Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus
Abstract
:1. Introduction
2. Results
2.1. Selection of the Putative Virulence Factors
2.2. Agroinfiltration of Putative Virulence Factors in N. benthamiana
2.3. The Four Virulence Factors Functioning at the Protein Level
2.4. The C-Terminal of CLIBASIA_05150 Was Critical in Causing Cell Death in the Infiltrated Leaves
2.5. The Subcellular Localization of the Four Putative Virulence Factors
2.6. Identification of the Host Proteins Interacting with the Virulence Factors
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Prediction of Signal Peptides of Putative Virulence Factors
4.3. Construction of Plasmids
4.3.1. Construction of Plasmids for Screening Putative Virulence Factors of CaLas
4.3.2. Construction of Plasmids for Subcellular Localization
4.3.3. Construction Plasmids for Yeast Two-Hybrid Assay
4.4. Agroinfiltration
4.5. Protein Extraction and Immunoblotting
4.6. Determination of the Subcellular Localization of Identified Virulence Factors
4.7. Yeast Two-Hybrid
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
CaLas | Candidatus Liberibacter asiaticus |
TMV | tobacco mosaic virus |
GFP | green fluorescent protein |
RFP | red fluorescent protein |
N. benthamiana | Nicotiana benthamiana |
CTV | Citrus tristeza virus |
Y2H | yeast two-hybrid |
HLB | Huanglonbbing |
HR | hypersensitive response |
PCD | programmed cell death |
SA | salicylic acid |
ROS | reactive oxygen species |
SP | signal peptide |
CP | cysteine protease |
References
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Gottwald, T.R. Current Epidemiological Understanding of Citrus Huanglongbing. Annu. Rev. Phytopathol. 2010, 48, 119–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnier, M.; Danel, N.; Bove, J. Aetiology of citrus greening disease. Ann. Microbiol. 1984, 135, 169–179. [Google Scholar] [CrossRef]
- Tyler, H.L.; Roesch, L.F.W.; Gowda, S.; Dawson, W.O.; Triplett, E.W. Confirmation of the Sequence of ‘CandidatusLiberibacter asiaticus’ and Assessment of Microbial Diversity in Huanglongbing-Infected Citrus Phloem Using a Metagenomic Approach. Mol. Plant-Microbe Interact. MPMI 2009, 22, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Gopal, K.; Sudarsan, S.; Gopi, V.; Naidu, L.N.; Ramaiah, M.; Sreenivasulu, Y.; Wesley, E. Detection of Huanglongbing (citrus greening) disease by nucleic acid spot hybridization. Zeitschrift für Naturforschung C 2009, 64, 711–716. [Google Scholar] [CrossRef]
- Hawkins, S.A.; Park, B.; Poole, G.H.; Gottwald, T.; Windham, W.R.; Lawrence, K.C. Detection of citrus Huanglongbing by Fourier transform infrared-attenuated total reflection spectroscopy. Appl. Spectrosc. 2010, 64, 100–103. [Google Scholar] [CrossRef]
- Lin, H.; Chen, C.; Doddapaneni, H.; Duan, Y.; Civerolo, E.L.; Bai, X.; Zhao, X. A new diagnostic system for ultra-sensitive and specific detection and quantification of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing. J. Microbiol. Methods 2010, 81, 17–25. [Google Scholar] [CrossRef]
- Sankaran, S.; Ehsani, R.; Etxeberria, E. Mid-infrared spectroscopy for detection of Huanglongbing (greening) in citrus leaves. Talanta 2010, 83, 574–581. [Google Scholar] [CrossRef]
- Fujikawa, T.; Iwanami, T. Sensitive and robust detection of citrus greening (huanglongbing) bacterium “Candidatus Liberibacter asiaticus” by DNA amplification with new 16S rDNA-specific primers. Mol. Cell. Probes 2012, 26, 194–197. [Google Scholar] [CrossRef]
- Fujikawa, T.; Miyata, S.-I.; Iwanami, T. Convenient Detection of the Citrus Greening (Huanglongbing) Bacterium ‘Candidatus Liberibacter asiaticus’ by Direct PCR from the Midrib Extract. PLoS ONE 2013, 8, e57011. [Google Scholar] [CrossRef]
