The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents
Abstract
:1. Introduction
2. Role of the NMDA Receptors in Social Interaction
2.1. Genetic Models of Impaired NMDA Receptor Functioning; Effects on Social Interaction
2.2. Effects of the NMDA Receptor Antagonists on Social Interaction
2.3. Effects of the NMDA Receptor Agonists on Social Interaction
3. Role of the NMDA Receptors in Social Communication
3.1. Genetic Models of Impaired NMDA Receptor Functioning; Effects on Social Communication
3.2. Effects of the NMDA Receptor Antagonists and Agonists on Social Communication
4. Role of the NMDA Receptors in Social Memory
4.1. Genetic Models of Impaired NMDA Receptor Functioning; Effects on Social Memory
4.2. Effects of the NMDA Receptor Antagonists and Agonists on Social Memory
5. Role of the NMDA Receptors in Inter-Male Aggression
6. Role of the NMDA Receptors in Sexual Behavior
7. Role of the NMDA Receptors in Maternal Behavior
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef] [PubMed]
- Danysz, W.; Parsons, C.G.; Parsons, C. GlycineB recognition site of NMDA receptors and its antagonists. Amino Acids 1998, 14, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef] [PubMed]
- Green, T.L.; Burket, J.A.; Deutsch, S.I. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism. Brain Res. Bull. 2016, 125, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Hackos, D.H.; Lupardus, P.J.; Grand, T.; Chen, Y.; Wang, T.-M.; Reynen, P.; Gustafson, A.; Wallweber, H.J.; Volgraf, M.; Sellers, B.D.; et al. Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function. Neuron 2016, 89, 983–999. [Google Scholar] [CrossRef] [Green Version]
- Hackos, D.H.; Hanson, J.E. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacol. 2017, 112, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Conn, P.J. Novel PAMs Targeting NMDAR GluN2A Subunit. Neuron 2016, 89, 884–886. [Google Scholar] [CrossRef]
- Monyer, H.; Burnashev, N.; Laurie, D.J.; Sakmann, B.; Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12, 529–540. [Google Scholar] [CrossRef]
- Sheng, M.; Cummings, J.; Roldan, L.A.; Jan, Y.N.; Jan, L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nat. 1994, 368, 144–147. [Google Scholar] [CrossRef]
- Wenzel, A.; Fritschy, J.M.; Mohler, H.; Benke, D. NMDA receptor heterogeneity during postnatal development of the rat brain: Differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 1997, 68, 469–478. [Google Scholar] [CrossRef]
- Liu, X.-B.; Murray, K.D.; Jones, E.G. Switching of NMDA Receptor 2A and 2B Subunits at Thalamic and Cortical Synapses during Early Postnatal Development. J. Neurosci. 2004, 24, 8885–8895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-M.; Luo, J.-H. GluN2A versus GluN2B: Twins, but quite different. Neurosci. Bull. 2013, 29, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013, 14, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Clemente, A.; Nicoll, R.A.; Roche, K.W. Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist 2013, 19, 62–75. [Google Scholar] [CrossRef]
- Ko, J. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Front. Neural Circuits 2017, 11, 41. [Google Scholar] [CrossRef]
- Chen, P.; Hong, W. Neural Circuit Mechanisms of Social Behavior. Neuron 2018, 98, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Cull-Candy, S.; Brickley, S.; Farrant, M. NMDA receptor subunits: Diversity, development and disease. Curr. Opin. Neurobiol. 2001, 11, 327–335. [Google Scholar] [CrossRef]
- Conti, J. Localization of NMDA receptors in the cerebral cortex: A schematic overview. Braz. J. Med. Biol. Res. 1997, 30, 555–560. [Google Scholar] [CrossRef]
- De Armentia, M.L.; Sah, P. Development and Subunit Composition of Synaptic NMDA Receptors in the Amygdala: NR2B Synapses in the Adult Central Amygdala. J. Neurosci. 2003, 23, 6876–6883. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Ding, Q.; Chen, Z.; Yun, H.; Wang, H. Involvement of the GluN2A and GluN2B Subunits in Synaptic and Extrasynaptic N-methyl-d-aspartate Receptor Function and Neuronal Excitotoxicity*. J. Boil. Chem. 2013, 288, 24151–24159. [Google Scholar] [CrossRef]
- Vizi, E.; Kisfali, M.; Lorincz, T. Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: Evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res. Bull. 2013, 93, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sasaki, Y.F.; Rothe, T.; Premkumar, L.S.; Takasu, M.; Crandall, J.E.; Dikkes, P.; Conner, D.A.; Rayudu, P.V.; Cheung, W.; et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nat. 1998, 393, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 1974, 5, 325–383. [Google Scholar] [CrossRef]
- Dryman, M.T.; Heimberg, R.G. Emotion regulation in social anxiety and depression: A systematic review of expressive suppression and cognitive reappraisal. Clin. Psychol. Rev. 2018, 65, 17–42. [Google Scholar] [CrossRef]
- Frye, R.E. Social Skills Deficits in Autism Spectrum Disorder: Potential Biological Origins and Progress in Developing Therapeutic Agents. CNS Drugs 2018, 32, 713–734. [Google Scholar] [CrossRef]
- Porcelli, S.; Van Der Wee, N.; van der Werff, S.; Aghajani, M.; Glennon, J.C.; van Heukelum, S.; Mogavero, F.; Lobo, A.; Olivera, F.J.; Lobo, E.; et al. Social brain, social dysfunction and social withdrawal. Neurosci. Biobehav. Rev. 2018, 97, 10–33. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Bermudez, M.B.; Macedo, M.J.D.A.; Passos, I.C. Comorbid social anxiety disorder in patients with alcohol use disorder: A systematic review. J. Psychiatr. Res. 2018, 106, 8–14. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Protic, D.; Rajaratnam, A.; Salcedo-Arellano, M.J.; Aydin, E.Y.; Schneider, A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front. Psychol. 2018, 9, 564. [Google Scholar] [CrossRef] [Green Version]
- Krach, S.; Paulus, F.M.; Bodden, M.; Kircher, T. The Rewarding Nature of Social Interactions. Front. Behav. Neurosci. 2010, 4, 22. [Google Scholar] [CrossRef]
- Trezza, V.; Campolongo, P.; Vanderschuren, L.J. Evaluating the rewarding nature of social interactions in laboratory animals. Dev. Cogn. Neurosci. 2011, 1, 444–458. [Google Scholar] [CrossRef]
