. Int. J. Cardiol. 2015, 199, 170–179. [Google Scholar] [CrossRef]
- Greulich, S.; Kitterer, D.; Kurmann, R.; Henes, J.; Latus, J.; Gloekler, S.; Wahl, A.; Buss, S.J.; Katus, H.A.; Bobbo, M.; et al. Cardiac involvement in patients with rheumatic disorders: Data of the RHEU-M(A)R study. Int. J. Cardiol. 2016, 224, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Dunogué, B.; Terrier, B.; Cohen, P.; Marmursztejn, J.; Legmann, P.; Mouthon, L.; Duboc, D.; Vignaux, O.; Guillevin, L.; French Vasculitis Study Group. Impact of cardiac magnetic resonance imaging on eosinophilic granulomatosis with polyangiitis outcomes: A long-term retrospective study on 42 patients. Autoimmun. Rev. 2015, 14, 774–780. [Google Scholar] [CrossRef]
- Behar, J.M.; Bratis, K.; Clapp, B.; Nagel, E. Refractory ischaemic chest pain caused by microvascular coronary dysfunction in a large vessel vasculitis. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 702. [Google Scholar] [CrossRef] [PubMed]
- Hamaoka, K.; Onouchi, Z.; Kamiya, Y.; Sakata, K. Evaluation of coronary flow velocity dynamics and flow reserve in patients with Kawasaki disease by means of a Doppler guide wire. J. Am. Coll. Cardiol. 1998, 31, 833–840. [Google Scholar] [CrossRef]
- Kaya, E.; Saglam, H.; Ciftci, I.; Kulac, M.; Karaca, S.; Melek, M. Evaluation of myocardial perfusion and function by gated SPECT in patients with Behçet’s disease. Ann. Nucl. Med. 2008, 22, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Gullu, H.; Caliskan, M.; Erdogan, D.; Yilmaz, S.; Dursun, R.; Ciftci, O.; Yucel, E.; Muderrisoglu, H. Impaired coronary microvascular functions in patients with Behçet disease. J. Am. Coll. Cardiol. 2006, 48, 586–587. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Hayat, G.; Kalia, J.S.; Guzman, M.A. Idiopathic Inflammatory Myopathies: Clinical Approach and Management. Front. Neurol. 2016, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Lie, J.T. Cardiac manifestations in polymyositis/dermatomyositis: How to get to heart of the matter. J. Rheumatol. 1995, 22, 809–811. [Google Scholar]
- Diederichsen, L.P.; Simonsen, J.A.; Diederichsen, A.C.; Hvidsten, S.; Hougaard, M.; Junker, P.; Søndergaard, K.; Lundberg, I.E.; Tvede, N.; Sandgaard, N.C.; et al. Cardiac Abnormalities in Adult Patients with Polymyositis or Dermatomyositis as Assessed by Noninvasive Modalities. Arthritis Care Res. 2016, 68, 1012–1020. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, Q.; Ning, Z.; Qian-Zi, Z.; Xiao-Ming, S.; Guo-Chun, W. Left ventricular diastolic dysfunction—Early cardiac impairment in patients with polymyositis/dermatomyositis: A tissue Doppler imaging study. J. Rheumatol. 2013, 40, 1572–1577. [Google Scholar] [CrossRef]
- Péter, A.; Balogh, Á.; Szilágyi, S.; Faludi, R.; Nagy-Vincze, M.; Édes, I.; Dankó, K. Echocardiographic abnormalities in new-onset polymyositis/dermatomyositis. J. Rheumatol. 2015, 42, 272–281. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanatta, E.; Colombo, C.; D’Amico, G.; d’Humières, T.; Dal Lin, C.; Tona, F. Inflammation and Coronary Microvascular Dysfunction in Autoimmune Rheumatic Diseases. Int. J. Mol. Sci. 2019, 20, 5563. https://doi.org/10.3390/ijms20225563
Zanatta E, Colombo C, D’Amico G, d’Humières T, Dal Lin C, Tona F. Inflammation and Coronary Microvascular Dysfunction in Autoimmune Rheumatic Diseases. International Journal of Molecular Sciences. 2019; 20(22):5563. https://doi.org/10.3390/ijms20225563
Chicago/Turabian StyleZanatta, Elisabetta, Claudia Colombo, Gianpiero D’Amico, Thomas d’Humières, Carlo Dal Lin, and Francesco Tona. 2019. "Inflammation and Coronary Microvascular Dysfunction in Autoimmune Rheumatic Diseases" International Journal of Molecular Sciences 20, no. 22: 5563. https://doi.org/10.3390/ijms20225563
APA StyleZanatta, E., Colombo, C., D’Amico, G., d’Humières, T., Dal Lin, C., & Tona, F. (2019). Inflammation and Coronary Microvascular Dysfunction in Autoimmune Rheumatic Diseases. International Journal of Molecular Sciences, 20(22), 5563. https://doi.org/10.3390/ijms20225563