- Nageswara-Rao, M.; Irey, M.; Garnsey, S.M.; Gowda, S. Candidate gene markers for Candidatus Liberibacter asiaticus for detecting citrus greening disease. J. Biosci. 2013, 38, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Nageswara-Rao, M.; Miyata, S.-I.; Ghosh, D.; Irey, M.; Garnsey, S.M.; Gowda, S. Development of rapid, sensitive and non-radioactive tissue-blot diagnostic method for the detection of citrus greening. Mol. Cell. Probes 2013, 27, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Maja, J.M.; Buchanon, S.; Ehsani, R. Huanglongbing (Citrus Greening) Detection Using Visible, Near Infrared and Thermal Imaging Techniques. Sensors 2013, 13, 2117–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksenov, A.A.; Pasamontes, A.; Peirano, D.J.; Zhao, W.; Dandekar, A.M.; Fiehn, O.; Ehsani, R.; Davis, C.E. Detection of Huanglongbing Disease Using Differential Mobility Spectrometry. Anal. Chem. 2014, 86, 2481–2488. [Google Scholar] [CrossRef] [PubMed]
- Razi, M.F.; Keremane, M.L.; Ramadugu, C.; Roose, M.; Khan, I.A.; Lee, R.F. Detection of citrus huanglongbing-associated ‘Candidatus Liberibacter asiaticus’ in citrus and Diaphorina citri in Pakistan, seasonal variability, and implications for disease management. Phytopathology 2014, 104, 257–268. [Google Scholar] [CrossRef]
- Keremane, M.L.; Ramadugu, C.; Rodríguez, E.; Kubota, R.; Shibata, S.; Hall, D.G.; Roose, M.L.; Jenkins, D.; Lee, R.F. A rapid field detection system for citrus huanglongbing associated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop. Prot. 2015, 68, 41–48. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, M.; Bao, M.; Wu, F.; Chen, J.; Deng, X. Unusual Five Copies and Dual Forms of nrdB in “Candidatus Liberibacter asiaticus”: Biological Implications and PCR Detection Application. Sci. Rep. 2016, 6, 39020. [Google Scholar] [CrossRef]
- Martinelli, F.; Reagan, R.L.; Dolan, D.; Fileccia, V.; Dandekar, A.M. Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease. BMC Plant Boil. 2016, 16, 167. [Google Scholar] [CrossRef]
- Nwugo, C.C.; Doud, M.S.; Duan, Y.-P.; Lin, H. Proteomics analysis reveals novel host molecular mechanisms associated with thermotherapy of ‘Candidatus Liberibacter asiaticus’-infected citrus plants. BMC Plant Boil. 2016, 16, 253. [Google Scholar]
- Wang, Y.; Zhou, L.; Yu, X.; Stover, E.; Luo, F.; Duan, Y. Transcriptome Profiling of Huanglongbing (HLB) Tolerant and Susceptible Citrus Plants Reveals the Role of Basal Resistance in HLB Tolerance. Front. Plant Sci. 2016, 7, 291. [Google Scholar] [CrossRef]
- Kim, J.-S.; Sagaram, U.S.; Burns, J.K.; Li, J.-L.; Wang, N. Response of Sweet Orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ Infection: Microscopy and Microarray Analyses. Phytopathology 2009, 99, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Matas, A.J.; Agustí, J.; Tadeo, F.R.; Talón, M.; Rose, J.K.C. Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. J. Exp. Bot. 2010, 61, 3321–3330. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Chen, C.; Yu, Q.; Brlansky, R.H.; Li, Z.-G.; Gmitter, F.G. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by “Candidatus Liberibacter asiaticus.”. Physiol. Plant. 2011, 143, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Chen, C.; Yu, Q.; Khalaf, A.; Achor, D.S.; Brlansky, R.H.; Moore, G.A.; Li, Z.-G.; Gmitter, F.G. Comparative Transcriptional and Anatomical Analyses of Tolerant Rough Lemon and Susceptible Sweet Orange in Response to ‘CandidatusLiberibacter asiaticus’ Infection. Mol. Plant-Microbe Interact. MPMI 2012, 25, 1396–1407. [Google Scholar] [CrossRef]
- Liao, H.-L.; Burns, J.K. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: Comparison with girdled fruit. J. Exp. Bot. 2012, 63, 3307–3319. [Google Scholar] [CrossRef]
- Martinelli, F.; Uratsu, S.L.; Albrecht, U.; Reagan, R.L.; Phu, M.L.; Britton, M.; Buffalo, V.; Fass, J.; Leicht, E.; Zhao, W.; et al. Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease. PLoS ONE 2012, 7, e38039. [Google Scholar] [CrossRef]