- File, S.E.; Hyde, J. CAN SOCIAL INTERACTION BE USED TO MEASURE ANXIETY? Br. J. Pharmacol. 1978, 62, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berton, O. Essential Role of BDNF in the Mesolimbic Dopamine Pathway in Social Defeat Stress. Science 2006, 311, 864–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukas, M.; Toth, I.; O Reber, S.; A Slattery, D.; Veenema, A.H.; Neumann, I.D. The Neuropeptide Oxytocin Facilitates Pro-Social Behavior and Prevents Social Avoidance in Rats and Mice. Neuropsychopharmacology 2011, 36, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Toth, I.; Neumann, I.D. Animal models of social avoidance and social fear. Cell and Tissue Research 2013, 354, 107–118. [Google Scholar] [CrossRef]
- Mohn, A.R.; Gainetdinov, R.R.; Caron, M.G.; Koller, B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999, 98, 427–436. [Google Scholar] [CrossRef]
- E Duncan, G.; Moy, S.S.; Pérez, A.; Eddy, D.M.; Zinzow, W.M.; A Lieberman, J.; Snouwaert, J.N.; Koller, B.H. Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav. Brain Res. 2004, 153, 507–519. [Google Scholar] [CrossRef]
- Halene, T.B.; Ehrlichman, R.S.; Liang, Y.; Christian, E.P.; Jonak, G.J.; Gur, T.L.; Blendy, J.A.; Dow, H.C.; Brodkin, E.S.; Schneider, F.; et al. Assessment of NMDA receptor NR1 subunit hypofunction in mice as a model for schizophrenia. Genes, Brain Behav. 2009, 8, 661–675. [Google Scholar] [CrossRef]
- Saunders, J.A.; Tatard-Leitman, V.M.; Suh, J.; Billingslea, E.N.; Roberts, T.P.; Siegel, S.J. Knockout of NMDA receptors in parvalbumin interneurons recreates autism-like phenotypes. Autism Res. 2013, 6, 69–77. [Google Scholar] [CrossRef]
- Billingslea, E.N.; Tatard-Leitman, V.M.; Anguiano, J.; Jutzeler, C.R.; Suh, J.; A Saunders, J.; Morita, S.; E Featherstone, R.; I Ortinski, P.; Gandal, M.J.; et al. Parvalbumin Cell Ablation of NMDA-R1 Causes Increased Resting Network Excitability with Associated Social and Self-Care Deficits. Neuropsychopharmacol. 2014, 39, 1603–1613. [Google Scholar] [CrossRef] [Green Version]
- Belforte, J.E.; Zsiros, V.; Sklar, E.R.; Jiang, Z.; Yu, G.; Li, Y.; Quinlan, E.M.; Nakazawa, K. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 2010, 13, 76–83. [Google Scholar] [CrossRef]
- Jacobs, S.; Tsien, J.Z. Adult forebrain NMDA receptors gate social motivation and social memory. Neurobiol. Learn. Mem. 2017, 138, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Kew, J.N.C.; Koester, A.; Moreau, J.-L.; Jenck, F.; Ouagazzal, A.-M.; Mutel, V.; Richards, J.G.; Trube, G.; Fischer, G.; Montkowski, A.; et al. Functional Consequences of Reduction in NMDA Receptor Glycine Affinity in Mice Carrying Targeted Point Mutations in the Glycine Binding Site. J. Neurosci. 2000, 20, 4037–4049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrie, V.; Lipina, T.; Roder, J.C. Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology 2008, 200, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Matveeva, T.M.; Pisansky, M.T.; Young, A.; Miller, R.F.; Gewirtz, J.C. Sociality deficits in serine racemase knockout mice. Brain Behav. 2019, 9, e01383. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.C.; Tsai, G.E.; Ma, C.L.; Ehmsen, J.T.; Mustafa, A.K.; Han, L.; Jiang, Z.I.; Benneyworth, M.A.; Froimowitz, M.P.; Lange, N.; et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol. Psychiatry. 2009, 14, 719–727. [Google Scholar] [CrossRef]
- Rung, J.P.; Carlsson, A.; Markinhuhta, K.R.; Carlsson, M.L. (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog. Neuro-Psychopharmacology Boil. Psychiatry 2005, 29, 827–832. [Google Scholar] [CrossRef]
- Satow, A.; Suzuki, G.; Maehara, S.; Hikichi, H.; Murai, T.; Murai, T.; Kawagoe-Takaki, H.; Hata, M.; Ito, S.; Ozaki, S.; et al. Unique Antipsychotic Activities of the Selective Metabotropic Glutamate Receptor 1 Allosteric Antagonist 2-Cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one. J. Pharmacol. Exp. Ther. 2009, 330, 179–190. [Google Scholar] [CrossRef]
- Sławińska, A.; Wierońska, J.M.; Stachowicz, K.; Marciniak, M.; Lasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Kusek, M.; Tokarski, K.; Doller, D.; et al. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGluR4 receptors in rodents. Br. J. Pharmacol. 2013, 169, 1824–1839. [Google Scholar] [CrossRef]
- Morales, M.; Spear, L.P. The effects of an acute challenge with the NMDA receptor antagonists, MK-801, PEAQX, and ifenprodil, on social inhibition in adolescent and adult male rats. Psychopharmacology (Berl). 2014, 231, 1797–1807. [Google Scholar] [CrossRef]
- Wierońska, J.M.; Kłeczek, N.; Woźniak, M.; Gruca, P.; Łasoń-Tyburkiewicz, M.; Papp, M.; Brański, P.; Burnat, G.; Pilc, A. mGlu₅-GABAB interplay in animal models of positive, negative and cognitive symptoms of schizophrenia. Neurochem. Int. 2015, 88, 97–109. [Google Scholar] [CrossRef]
- Wierońska, J.M.; Sławińska, A.; Łasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Zorn, S.H.; Doller, D.; Kłeczek, N.; Noworyta-Sokołowska, K.; Gołembiowska, K.; et al. The antipsychotic-like effects in rodents of the positive allosteric modulator Lu AF21934 involve 5-HT1A receptor signaling: Mechanistic studies. Psychopharmacology (Berl). 2015, 232, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Acher, F.; Marciniak, M.; Lasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Pilc, A.; Wierońska, J.M. Involvement of GABAB receptor signaling in antipsychotic-like action of the novel orthosteric agonist of the mGlu4 receptor, LSP4-2022. Curr. Neuropharmacol. 2016, 14, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, P.; Woźniak, M.; Rook, J.M.; Tantawy, M.N.; Conn, P.J.; Acher, F.; Tokarski, K.; Kusek, M.; Pilc, A.; Wierońska, J.M. Mutual activation of glutamatergic mGlu4 and muscarinic M4 receptors reverses schizophrenia-related changes in rodents. Psychopharmacology 2018, 235, 2897–2913. [Google Scholar] [CrossRef] [Green Version]
- Cieślik, P.; Woźniak, M.; Kaczorowska, K.; Brański, P.; Burnat, G.; Chocyk, A.; Bobula, B.; Gruca, P.; Litwa, E.; Pałucha-Poniewiera, A.; et al. Negative Allosteric Modulators of mGlu7 Receptor as Putative Antipsychotic Drugs. Front. Mol. Neurosci. 2018, 11, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, T.; Sumiyoshi, T.; Tanaka, K.; Tsunoda, M.; Uehara, T.; Itoh, H.; Kurachi, M. NC-1900, an arginine–vasopressin analogue, ameliorates social behavior deficits and hyperlocomotion in MK-801-treated rats: Therapeutic implications for schizophrenia. Brain Res. 2005, 1053, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Sams-Dodd, F. A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine. Neuropsychopharmacol. 1998, 18, 293–304. [Google Scholar] [CrossRef]
- Slot, L.A.B.; Kleven, M.S.; Newman-Tancredi, A. Effects of novel antipsychotics with mixed D2 antagonist/5-HT1A agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacol. 2005, 49, 996–1006. [Google Scholar] [CrossRef]
- Lee, P.R.; Brady, D.L.; A Shapiro, R.; Dorsa, D.M.; I Koenig, J. Social Interaction Deficits Caused by Chronic Phencyclidine Administration are Reversed by Oxytocin. Neuropsychopharmacol. 2005, 30, 1883–1894. [Google Scholar] [CrossRef] [Green Version]
- Snigdha, S.; Neill, J. Efficacy of antipsychotics to reverse phencyclidine-induced social interaction deficits in female rats—A preliminary investigation. Behav. Brain Res. 2008, 187, 489–494. [Google Scholar] [CrossRef]
- Snigdha, S.; Neill, J.C. Improvement of phencyclidine-induced social behaviour deficits in rats: Involvement of 5-HT1A receptors. Behav. Brain Res. 2008, 191, 26–31. [Google Scholar] [CrossRef]
- Audet, M.-C.; Goulet, S.; Doré, F.Y. Impaired social motivation and increased aggression in rats subchronically exposed to phencyclidine. Physiol. Behav. 2009, 96, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.M.; Tuffnell, J.A.; Pinter, I.J.; Van Der Harst, J.E.; Spruijt, B.M. Short- and long-term behavioral analysis of social interaction, ultrasonic vocalizations and social motivation in a chronic phencyclidine model. Behav. Brain Res. 2017, 325, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Harich, S.; Gross, G.; Bespalov, A. Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology 2007, 192, 511–519. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; Minamoto, T.; Odell, J.R.; Mayhorn, J.; White, W. Brief exposure to methamphetamine (METH) and phencyclidine (PCP) during late development leads to long-term learning deficits in rats. Brain Res. 2009, 1266, 72–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, H.; Noda, Y.; Kamei, H.; Nagai, T.; Furukawa, H.; Miura, H.; Kayukawa, Y.; Ohta, T.; Nabeshima, T. Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. NeuroReport 2001, 12, 11–15. [Google Scholar] [CrossRef]
- Neill, J.C.; Barnes, S.; Cook, S.; Grayson, B.; Idris, N.F.; McLean, S.L.; Snigdha, S.; Rajagopal, L.; Harte, M.K. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: Focus on NMDA receptor antagonism. Pharmacol. Ther. 2010, 128, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, J.S.; Nadal, R.; Pallarès, M.; Ferré, N. Acute effects of ketamine in the holeboard, the elevated-plus maze, and the social interaction test in Wistar rats. Depression Anxiety 1997, 5, 29–33. [Google Scholar] [CrossRef]
- Nikiforuk, A.; Hołuj, M.; Kos, T.; Popik, P. The effects of a 5-HT 5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia. Neuropharmacol. 2016, 105, 351–360. [Google Scholar] [CrossRef]
- Zugno, A.I.; Canever, L.; Heylmann, A.S.; Wessler, P.G.; Steckert, A.; Mastella, G.A.; De Oliveira, M.B.; Damázio, L.S.; Pacheco, F.D.; Calixto, O.P.; et al. Effect of folic acid on oxidative stress and behavioral changes in the animal model of schizophrenia induced by ketamine. J. Psychiatr. Res. 2016, 81, 23–35. [Google Scholar] [CrossRef]
- Popik, P.; Hołuj, M.; Kos, T.; Nowak, G.; Librowski, T.; Sałat, K. Comparison of the Psychopharmacological Effects of Tiletamine and Ketamine in Rodents. Neurotox. Res. 2017, 32, 544–554. [Google Scholar] [CrossRef]
- Becker, A.; Peters, B.; Schroeder, H.; Mann, T.; Huether, G.; Grecksch, G. Ketamine-induced changes in rat behaviour: A possible animal model of schizophrenia. Prog. Neuro-Psychopharmacology Boil. Psychiatry 2003, 27, 687–700. [Google Scholar] [CrossRef]
- Koros, E.; Rosenbrock, H.; Birk, G.; Weiss, C.; Sams-Dodd, F. The selective mGlu5 receptor antagonist MTEP, similar to NMDA receptor antagonists, induces social isolation in rats. Neuropsychopharmacology 2007, 32, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Zoupa, E.; Gravanis, A.; Pitsikas, N. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts behavioural deficits induced by the NMDA receptor antagonist ketamine in rats. Neuropharmacol. 2019, 151, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Zahra, A.; Jiang, J.; Chen, Y.; Long, C.; Yang, L. Memantine rescues prenatal citalopram exposure-induced striatal and social abnormalities in mice. Exp. Neurol. 2018, 307, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.; Choi, S.Y.; Lee, E.; Park, H.; Kang, J.; Park, H.; Choi, Y.; Lee, D.; Park, S.-G.; Kim, R.; et al. Social deficits in IRSp53 mutant mice improved by NMDAR and mGluR5 suppression. Nat. Neurosci. 2015, 18, 435–443. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, J.; Yang, J.; Chung, W.; Kim, J.H.; Paik, S.K.; Kim, K.; Han, S.; Won, H.; Bae, Y.S.; et al. Enhanced NMDA Receptor-Mediated Synaptic Transmission, Enhanced Long-Term Potentiation, and Impaired Learning and Memory in Mice Lacking IRSp53. J. Neuroscience 2009, 29, 1586–1595. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Maulucci-Gedde, M.; Kriegstein, A. Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 1987, 7, 357–368. [Google Scholar] [CrossRef]
- Choi, D.W. Excitotoxic cell death. J. Neurobiol. 1992, 23, 1261–1276. [Google Scholar] [CrossRef]
- Urwyler, S.; Floersheim, P.; Roy, B.L.; Koller, M. Drug Design, in Vitro Pharmacology, and Structure−Activity Relationships of 3-Acylamino-2-aminopropionic Acid Derivatives, a Novel Class of Partial Agonists at the Glycine Site on theN-Methyl-d-aspartate (NMDA) Receptor Complex. J. Med. Chem. 2009, 52, 5093–5107. [Google Scholar] [CrossRef]
- Santini, A.C.; Pierantoni, G.M.; Gerlini, R.; Iorio, R.; Olabinjo, Y.; Giovane, A.; Di Domenico, M.; Sogos, C. Glix 13, a New Drug Acting on Glutamatergic Pathways in Children and Animal Models of Autism Spectrum Disorders. BioMed Res. Int. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Maolanon, A.R.; Risgaard, R.; Wang, S.-Y.; Snoep, Y.; Papangelis, A.; Yi, F.; Holley, D.; Barslund, A.F.; Svenstrup, N.; Hansen, K.B.; et al. Subtype-Specific Agonists for NMDA Receptor Glycine Binding Sites. ACS Chem. Neurosci. 2017, 8, 1681–1687. [Google Scholar] [CrossRef] [PubMed]