- Aritua, V.; Achor, D.; Gmitter, F.G.; Albrigo, G.; Wang, N. Transcriptional and Microscopic Analyses of Citrus Stem and Root Responses to Candidatus Liberibacter asiaticus Infection. PLoS ONE 2013, 8, 73742. [Google Scholar] [CrossRef]
- Nwugo, C.C.; Duan, Y.; Lin, H. Study on citrus response to huanglongbing highlights a down-regulation of defense-related proteins in lemon plants upon ‘Ca. Liberibacter asiaticus’ infection. PLoS ONE 2013, 8, e67442. [Google Scholar] [CrossRef]
- Nwugo, C.C.; Lin, H.; Duan, Y.; Civerolo, E.L. The effect of ‘Candidatus Liberibacter asiaticus’ infection on the proteomic profiles and nutritional status of pre-symptomatic and symptomatic grapefruit (Citrus paradisi) plants. BMC Plant Boil. 2013, 13, 59. [Google Scholar] [CrossRef]
- Jain, M.; Fleites, L.; Gabriel, D.W. Prophage Encoded Peroxidase in ‘Candidatus Liberibacter asiaticus’ is a Secreted Effector that Suppresses Plant Defenses. Mol. Plant-Microbe Interact. 2015, 28, 1330–1337. [Google Scholar] [CrossRef]
- Nanda, A.K.; Andrio, E.; Marino, D.; Pauly, N.; Dunand, C. Reactive Oxygen Species during Plant-microorganism Early Interactions. J. Integr. Plant Boil. 2010, 52, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pang, Z.; Trivedi, P.; Zhou, X.; Ying, X.; Jia, H.; Wang, N. ‘Candidatus Liberibacter asiaticus’ Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses. Mol. Plant-Microbe Interact. 2017, 30, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Pitino, M.; Armstrong, C.M.; Cano, L.M.; Duan, Y. Transient Expression of Candidatus Liberibacter asiaticus Effector Induces Cell Death in Nicotiana benthamiana. Front. Plant Sci. 2016, 7, 982. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Franco, J.Y.; Schwizer, S.; Pang, Z.; Hawara, E.; Liebrand, T.W.H.; Pagliaccia, D.; Zeng, L.; Gurung, F.B.; Wang, P.; et al. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nat. Commun. 2018, 9, 1718. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhou, L.; Hall, D.G.; Li, W.; Doddapaneni, H.; Lin, H.; Liu, L.; Vahling, C.M.; Gabriel, D.W.; Williams, K.P.; et al. Complete Genome Sequence of Citrus Huanglongbing Bacterium, ‘Candidatus Liberibacter asiaticus’ Obtained Through Metagenomics. Mol. Plant-Microbe Interact. MPMI 2009, 22, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, J.D.; Nielsen, H.; Von Heijne, G.; Brunak, S. Improved Prediction of Signal Peptides: SignalP 3.0. J. Mol. Boil. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef]
- Käll, L.; Krogh, A.; Sonnhammer, E.L. A Combined Transmembrane Topology and Signal Peptide Prediction Method. J. Mol. Boil. 2004, 338, 1027–1036. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes11Edited by F. Cohen. J. Mol. Boil. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef]
- Nelson, B.K.; Cai, X.; Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. Cell Mol. Biol. 2007, 51, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Citovsky, V.; Lee, L.-Y.; Vyas, S.; Glick, E.; Chen, M.-H.; Vainstein, A.; Gafni, Y.; Gelvin, S.B.; Tzfira, T. Subcellular Localization of Interacting Proteins by Bimolecular Fluorescence Complementation in Planta. J. Mol. Boil. 2006, 362, 1120–1131. [Google Scholar] [CrossRef] [PubMed]
- Grou, C.P.; Pinto, M.P.; Mendes, A.V.; Domingues, P.; Azevedo, J.E. The de novo synthesis of ubiquitin: Identification of deubiquitinases acting on ubiquitin precursors. Sci. Rep. 2015, 5, 12836. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.D.; Emiliani, G.; Bartolini, P.; Podda, A.; Centritto, M.; Luro, F.; Del Carratore, R.; Morillon, R.; Gesteira, A.; Maserti, B. A L-type lectin gene is involved in the response to hormonal treatment and water deficit in Volkamer lemon. J. Plant Physiol. 2017, 218, 94–99. [Google Scholar] [CrossRef]