- Sankoorikal, G.M.V.; Kaercher, K.A.; Boon, C.J.; Lee, J.K.; Brodkin, E.S. A Mouse Model System for Genetic Analysis of Sociability: C57BL/6J Versus BALB/cJ Inbred Mouse Strains. Boil. Psychiatry 2006, 59, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Brodkin, E. BALB/c mice: Low sociability and other phenotypes that may be relevant to autism. Behav. Brain Res. 2007, 176, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Moy, S.S.; Nadler, J.J.; Young, N.B.; Perez, A.; Holloway, L.P.; Barbaro, R.P.; Barbaro, J.R.; Wilson, L.M.; Threadgill, D.W.; Lauder, J.M.; et al. Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains. Behav. Brain Res. 2007, 176, 4–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, S.I.; Burket, J.A.; Jacome, L.F.; Cannon, W.R.; Herndon, A.L. d-Cycloserine improves the impaired sociability of the Balb/c mouse. Brain Res. Bull. 2011, 84, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, S.I.; Rosse, R.B.; Paul, S.M.; Riggs, R.L.; Mastropaolo, J. Inbred mouse strains differ in sensitivity to “popping” behavior elicited by MK-Pharmacol. Biochem. Behav. 1997, 57, 315–317. [Google Scholar] [CrossRef]
- Deutsch, S.I.; Mastropaolo, J.; Powell, D.G.; Rosse, R.B.; Bachus, S.E. Inbred mouse strains differ in their sensitivity to an antiseizure effect of MK-801. Clin. Neuropharmacol. 1998, 21, 255–257. [Google Scholar]
- Burket, J.A.; Cannon, W.R.; Jacome, L.F.; Deutsch, S.I. MK-801, a noncompetitive NMDA receptor antagonist, elicits circling behavior in the genetically inbred Balb/c mouse strain. Brain Res. Bull. 2010, 83, 337–339. [Google Scholar] [CrossRef]
- Jacome, L.F.; Burket, J.A.; Herndon, A.L.; Cannon, W.R.; Deutsch, S.I. D-serine improves dimensions of the sociability deficit of the genetically-inbred Balb/c mouse strain. Brain Res. Bull. 2011, 84, 12–16. [Google Scholar] [CrossRef]
- Labrie, V.; Wang, W.; Barger, S.W.; Baker, G.B.; Roder, J.C. Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. Genes Brain Behav. 2010, 9, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Nagai, T.; Yu, J.; Kitahara, Y.; Nabeshima, T.; Yamada, K. D-Serine Ameliorates Neonatal PolyI:C Treatment^|^ndash;Induced Emotional and Cognitive Impairments in Adult Mice. J. Pharmacol. Sci. 2012, 120, 213–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacome, L.F.; Burket, J.A.; Herndon, A.L.; Deutsch, S.I. d-Cycloserine enhances social exploration in the Balb/c mouse. Brain Res. Bull. 2011, 85, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, S.I.; Pepe, G.J.; Burket, J.A.; Winebarger, E.E.; Herndon, A.L.; Benson, A.D. d-cycloserine improves sociability and spontaneous stereotypic behaviors in 4-week old mice. Brain Res. 2012, 1439, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.D.; Burket, J.A.; Deutsch, S.I. Balb/c mice treated with d-cycloserine arouse increased social interest in conspecifics. Brain Res. Bull. 2013, 99, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Burket, J.A.; Benson, A.D.; Tang, A.H.; Deutsch, S.I. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res. Bull. 2013, 96, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Won, H.; Lee, H.-R.; Gee, H.Y.; Mah, W.; Kim, J.-I.; Lee, J.; Ha, S.; Chung, C.; Jung, E.S.; Cho, Y.S.; et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 2012, 486, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Wellmann, K.A.; Varlinskaya, E.I.; Mooney, S.M. D-Cycloserine ameliorates social alterations that result from prenatal exposure to valproic acid. Brain Res. Bull. 2014, 108, 1–9. [Google Scholar] [CrossRef]
- Wu, H.F.; Chen, P.S.; Hsu, Y.T.; Lee, C.W.; Wang, T.F.; Chen, Y.J.; Lin, H.C. D-cycloserine ameliorates autism-like deficits by removing GluA2-containing AMPA receptors in a valproic acid-induced rat model. Mol. Neurobiol. 2018, 55, 4811–4824. [Google Scholar] [CrossRef]
- Nakatani-Pawlak, A.; Yamaguchi, K.; Tatsumi, Y.; Mizoguchi, H.; Yoneda, Y. Neonatal phencyclidine treatment in mice induces behavioral, histological and neurochemical abnormalities in adulthood. Boil. Pharm. Bull. 2009, 32, 1576–1583. [Google Scholar] [CrossRef]
- Smith, K.E.; Borden, L.A.; Hartig, P.R.; Branchek, T.; Weinshank, R.L. Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 1992, 8, 927–935. [Google Scholar] [CrossRef]
- Chaki, S.; Shimazaki, T.; Karasawa, J.-I.; Aoki, T.; Kaku, A.; Iijima, M.; Kambe, D.; Yamamoto, S.; Kawakita, Y.; Shibata, T.; et al. Efficacy of a glycine transporter 1 inhibitor TASP0315003 in animal models of cognitive dysfunction and negative symptoms of schizophrenia. Psychopharmacology 2015, 232, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Burket, J.A.; Benson, A.D.; Green, T.L.; Rook, J.M.; Lindsley, C.W.; Conn, P.J.; Deutsch, S.I. Effects of VU0410120, a novel GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in a mouse model of autism. Prog. Neuro-Psychopharmacology Boil. Psychiatry 2015, 61, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Panksepp, J. The ontogeny of play in rats. Devel. Psychobiol. 1981, 14, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Knutson, B.; Burgdorf, J.; Panksepp, J. Anticipation of play elicits high-frequency ultrasonic vocalizations in young rats. J. Comp. Psychol. 1998, 112, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Barfield, R.J.; Geyer, L.A.; Wolf, L.L.; Hainsworth, F.R.; Stiles, F.G. Sexual Behavior: Ultrasonic Postejaculatory Song of the Male Rat. Science 1972, 176, 1349–1350. [Google Scholar] [CrossRef] [Green Version]
- Brudzynski, S.M.; Ociepa, D. Ultrasonic vocalization of laboratory rats in response to handling and touch. Physiol. Behav. 1992, 52, 655–660. [Google Scholar] [CrossRef]
- Panksepp, J.; Burgdorf, J. 50-kHz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: Effects of social housing and genetic variables. Behav. Brain Res. 2000, 115, 25–38. [Google Scholar] [CrossRef]
- Blanchard, R.; Blanchard, D.; Agullana, R.; Weiss, S.M. Twenty-two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol. Behav. 1991, 50, 967–972. [Google Scholar] [CrossRef]
- Borta, A.; Wöhr, M.; Schwarting, R. Rat ultrasonic vocalization in aversively motivated situations and the role of individual differences in anxiety-related behavior. Behav. Brain Res. 2006, 166, 271–280. [Google Scholar] [CrossRef]
- Kaltwasser, M.T. Acoustic startle induced ultrasonic vocalization in the rat: A novel animal model of anxiety? Behav. Brain Res. 1991, 43, 133–137. [Google Scholar] [CrossRef]
- Vivian, J.A.; Miczek, K.A. Morphine attenuates ultrasonic vocalization during agonistic encounters with male rats. Psychopharmacology 1993, 111, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Portfors, C.V. Types and functions of ultrasonic vocalizations in laboratory rats and mice. J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 28–34. [Google Scholar] [PubMed]
- Gourbal, B.E.F.; Barthelemy, M.; Petit, G.; Gabrion, C. Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice. Naturwissenschaften 2004, 91, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Ricceri, L.; Moles, A.; Crawley, J. Behavioral phenotyping of mouse models of neurodevelopmental disorders: Relevant social behavior patterns across the life span. Behav. Brain Res. 2007, 176, 40–52. [Google Scholar] [CrossRef]
- Ehret, G. Infant Rodent Ultrasounds ? A Gate to the Understanding of Sound Communication. Behav. Genet. 2005, 35, 19–29. [Google Scholar] [CrossRef]
- Gandal, M.J.; Anderson, R.L.; Billingslea, E.N.; Carlson, G.C.; Roberts, T.P.; Siegel, S.J. Mice with reduced NMDA receptor expression: More consistent with autism than schizophrenia? Genes, Brain Behav. 2012, 11, 740–750. [Google Scholar] [CrossRef]
- Lukas, M.; Wöhr, M. Endogenous vasopressin, innate anxiety, and the emission of pro-social 50-kHz ultrasonic vocalizations during social play behavior in juvenile rats. Psychoneuroendocrinology 2015, 56, 35–44. [Google Scholar] [CrossRef]
- Boulay, D.; Ho-Van, S.; Bergis, O.; Avenet, P.; Griebel, G. Phencyclidine decreases tickling-648 induced 50-kHz ultrasound vocalizations in juvenile rats: A putative model of the negative symptoms of schizophrenia. Behav. Pharmacol. 2013, 24, 543–551. [Google Scholar] [CrossRef]
- Moskal, J.R.; Burgdorf, J.; Kroes, R.A.; Brudzynski, S.M.; Panksepp, J. A novel NMDA receptor glycine-site partial agonist, GLYX-13, has therapeutic potential for the treatment of autism. Neurosci. Biobehav. Rev. 2011, 35, 1982–1988. [Google Scholar] [CrossRef]
- Burgdorf, J.; Kroes, R.A.; Weiss, C.; Oh, M.M.; Disterhoft, J.F.; Brudzynski, S.M.; Panksepp, J.; Moskal, J.R. Positive emotional learning is regulated in the medial prefrontal cortex by GluN2B-containing NMDA receptors. Neurosci. 2011, 192, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Panksepp, J. Oxytocin Effects on Emotional Processes: Separation Distress, Social Bonding, and Relationships to Psychiatric Disorders. Ann. New York Acad. Sci. 1992, 652, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Ciucci, M.R.; Ma, S.T.; Kane, J.R.; Ahrens, A.M.; Schallert, T. Limb use and complex ultrasonic vocalization in a rat model of Parkinson’s disease: Deficit-targeted training. Park. Relat. Disord. 2008, 14, S172–S175. [Google Scholar] [CrossRef] [PubMed]
- Ciucci, M.R.; Ahrens, A.M.; Ma, S.T.; Kane, J.R.; Windham, E.B.; Woodlee, M.T.; Schallert, T. Reduction of dopamine synaptic activity: Degradation of 50-kHz ultrasonic vocalization in rats. Behav. Neurosci. 2009, 123, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Winslow, J.T.; Insel, T.R.; Trullas, R.; Skolnick, P. Rat pup isolation calls are reduced by functional antagonists of the NMDA receptor complex. Eur. J. Pharmacol. 1990, 190, 11–21. [Google Scholar] [CrossRef]
- Kehne, J.H.; McCloskey, T.C.; Baron, B.M.; Chi, E.M.; Harrison, B.L.; Whitten, J.P.; Palfreyman, M.G. NMDA receptor complex antagonists have potential anxiolytic effects as measured with separation-induced ultrasonic vocalizations. Eur. J. Pharmacol. 1991, 193, 283–292. [Google Scholar] [CrossRef]
- Podhorna, J.; E Brown, R. Interactions between N-methyl-D-aspartate and nitric oxide in the modulation of ultrasonic vocalizations of infant rats. Eur. J. Pharmacol. 2000, 408, 265–271. [Google Scholar] [CrossRef]
- Takahashi, A.; Yap, J.J.; Bohager, D.Z.; Faccidomo, S.; Clayton, T.; Cook, J.M.; Miczek, K.A. Glutamatergic and GABAergic modulations of ultrasonic vocalizations during maternal separation distress in mouse pups. Psychopharmacology (Berl). 2009, 204, 61–71. [Google Scholar] [CrossRef]
- Parsons, C.; Quack, G.; Bresink, I.; Baran, L.; Przegaliński, E.; Kostowski, W.; Krzascik, P.; Hartmann, S.; Danysz, W.; Parsons, C. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacol. 1995, 34, 1239–1258. [Google Scholar] [CrossRef]
- Parsons, C.G.; Stöffler, A.; Danysz, W.; Parsons, C. Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system - too little activation is bad, too much is even worse. Neuropharmacol. 2007, 53, 699–723. [Google Scholar] [CrossRef]
- Bresink, I.; Danysz, W.; Parsons, C.; Mutschler, E.; Parsons, C. Different binding affinities of NMDA receptor channel blockers in various brain regions—Indication of NMDA receptor heterogeneity. Neuropharmacol. 1995, 34, 533–540. [Google Scholar] [CrossRef]
- Kornhuber, J.; Bormann, J.; Retz, W.; Hübers, M.; Riederer, P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur. J. Pharmacol. 1989, 166, 589–590. [Google Scholar] [CrossRef]
- Halpin, Z.T. Individual Odors among Mammals: Origins and Functions. Adv. Study Behav. 1986, 16, 39–70. [Google Scholar]
- Hurst, J.L.; Fang, J.; Barnard, C. The role of substrate odours in maintaining social tolerance between male house mice, Mus musculus domesticus: Relatedness, incidental kinship effects and the establishment of social status. Anim. Behav. 1994, 48, 157–167. [Google Scholar] [CrossRef]
- Carr, W.J.; Yee, L.; Gable, D.; Marasco, E. Olfactory recognition of conspecifics by domestic Norway rats. J. Comp. Physiol. Psychol. 1976, 90, 821–828. [Google Scholar] [CrossRef]
- Thor, D.H.; Holloway, W.R. Persistence of social investigatory behavior in the male rat: Evidence for long-term memory of initial copulatory experience. Learn. Behav. 1981, 9, 561–565. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kamegaya, E.; Hagino, Y.; Takamatsu, Y.; Sawada, W.; Matsuzawa, M.; Ide, S.; Yamamoto, T.; Mishina, M.; Ikeda, K. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT2C receptor dysfunction, and anhedonia in mice. Neuropharmacol. 2017, 112, 188–197. [Google Scholar] [CrossRef]