- Xin, X.-F.; Nomura, K.; Ding, X.; Chen, X.; Wang, K.; Aung, K.; Uribe, F.; Rosa, B.; Yao, J.; Chen, J.; et al. Pseudomonas syringae Effector Avirulence Protein E Localizes to the Host Plasma Membrane and Down-Regulates the Expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 Gene Required for Antibacterial Immunity in Arabidopsis. Plant Physiol. 2015, 169, 793–802. [Google Scholar] [CrossRef]
- Vigers, A.J.; Wiedemann, S.; Roberts, W.K.; Legrand, M.; Selitrennikoff, C.P.; Fritig, B. Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci. 1992, 83, 155–161. [Google Scholar] [CrossRef]
- De Tullio, M.C.; Guether, M.; Balestrini, R. Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal. Behav. 2013, 8, e23213. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005, 62, 670–684. [Google Scholar] [CrossRef] [Green Version]
- Sung, D.-Y.; Sung, D.; Kaplan, F.; Guy, C.L. Plant Hsp70 molecular chaperones: Protein structure, gene family, expression and function. Physiol. Plant. 2001, 113, 443–451. [Google Scholar] [CrossRef]
- Abd-El-Haliem, A.M.; Joosten, M.H. Plant phosphatidylinositol-specific phospholipase C at the center of plant innate immunity. J. Integr. Plant Boil. 2017, 59, 164–179. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, J.; Silva, M.S.; Figueiredo, A. Subtilisin-like proteases in plant defense: The past, the present and beyond. Mol. Plant Pathol. 2018, 19, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Fischl, R.M.; Stadlmann, J.; Grass, J.; Altmann, F.; Léonard, R. The two endo-beta-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels. Plant Mol. Biol. 2011, 77, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Meli, V.S.; Ghosh, S.; Prabha, T.N.; Chakraborty, N.; Chakraborty, S.; Datta, A. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc. Natl. Acad. Sci. USA 2010, 107, 2413–2418. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, B.; Gilbert, H.F. Protein disulfide isomerase. Biochim. Biophys. Acta 2004, 1699, 35–44. [Google Scholar] [CrossRef]
- Khan, H.A.; Mutus, B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front. Chem. 2014, 2, 70. [Google Scholar] [Green Version]
- Jones, A.M.; Thomas, V.; Bennett, M.H.; Mansfield, J.; Grant, M. Modifications to the Arabidopsis Defense Proteome Occur Prior to Significant Transcriptional Change in Response to Inoculation with Pseudomonas syringae1. Plant Physiol. 2006, 142, 1603–1620. [Google Scholar] [CrossRef]
- Li, J.; Brader, G.; Palva, E.T. Kunitz Trypsin Inhibitor: An Antagonist of Cell Death Triggered by Phytopathogens and Fumonisin B1 in Arabidopsis. Mol. Plant 2008, 1, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Bendre, A.D.; Ramasamy, S.; Suresh, C. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int. J. Boil. Macromol. 2018, 113, 933–943. [Google Scholar] [CrossRef]
- Paniagua, C.; Bilkova, A.; Dabravolski, S.; Riber, W.; Didi, V.; Gigli-Bisceglia, N.; Hamann, T.; Jackson, P.; Houser, J.; Wimmerova, M.; et al. Dirigent proteins in plants: Modulating cell wall metabolism during abiotic and biotic stress exposure. J. Exp. Bot. 2017, 68, 3287–3301. [Google Scholar] [CrossRef]
- Ursin, V.M.; Irvine, J.M.; Hiatt, W.R.; Shewmaker, C.K. Developmental analysis of elongation factor-1 alpha expression in transgenic tobacco. Plant Cell 1991, 3, 583–591. [Google Scholar] [CrossRef]
- Jagoueix, S.; Bove, J.M.; Garnier, M. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria. Int. J. Syst. Bacteriol. 1994, 44, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Folimonova, S.Y.; Achor, D.S. Early Events of Citrus Greening (Huanglongbing) Disease Development at the Ultrastructural Level. Phytopathology 2010, 100, 949–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fan, Y.; Zhang, C.; Dai, M.; Wang, X.; Li, W. Nuclear Import of a Secreted "Candidatus Liberibacter asiaticus" Protein is Temperature Dependent and Contributes to Pathogenicity in Nicotiana benthamiana. Front. Microbiol. 2019, 10, 1684. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, F.A.; Coyle, J.F.; Kapoor, S.; Gonzalez, C.F.; Lorca, G.L. LdtR is a master regulator of gene expression inLiberibacter asiaticus. Microb. Biotechnol. 2017, 10, 896–909. [Google Scholar] [CrossRef]
- Yan, Q.; Sreedharan, A.; Wei, S.; Wang, J.; Folimonova, S.; Wang, N.; Pelz-Stelinski, K.; Pelz-Stelinski, K. Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect. Mol. Plant Pathol. 2013, 14, 391–404. [Google Scholar] [CrossRef]
- Wulff, N.A.; Zhang, S.; Setubal, J.C.; Almeida, N.F.; Martins, E.C.; Harakava, R.; Kumar, D.; Rangel, L.T.; Foissac, X.; Bové, J.M.; et al. The Complete Genome Sequence of ‘Candidatus Liberibacter americanus’, Associated with Citrus Huanglongbing. Mol. Plant-Microbe Interact. MPMI 2014, 27, 163–176. [Google Scholar] [CrossRef]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility geneCsLOB1promoter in citrus. Plant Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Y.; Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017, 15, 817–823. [Google Scholar] [CrossRef]
- Song, X.; Bhattarai, K.; Lv, D.; Gao, F.; Ying, X. Can CRISPR Win the Battle against Huanglongbing? J. Plant Pathol. Microbiol. 2017, 8, 2. [Google Scholar]
- Hoshi, A.; Oshima, K.; Kakizawa, S.; Ishii, Y.; Ozeki, J.; Hashimoto, M.; Komatsu, K.; Kagiwada, S.; Yamaji, Y.; Namba, S. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc. Natl. Acad. Sci. USA 2009, 106, 6416–6421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minato, N.; Himeno, M.; Hoshi, A.; Maejima, K.; Komatsu, K.; Takebayashi, Y.; Kasahara, H.; Yusa, A.; Yamaji, Y.; Oshima, K.; et al. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci. Rep. 2014, 4, 7399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrós, S.; El-Mohtar, C.; Ruiz-Ruiz, S.; Peña, L.; Guerri, J.; Dawson, W.O.; Moreno, P. Agroinoculation of Citrus tristeza virus Causes Systemic Infection and Symptoms in the Presumed Nonhost Nicotiana benthamiana. Mol. Plant-Microbe Interact. MPMI 2011, 24, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Francischini, F.J.B.; Oliveira, K.D.S.; Astúa-Monge, G.; Novelli, A.; Lorenzino, R.; Matiolli, C.; Kemper, E.; Da Silva, A.C.R.; Kitajima, E.W. First Report on the Transmission of ‘Candidatus Liberibacter americanus’ from Citrus to Nicotiana tabacum cv. Xanthi. Plant Dis. 2007, 91, 631. [Google Scholar] [CrossRef] [PubMed]
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana benthamiana: Its History and Future as a Model for Plant–Pathogen Interactions. Mol. Plant-Microbe Interact. 2008, 21, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, H.; Estelle, M. Plant Development: Regulation by Protein Degradation. Science 2002, 297, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Marino, D.; Peeters, N.; Rivas, S. Ubiquitination during Plant Immune Signaling1. Plant Physiol. 2012, 160, 15–27. [Google Scholar] [CrossRef]
- Dudler, R. Manipulation of Host Proteasomes as a Virulence Mechanism of Plant Pathogens. Annu. Rev. Phytopathol. 2013, 51, 521–542. [Google Scholar] [CrossRef]
- Banfield, M.J. Corrigendum: Perturbation of host ubiquitin systems by plant pathogen/pest effector proteins. Cell. Microbiol. 2015, 17, 765. [Google Scholar] [CrossRef]
- Colombatti, F.; Gonzalez, D.H.; Welchen, E. Plant mitochondria under pathogen attack: A sigh of relief or a last breath? Mitochondrion 2014, 19, 238–244. [Google Scholar] [CrossRef]