- Jacobs, S.; Wei, W.; Wang, D.; Tsien, J.Z. Importance of the GluN2B carboxy-terminal domain for enhancement of social memories. Learn. Mem. 2015, 22, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.A.; Tsien, J.Z. Genetic Overexpression of NR2B Subunit Enhances Social Recognition Memory for Different Strains and Species. PLOS ONE 2012, 7, e36387. [Google Scholar] [CrossRef]
- Chiang, M.-C.; Huang, A.J.; Wintzer, M.E.; Ohshima, T.; McHugh, T.J. A role for CA3 in social recognition memory. Behav. Brain Res. 2018, 354, 22–30. [Google Scholar] [CrossRef]
- Shimazaki, T.; Kaku, A.; Chaki, S. d-Serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacol 2010, 209, 263–270. [Google Scholar] [CrossRef]
- Hikichi, H.; Kaku, A.; Karasawa, J.-I.; Chaki, S. Stimulation of metabotropic glutamate (mGlu) 2 receptor and blockade of mGlu1 receptor improve social memory impairment elicited by MK-801 in rats. J. Pharmacol. Sci. 2013, 122, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Hikichi, H.; Hiyoshi, T.; Marumo, T.; Tomishima, Y.; Kaku, A.; Iida, I.; Urabe, H.; Tamita, T.; Yasuhara, A.; Karasawa, J.-I.; et al. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor. J. Pharmacol. Sci. 2015, 127, 352–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Liu, D.; Zhang, R.; Peng, Y.; Qin, X.; Mao, S. Modulation of glycine sites enhances social memory in rats using PQQ combined with d-serine. Behav. Brain Res. 2016, 308, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Boulay, D.; Pichat, P.; Dargazanli, G.; Estennebouhtou, G.; Terranova, J.; Rogacki, N.; Stemmelin, J.; Coste, A.; Lanneau, C.; Desvignes, C. Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia☆. Pharmacol. Biochem. Behav. 2008, 91, 47–58. [Google Scholar] [CrossRef]
- Clifton, N.E.; Morisot, N.; Girardon, S.; Millan, M.J.; Loiseau, F. Enhancement of social novelty discrimination by positive allosteric modulators at metabotropic glutamate 5 receptors: Adolescent administration prevents adult-onset deficits induced by neonatal treatment with phencyclidine. Psychopharmacology 2013, 225, 579–594. [Google Scholar] [CrossRef]
- Gao, X.M.; Elmer, G.I.; Adams-Huet, B.; Tamminga, C.A. Social memory in mice: Disruption with an NMDA antagonist and attenuation with antipsychotic drugs. Pharmacol. Biochem. Behav. 2009, 92, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Hliňák, Z.; Krejčí, I. N-Methyl-d-aspartate improved social recognition potency in rats. Neurosci. Lett. 2002, 330, 227–230. [Google Scholar] [CrossRef]
- Takahashi, A.; Miczek, K.A. Neurogenetics of aggressive behavior: Studies in rodents. Curr. Top. Behav. Neurosci. 2014, 17, 3–44. [Google Scholar]
- Newman, E.L.; Chu, A.; Bahamón, B.; Takahashi, A.; DeBold, J.F.; Miczek, K.A. NMDA receptor antagonism: Escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology 2012, 224, 167–177. [Google Scholar] [CrossRef]
- Masugi-Tokita, M.; Flor, P.J.; Kawata, M. Metabotropic glutamate receptor subtype 7 in the bed nucleus of the stria terminalis is essential for intermale aggression. Neuropsychopharmacology 2016, 41, 726–735. [Google Scholar] [CrossRef]
- Hildebrandt, H.; Dityatev, A. Polysialic acid in brain development and synaptic plasticity. Top Curr. Chem. 2015, 366, 55–96. [Google Scholar] [PubMed]
- Bacq, A.; Astori, S.; Gebara, E.; Tang, W.; Silva, B.A.; Sanchez-Mut, J.; Grosse, J.; De Suduiraut, I.G.; Zanoletti, O.; MacLachlan, C.; et al. Amygdala GluN2B-NMDAR dysfunction is critical in abnormal aggression of neurodevelopmental origin induced by St8sia2 deficiency. Mol. Psychiatry 2018, 1. [Google Scholar] [CrossRef] [PubMed]
- McAllister, K.H. D-Cycloserine enhances social behaviour in individually-housed mice in the resident-intruder test. Psychopharmacology 1994, 116, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Covington, H.E., 3rd; Newman, E.L.; Tran, S.; Walton, L.; Hayek, W.; Leonard, M.Z.; DeBold, J.F.; Miczek, K.A. The urge to fight: Persistent escalation by alcohol and role of NMDA receptors in mice. Front. Behav. Neurosci. 2018, 12, 206. [Google Scholar] [CrossRef]
- Chang, C.-H.; Su, C.-L.; Gean, P.-W. Mechanism underlying NMDA blockade-induced inhibition of aggression in post-weaning socially isolated mice. Neuropharmacol. 2018, 143, 95–105. [Google Scholar] [CrossRef]
- Tóth, M.; Mikics, E.; Tulogdi, A.; Aliczki, M.; Haller, J. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm. Behav. 2011, 60, 28–36. [Google Scholar] [CrossRef]
- Chang, C.H.; Hsiao, Y.H.; Chen, Y.W.; Yu, Y.J.; Gean, P.W. Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation 1 in mice. Hippocampus 2015, 25, 474–485. [Google Scholar] [CrossRef]
- Zelikowsky, M.; Hui, M.; Karigo, T.; Choe, A.; Yang, B.; Blanco, M.R.; Beadle, K.; Gradinaru, V.; Deverman, B.E.; Anderson, D.J. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. Cell 2018, 173, 1265–1279.e19. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Sun, L.; Jia, H.; Meng, Q.; Wu, S.; Li, N.; He, S. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog. Neuro-Psychopharmacology Boil. Psychiatry 2009, 33, 1173–1177. [Google Scholar] [CrossRef]
- Sukhotina, I.A.; Bespalov, A.Y. Effects of the NMDA receptor channel blockers memantine and MRZ 2/579 on morphine withdrawal-facilitated aggression in mice. Psychopharmacology 2000, 149, 345–350. [Google Scholar] [CrossRef]
- A Dravolina, O.; Belozertseva, I.V.; A Sukhotina, I.; Bespalov, A.Y. Morphine tolerance and dependence in mice with history of repeated exposures to NMDA receptor channel blockers. Pharmacol. Biochem. Behav. 1999, 63, 613–619. [Google Scholar] [CrossRef]
- Davis, M.W.; Khalsa, J.H. Some determinants of aggressive behavior induced by morphine withdrawal. Psychon. Sci. 1971, 24, 13–15. [Google Scholar] [CrossRef]
- Lal, H.; O’Brien, J.; Puri, S.K. Morphine-withdrawal aggression: Sensitization by amphetamines. Psychopharmacology 1971, 22, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Gellert, V.F.; Sparber, S.B. Effects of morphine withdrawal on food competition hierarchies and fighting behavior in rats. Psychopharmacol 1979, 60, 165–172. [Google Scholar] [CrossRef]
- Tidey, J.W.; A Miczek, K. Heightened aggressive behavior during morphine withdrawal: Effects of d-amphetamine. Psychopharmacology 1992, 107, 297–302. [Google Scholar] [CrossRef]