- Block, A.; Guo, M.; Li, G.; Elowsky, C.; Clemente, T.E.; Alfano, J.R. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell. Microbiol. 2010, 12, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Froelich, D.R.; Mullendore, D.L.; Jensen, K.H.; Ross-Elliott, T.J.; Anstead, J.A.; Thompson, G.A.; Pélissier, H.C.; Knoblauch, M. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation. Plant Cell 2011, 23, 4428–4445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivprasad, S.; Pogue, G.P.; Lewandowski, D.J.; Hidalgo, J.; Donson, J.; Grill, L.K.; Dawson, W.O. Heterologous Sequences Greatly Affect Foreign Gene Expression in Tobacco Mosaic Virus-Based Vectors. Virology 1999, 255, 312–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupree, P.; Sherrier, D.J. The plant Golgi apparatus. Biochim. Biophys. Acta 1998, 1404, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Driouich, A.; Faye, L.; Staehelin, A. The plant Golgi apparatus: A factory for complex polysaccharides and glycoproteins. Trends Biochem. Sci. 1993, 18, 210–214. [Google Scholar] [CrossRef]
- Hassler, S.; Lemke, L.; Jung, B.; Möhlmann, T.; Krüger, F.; Schumacher, K.; Espen, L.; Martinoia, E.; Neuhaus, H.E. Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. Plant J. Cell Mol. Biol. 2012, 72, 732–744. [Google Scholar] [CrossRef]
- Uemura, T.; Kim, H.; Saito, C.; Ebine, K.; Ueda, T.; Schulze-Lefert, P.; Nakano, A. Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc. Natl. Acad. Sci. USA 2012, 109, 1784–1789. [Google Scholar] [CrossRef]
- Wu, J.-X.; Li, J.; Liu, Z.; Yin, J.; Chang, Z.-Y.; Rong, C.; Wu, J.-L.; Bi, F.-C.; Yao, N. The Arabidopsis ceramidaseAtACER functions in disease resistance and salt tolerance. Plant J. Cell Mol. Biol. 2015, 81, 767–780. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Fei, F.; Wang, Z.; Wang, W.; Cao, A.; Liu, Y.; Han, S.; Xing, L.; Wang, H.; et al. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.). Plant J. Cell Mol. Biol. 2015, 84, 154–168. [Google Scholar] [CrossRef]
- Davin, L.B. Dirigent Proteins and Dirigent Sites Explain the Mystery of Specificity of Radical Precursor Coupling in Lignan and Lignin Biosynthesis. Plant Physiol. 2000, 123, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zhao, M.; Liu, T.; Dong, L.; Cheng, Q.; Wu, J.; Wang, L.; Chen, X.; Zhang, C.; Lu, W.; et al. A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae. Front. Plant Sci. 2017, 8, 1185. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Achor, D.S.; Etxeberria, E.; Yu, Q.; Du, D.; Stanton, D.; Liang, G.; Gmitter, F.G. Phloem Regeneration Is a Mechanism for Huanglongbing-Tolerance of “Bearss” Lemon and “LB8-9” Sugar Belle (R) Mandarin. Front. Plant Sci. 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Misas-Villamil, J.C.; Van Der Hoorn, R.A.L.; Doehlemann, G. Papain-like cysteine proteases as hubs in plant immunity. New Phytol. 2016, 212, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, Y.; Zheng, Z.; Dai, Z.; Tao, Y.; Deng, X. Transcriptional Analyses of Mandarins Seriously Infected by ‘Candidatus Liberibacter asiaticus’. PLoS ONE 2015, 10, e0133652. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Wang, C.-K.; Soong, S.-C.; To, K.-Y. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 2003, 11, 287–293. [Google Scholar] [CrossRef]
- Turpen, T.H.; Turpen, A.M.; Weinzettl, N.; Kumagai, M.H.; Dawson, W.O. Transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA of tobacco mosaic virus. J. Virol. Methods 1993, 42, 227–239. [Google Scholar] [CrossRef]
- Hood, E.E.; Gelvin, S.B.; Melchers, L.S.; Hoekema, A. NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993, 2, 208–218. [Google Scholar] [CrossRef]
- Ying, X.-B.; Dong, L.; Zhu, H.; Duan, C.-G.; Du, Q.-S.; Lv, D.-Q.; Fang, Y.-Y.; Garcia, J.A.; Fang, R.-X.; Guo, H.-S. RNA-Dependent RNA Polymerase 1 from Nicotiana tabacum Suppresses RNA Silencing and Enhances Viral Infection in Nicotiana benthamiana. Plant Cell 2010, 22, 1358–1372. [Google Scholar] [CrossRef]
Locus Tag | Length | MW | SignalP | SignalP | Phobius | TMHMM | Annotation c | Phenotype d |
---|---|---|---|---|---|---|---|---|
(aa) a | (kDa) b | 4 | 3 | |||||
CLIBASIA_00070 | 409 | 47.62 | N | Y | N | 1 | hypothetical protein | 4 |
CLIBASIA_00100 | 209 | 23.91 | Y | Y | Y | 0 | putative ABC transporter protein | 2 |
CLIBASIA_00420 | 161 | 17.87 | Y | Y | Y | 1 | outer membrane lipoprotein | 2 |
CLIBASIA_00460 | 99 | 11.29 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_00470 | 52 | 5.96 | N | Y | Y | 1 | hypothetical protein | 1 |
CLIBASIA_00525 | 98 | 11.56 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_00530 | 98 | 11.38 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_00965 | 288 | 31.76 | Y | Y | Y | 1 | putative membrane-bound lytic murein transglycosylase signal peptide protein | 2 |
CLIBASIA_01135 | 310 | 35.15 | Y | Y | N | 0 | substrate-binding region of ABC-type glycine betaine transport system | 4 |
CLIBASIA_01345 | 666 | 75.38 | N | N | N | 0 | Serralysin, TISS | 4 |
CLIBASIA_01555 | 321 | 36.61 | N | N | N | 0 | hemolysin protein, TISS | 4 |
CLIBASIA_01640 | 142 | 16.08 | Y | Y | Y | 1 | hypothetical protein | 2 |
CLIBASIA_02075 | 397 | 46.04 | Y | Y | Y | 0 | chemotaxis protein | 4 |
CLIBASIA_02120 | 295 | 33.18 | Y | Y | Y | 0 | periplasmic solute binding protein | 2 |
CLIBASIA_02145 | 211 | 23.59 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_02180 | 272 | 31.41 | N | N | N | 1 | Signal peptide protein | 2 |
CLIBASIA_02215 | 121 | 13.91 | N | Y | Y | 1 | hypothetical protein | 2 |
CLIBASIA_02250 | 196 | 22.61 | Y | Y | N | 0 | extracellular solute-binding protein | 2 |
CLIBASIA_02275 | 71 | 8.25 | N | N | Y | 1 | hypothetical protein | 2 |
CLIBASIA_02305 | 193 | 21.92 | N | N | Y | 0 | hypothetical protein | 2 |
CLIBASIA_02425 | 206 | 21.63 | Y | Y | Y | 0 | outer membrane protein | 2 |
CLIBASIA_02470 | 131 | 14.77 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_02845 | 200 | 23.41 | N | Y | N | 0 | hypothetical protein | 2 |
CLIBASIA_02935 | 490 | 53.54 | N | Y | N | 1 | serine protease DO-like protease | 4 |
CLIBASIA_03020 | 295 | 33.45 | N | Y | Y | 1 | zinc uptake ABC transporter | 2 |
CLIBASIA_03070 | 474 | 51.84 | Y | Y | Y | 0 | putative pilus assembly protein | 4 |
CLIBASIA_03085 | 121 | 12.87 | N | Y | N | 1 | hypothetical protein | 2 |
CLIBASIA_03120 | 61 | 7.02 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_03230 | 162 | 17.76 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_03515 | 347 | 39.38 | N | N | N | 2 | uroporphyrinogen decarboxylase | 4 |
CLIBASIA_03695 | 113 | 12.47 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_03915 | 41 | 4.51 | N | Y | Y | 1 | hypothetical protein | 2 |
CLIBASIA_03975 | 208 | 23.67 | N | Y | N | 1 | hypothetical protein | 2 |
CLIBASIA_04025 | 97 | 11.15 | N | Y | Y | 0 | hypothetical protein | 1 |
CLIBASIA_04030 | 89 | 9.37 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04040 | 160 | 17.3 | Y | Y | Y | 0 | hypothetical protein | 3 |
CLIBASIA_04065 | 409 | 47.32 | N | Y | N | 1 | hypothetical protein | C-terminal 1 |
CLIBASIA_04140 | 409 | 47.31 | N | Y | N | 1 | hypothetical protein | 4 |
CLIBASIA_04250 | 50 | 5.39 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04320 | 216 | 24.74 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04330 | 230 | 26.13 | N | Y | Y | 1 | hypothetical protein | 2 |
CLIBASIA_04405 | 122 | 13.65 | N | N | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04410 | 123 | 14.34 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04425 | 126 | 14.99 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04470 | 280 | 30.61 | N | N | N | 8 | hypothetical protein | 2 |
CLIBASIA_04520 | 305 | 35.45 | Y | Y | Y | 0 | hypothetical protein | 4 |