- Peregud, D.I.; Yakovlev, A.A.; Stepanichev, M.Y.; Onufriev, M.V.; Panchenko, L.F.; Gulyaeva, N.V.; Stepanichev, M. Content of mRNA for NMDA Glutamate Receptor Subunits in the Frontal Cortex and Striatum of Rats after Morphine Withdrawal Is Related to the Degree of Abstinence. Bull. Exp. Boil. Med. 2012, 153, 836–839. [Google Scholar] [CrossRef]
- Hull, E.M.; Dominguez, J.M. Sexual behavior in male rodents. Horm. Behav. 2007, 52, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Dixon, A.K.; Huber, C.; A Lowe, D. Clozapine promotes approach-oriented behavior in male mice. J. Clin. Psychiatry 1994, 55, 4–7. [Google Scholar]
- Dominguez, J.M.; Balfour, M.E.; Lee, H.S.; Brown, J.L.; Davis, B.A.; Coolen, L.M. Mating activates NMDA receptors in the medial preoptic area of male rats. Behav. Neurosci. 2007, 121, 1023–1031. [Google Scholar] [CrossRef]
- Vigdorchik, A.V.; Parrish, B.P.; Lagoda, G.A.; McHenry, J.A.; Hull, E.M. An NMDA antagonist in the MPOA impairs copulation and stimulus sensitization in male rats. Behav. Neurosci. 2012, 126, 186–195. [Google Scholar] [CrossRef]
- Powell, W.S.; Dominguez, J.M.; Hull, E.M. An NMDA antagonist impairs copulation and the experience-induced enhancement of male sexual behavior in the rat. Behav. Neurosci. 2003, 117, 69–75. [Google Scholar] [CrossRef]
- Fleischmann, A.; Vincent, P.A.; Etgen, A.M. Effects of non-competitive NMDA receptor antagonists on reproductive and motor behaviors in female rats. Brain Res. 1991, 568, 138–146. [Google Scholar] [CrossRef]
- Hull, E.M.; Dominguez, J.M. Getting his act together: Roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain Res. 2006, 1126, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.O.; Tachikawa, K.; Yoshida, S.; Tsuneoka, Y.; Numan, M. Neuromolecular basis of parental behavior in laboratory mice and rats: With special emphasis on technical issues of using mouse genetics. Prog. Neuro-Psychopharmacology Boil. Psychiatry 2011, 35, 1205–1231. [Google Scholar] [CrossRef] [PubMed]
- Lonstein, J.S.; Gammie, S.C. Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci. Biobehav. Rev. 2002, 26, 869–888. [Google Scholar] [CrossRef]
- Sasaki, K.; Omotuyi, O.I.; Ueda, M.; Shinohara, K.; Ueda, H. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice. Mol. Brain 2015, 8, 83. [Google Scholar] [CrossRef]
- Niethammer, M.; Kim, E.; Sheng, M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J. Neurosci. 1996, 16, 2157–2163. [Google Scholar] [CrossRef] [Green Version]
- Muroi, Y.; Ishii, T. Glutamatergic Signals in the Dorsal Raphe Nucleus Regulate Maternal Aggression and Care in an Opposing Manner in Mice. Neurosci. 2019, 400, 33–47. [Google Scholar] [CrossRef]
- Muroi, Y.; Ishii, T. Neuropeptide Y is crucial for nutritional state-dependent regulation of maternal behavior. Psychoneuroendocrinology. 2015, 51, 392–402. [Google Scholar] [CrossRef]
- Da Veiga, C.P.; Miczek, K.A.; Lucion, A.B.; De Almeida, R.M.M. Social instigation and aggression in postpartum female rats: Role of 5-Ht1A and 5-Ht1B receptors in the dorsal raphé nucleus and prefrontal cortex. Psychopharmacology 2010, 213, 475–487. [Google Scholar] [CrossRef]
- Malenfant, S.A.; O’Hearn, S.; Fleming, A.S. MK801, an NMDA antagonist, blocks acquisition of a spatial task but does not block maternal experience effects. Physiol. Behav. 1991, 49, 1129–1137. [Google Scholar] [CrossRef]
- Hol, T.; Berg, C.V.D.; Van Ree, J.; Spruijt, B. Isolation during the play period in infancy decreases adult social interactions in rats. Behav. Brain Res. 1999, 100, 91–97. [Google Scholar] [CrossRef]
- Hermes, G.; Li, N.; Duman, C.; Duman, R. Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expressionin female rats. Physiol. Behav. 2011, 104, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Keesom, S.M.; Finton, C.J.; Sell, G.L.; Hurley, L.M. Early-life social isolation influences mouse ultrasonic vocalizations during male-male social encoutners. PLoS ONE. 2017, 12, e0169705. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Santos, A.F.; Carvalho, V.R.; Jaimes, L.F.; De Castro, C.M.; Pinto, H.P.; Oliveira, T.P.D.; Vieira, L.B.; Moraes, M.F.D.; Pereira, G.S. Social isolation impairs the persistence of social recognition memory by disturbing the glutamatergic tonus and the olfactory bulb-dorsal hippocampus coupling. Sci. Rep. 2019, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Molenda-Figueira, H.A.; Bell, M.R.; De Lorme, K.C.; Sisk, C.L. Pubertal pair-housing facilitates adult sexual behavior in male rats. Dev. Psychobiol. 2017, 59, 111–117. [Google Scholar] [CrossRef]
- Kercmar, J.; Tobet, S.A.; Majdic, G. Social isolation during puberty affects female sexual behavior in mice. Front. Behav. Neurosci. 2014, 8, 337. [Google Scholar] [CrossRef]
- Jennings, C.A.; Robbins, M.J.; Cluderay, J.E.; Cilia, J.; Reid, J.L.; Taylor, A.; Jones, D.N.; Emson, P.C.; Southam, E.; Turnock-Jones, J.J.; et al. Increased expression of the NR2A NMDA receptor subunit in the prefrontal cortex of rats reared in isolation. Synap 2009, 63, 836–846. [Google Scholar]
Species | NMDA Receptor Functioning | Behavioral Deficit | References |
---|---|---|---|
NR1(neo-/-) mice | Expression of GluN1 only to 5% of normal levels | Impaired social interaction Impaired social communication Reduced inter-male aggression Impaired sexual behavior | [35,36,37] [116] [35,36,37] [35] |
PV-selective NR1 knock-out mice | Loss of GluN1 subunit in parvalbumin-containing GABAergic interneurons during development | Impaired social interaction Impaired social communication | [38,39] [38] |
Ppp1r2-cre+/−; NR1loxP/loxP mice | Selective elimination of GluN1 in 40%–50% of cortical and hippocampal GABAergic interneurons in early postnatal development, but not in the post-adolescent period | Impaired social interaction Impaired social memory Impaired sexual behavior | [40] |
iFB knock-out mice | Inducible forebrain-specific deletion of GluN1 subunits | Impaired social interaction Impaired social memory | [41] |
CA3 NR1 knock-out mice | Deletion of the GluN1 subunit gene in the ventral, but not the dorsal, CA3 pyramidal cells | Impaired social memory | [139] |
DG NR1 knock-out mice | Deletion of the GluN1 subunit gene in DG granule cells | Normal social memory | [139] |
GluN2B2A(CTD) mice | Increased postnatal forebrain expression of the GluN2A subunit | Impaired social memory | [137] |
GluN2A2B(CTD) mice | Increased postnatal forebrain expression of the GluN2B subunit | Enhanced social memory | [137,138] |
GluN2D knock-out mice | Deficient expression of the GluN2D subunit | Normal social interaction Impaired social memory | [136] |
Grin1D481N mice | Chronic and developmentally diminished NMDA receptor glycine site occupancy (fivefold decrease in NMDA receptor glycine affinity) | Impaired social interaction | [42,43] |
Serine racemase knock-out mice | Impaired NMDA receptor function due to a 90% reduction in cortical D-serine | Impaired social interaction Impaired social communication | [44] |
Hbegf knock-out mice | Reduced expression of hippocampal GluN1/GluN2-NMDA receptor subunits Reduced expression of PSD-95, a scaffold protein involved in the NMDA receptor aggregation in the CNS | Impaired maternal behavior | [176,177] |
Shank2 knock-out mice | Decreased function of the GluN2A- and GluN2B-containing NMDA receptors in the hippocampus | Impaired social interaction Impaired social communication Impaired maternal behavior | [96] |
St8sia2 knock-out mice | Decreased NMDA receptor currents and decreased expression of GluN2B, but not of GluN1 and GluN2A, in the lateral amygdala | Abnormal (psychopathological) aggressive behavior | [152] |
Socially-isolated mice and rats | Increased GluN2A and GluN2B expression in the hippocampus Increased GluN2A expression in the prefrontal cortex | Impaired social interaction Altered social communication Impaired social memory Increased inter-male aggression Impaired sexual behavior | [182,183] [184] [185] [156,157,158,159] [186,187,188] |
Mice during morphine withdrawal | Increased GluN2A and GluN2B expression in the frontal cortex Increased GluN2B expression in the striatum | Increased inter-male aggression | [162,163,164,165,166] |
Action | Drug | Species | Behavioral Change | References |
---|---|---|---|---|
Effects on social interaction | ||||
Un-competitive NMDA receptor antagonists | MK-801 PCP Ketamine | Mice and rats | Decreased social interaction | [46,47,48,49,50,51,52,53,54,55] [56,57,58,59,60,61,62,63,64,65,66] [67,68,69,70,71,72,73] |
NMDA receptor antagonist | Memantine | IRSp53 knock-out mice Prenatally citalopram-treated mice | Reduced social interaction deficits | [74,75] |
GluN2A-preferring antagonist | PEAQX | Rats | Decreased social interaction | [4,49] |
GluN2B-preferring antagonist | Ifenprodil | Rats | Decreased social interaction | [49] |
Full agonist of the glycine-binding site | D-serine | Autistic Balb/c mice Grin1D481N mice Postnatally polyI:C-treated mice | Reduced social interaction deficits | [89] [90] [91] |
Partial agonist of the glycine-binding site | D-cycloserine | Autistic Balb/c mice Autistic BTBR T+tf/J mice Autistic Shank2 knock-out mice Prenatally VPA-treated mice Postnatally PCP-treated mice | Reduced social interaction deficits | [85,92,93,94] [95] [96] [98] [99] |
GlyT1 inhibitor | TASP0315003 VU0410120 | Postnatally PCP-treated mice Autistic Balb/c mice | Reduced social interaction deficits | [101] [102] |
Social communication (USV) | ||||
Un-competitive NMDA receptor antagonists | PCP Tiletamine Ketamine | Rats | Reduced 50 kHz USV | [118] [70] [70] |
Un-competitive NMDA receptor antagonist | MK-801 | Rat pups | Reduced separation-induced USV | [125,127] |
Competitive NMDA receptor antagonists | AP5 AP7 CPP MDL 100,453 | Rat pups | Reduced separation-induced USV | [124,126] |
NMDA receptor antagonists | Memantine Neramexane | Rat pups | Increased separation-induced USV at low to moderate doses and reduced separation-induced USV at high doses | [127] |
Glycine antagonist | 5,7-DCKA | Rat pups | Reduced separation-induced USV | [125] |
NMDA receptor agonist | NMDA | Rat pups | Increased separation-induced USV | [124] |
Partial agonist of the glycine-binding site | D-cycloserine GLYX-13 | Prenatally VPA-treated rats Rats selectively bred for low rates of play-induced 50 kHz USV | Reduced deficits in social communication Reversed deficits in social communication | [97] [80,119] |
Social memory | ||||
Un-competitive NMDA receptor antagonists | MK-801 PCP Ketamine | Rats and mice | Impaired social memory | [101,140,141,142,143] [63,144,145,146] |
Full agonists of the glycine-binding site | D-serine PQQ | Rats MK-801-treated rats | Enhanced social memory Improved social memory deficits | [140] [143] |
GlyT1 inhibitors | NFPS TASP0315003 SSR-504734 SSR130800 | Rats MK-801-treated rats Neonatally PCP-treated rats | Enhanced social memory Improved social memory deficits | [140] [101] [63] [144] |
Inter-male aggression | ||||
Un-competitive NMDA receptor antagonists | MK-801 Ketamine | Socially-isolated mice | Decreased inter-male aggression | [155] [154] |
NMDA receptor antagonists | Memantine MRZ 2/579 | Naïve and morphine-treated mice | Reduced morphine withdrawal-facilitated aggression, but did not affect inter-male aggression in naïve mice | [160,161] [160,161] |
Partial agonist of the glycine-binding site | D-cycloserine | Mice St8sia2 knock-out mice | Decreased inter-male aggression Normalized the abnormal aggressive behavior | [153] [152] |
Sexual behavior | ||||
Un-competitive NMDA receptor antagonist | MK-801 | Male and female rats | Impaired sexual behavior | [169,170,171,172] |
Maternal behavior | ||||
Un-competitive NMDA receptor antagonist | MK-801 | Rats | Blocked experienced-based facilitation of maternal care | [181] |
Competitive NMDA receptor antagonist | AP5 | Mice | Impaired maternal aggression, but not maternal care | [178] |
NMDA receptor agonist | NMDA | Mice | Impaired maternal care | [178] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoicas, I.; Kornhuber, J. The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents. Int. J. Mol. Sci. 2019, 20, 5599. https://doi.org/10.3390/ijms20225599
Zoicas I, Kornhuber J. The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents. International Journal of Molecular Sciences. 2019; 20(22):5599. https://doi.org/10.3390/ijms20225599
Chicago/Turabian StyleZoicas, Iulia, and Johannes Kornhuber. 2019. "The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents" International Journal of Molecular Sciences 20, no. 22: 5599. https://doi.org/10.3390/ijms20225599
APA StyleZoicas, I., & Kornhuber, J. (2019). The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents. International Journal of Molecular Sciences, 20(22), 5599. https://doi.org/10.3390/ijms20225599