CLIBASIA_04530 | 86 | 9.24 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04540 | 412 | 47.8 | N | Y | N | 1 | hypothetical protein | 4 |
CLIBASIA_04560 | 195 | 21.77 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04580 | 117 | 13.35 | N | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_04735 | 163 | 18.68 | N | Y | Y | 0 | outer membrane lipoprotein omp19 | 2 |
CLIBASIA_05050 | 399 | 46.62 | N | N | Y | 1 | von Willebrand factor type A | 4 |
CLIBASIA_05060 | 421 | 48.23 | N | N | N | 1 | von Willebrand factor type A | 4 |
CLIBASIA_05115 | 286 | 21.18 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_05150 | 225 | 24.81 | Y | Y | Y | 0 | hypothetical protein | 1 |
CLIBASIA_05320 | 86 | 9.58 | Y | Y | Y | 0 | hypothetical protein | 2 |
CLIBASIA_05330 | 68 | 7.76 | N | N | N | 0 | hypothetical protein | 2 |
CLIBASIA_05480 | 253 | 29.08 | N | Y | N | 2 | hypothetical protein | 2 |
CLIBASIA_05570 | 81 | 8.29 | N | Y | Y | 1 | hypothetical protein | 2 |
CLIBASIA_05640 | 69 | 7.67 | Y | Y | Y | 0 | hypothetical protein | 3 |
Bait | Accession Number | Annotation | Isolate |
---|---|---|---|
CLIBASIA_00470 | XM_006480567 | polyubiquitin-like | 1 |
XM_006480570 | polyubiquitin-like | 1 | |
XM_006475150 | polyubiquitin-like | 1 | |
XM_006495169 | agglutinin-2-like | 6 | |
XM_006489869 | galactinol--sucrose galactosyltransferase 2-like | 13 | |
XM_006466177 | DnaJ homolog 1 like | 7 | |
XM_006470378 | NDR1/HIN1-like protein 13 | 2 | |
XM_006470373 | L-ascorbate oxidase-like | 1 | |
XM_006473640 | cinnamyl alcohol dehydrogenase 6-like | 1 | |
XM_025093156 | heat shock 70 kDa protein 6 | 1 | |
XM_006466284 | 8-hydroxygeraniol dehydrogenase-like | 1 | |
XM_006486253 | phosphoinositide phospholipase C 2-like | 1 | |
XM_025092931 | TSS protein | 1 | |
XM_006475911 | UPF0587 protein C1orf123 | 1 | |
XM_006473608 | thaumatin-like protein 1b | 1 | |
XM_006469523 | uncharacterized protein | 1 | |
XM_006479243 | uncharacterized protein | 1 | |
CLIBASIA_04025 | XM_006495169 | agglutinin-2-like | 4 |
XM_006489869 | galactinol--sucrose galactosyltransferase 2-like isoform | 1 | |
XM_006465840 | subtilisin-like protease-like | 1 | |
XM_006470378 | NDR1/HIN1-like protein 13 | 1 | |
XM_006485422 | DnaJ protein homolog | 1 | |
XM_006486253 | phosphoinositide phospholipase C 2-like | 1 | |
XM_006489870 | probable galactinol--sucrose galactosyltransferase 2 | 1 | |
XM_006486194 | cytosolic endo-beta-N-acetylglucosaminidase 1-like | 1 | |
XM_006473608 | thaumatin-like protein 1b | 1 | |
XM_006472735 | disulfide-isomerase | 1 | |
CLIBASIA_05150 | XM_006474664 | cysteine protease Cp | 3 |
XM_006471352 | uncharacterized protein | 1 | |
XM_025096339 | ribose-5-phosphate isomerase 3 | 1 | |
XM_006441377 | Kunitz trypsin inhibitor 2 | 1 | |
XM_006492080 | dirigent protein 16 | 1 | |
XM_006485840 | elongation factor 1-alpha | 1 | |
CLIBASIA_04065 | orange1.1g037576m | hypothetical protein | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, X.; Wan, M.; Hu, L.; Zhang, J.; Li, H.; Lv, D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. Int. J. Mol. Sci. 2019, 20, 5575. https://doi.org/10.3390/ijms20225575
Ying X, Wan M, Hu L, Zhang J, Li H, Lv D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. International Journal of Molecular Sciences. 2019; 20(22):5575. https://doi.org/10.3390/ijms20225575
Chicago/Turabian StyleYing, Xiaobao, Mengyuan Wan, Linshuang Hu, Jinghua Zhang, Hui Li, and Dianqiu Lv. 2019. "Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus" International Journal of Molecular Sciences 20, no. 22: 5575. https://doi.org/10.3390/ijms20225575
APA StyleYing, X., Wan, M., Hu, L., Zhang, J., Li, H., & Lv, D. (2019). Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. International Journal of Molecular Sciences, 20(22), 5575. https://doi.org/10.3390/ijms20225575