An Update on Antibodies to Necleosome Components as Biomarkers of Sistemic Lupus Erythematosus and of Lupus Flares
Abstract
:1. Anti-dsDNA
1.1. DNA Structure and Mechanisms for Anti-dsDNA Formation
1.2. Technical Aspects Related to Anti-dsDNA Determination
1.3. Anti-dsDNA Antibodies Are Markers of SLE
1.4. Association with Lupus Flares and Prognosis
1.5. Association with Lupus Nephritis
1.6. Anti-dsDNA Levels and Therapy
1.7. Cross-Reaction of Anti-dsDNA with Neuronal Proteins
2. Autoantibodies to Nucleosome
3. Autoantibodies to Histones
4. Isotype Specificity of Nephritogenic Anti-dsDNA and Anti-Histone Antibodies
5. Mechanisms of Isotype Specific Antibodies Generation
6. Clinical Value of Coexisting Positivity to All Nucleosome Components
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rahman, A.; Isenberg, D.A. Systemic lupus erythematosus. N. Engl. J. Med. 2008, 358, 929–939. [Google Scholar] [CrossRef]
- Kornberg, R.D. Chromatin structure: A repeating unit of histones and DNA. Science 1974, 184, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Richmond, T.J.; Finch, J.T.; Rushton, B.; Rhodes, D.; Klug, A. Structure of the nucleosome core particle at 7 A resolution. Nature 1984, 311, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Ceppellini, R.; Polli, E.; Celada, F. A DNA-reacting factor in serum of a patient with lupus erythematosus diffusus. Proc. Soc. Exp. Biol. Med. 1957, 96, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; McShane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982, 25, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Orbai, A.M.; Alarcon, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 1151–1159. [Google Scholar] [CrossRef]
- Ghosh, A.; Bansal, M. A glossary of DNA structures from A to Z. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 620–626. [Google Scholar] [CrossRef]
- Stollar, B.D. Why the difference between B-DNA and Z-DNA? Lupus 1997, 6, 327–328. [Google Scholar] [CrossRef]
- Sundar, K.; Jacques, S.; Gottlieb, P.; Villars, R.; Benito, M.E.; Taylor, D.K.; Spatz, L.A. Expression of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) in the mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J. Autoimmun. 2004, 23, 127–140. [Google Scholar] [CrossRef]
- Cerutti, M.L.; Zarebski, L.M.; de Prat Gay, G.; Goldbaum, F.A. A viral DNA-binding domain elicits anti-DNA antibodies of different specificities. Mol. Immunol. 2005, 42, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Rekvig, O.P. The anti-DNA antibody: Origin and impact, dogmas and controversies. Nat. Rev. Rheumatol. 2015, 11, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Widom, J. A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc. Natl. Acad. Sci. USA 1992, 89, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Van Steensel, B. Chromatin: Constructing the big picture. EMBO J. 2011, 30, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Rekvig, O.P.; Moens, U.; Sundsfjord, A.; Bredholt, G.; Osei, A.; Haaheim, H.; Traavik, T.; Arnesen, E.; Haga, H.J. Experimental expression in mice and spontaneous expression in human SLE of polyomavirus T-antigen. A molecular basis for induction of antibodies to DNA and eukaryotic transcription factors. J. Clin. Investig. 1997, 99, 2045–2054. [Google Scholar] [CrossRef] [PubMed]
- Voll, R.E.; Roth, E.A.; Girkontaite, I.; Fehr, H.; Herrmann, M.; Lorenz, H.M.; Kalden, J.R. Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production. Arthritis Rheum. 1997, 40, 2162–2171. [Google Scholar] [CrossRef]
- Shi, Y.; Kaliyaperumal, A.; Lu, L.; Southwood, S.; Sette, A.; Michaels, M.A.; Datta, S.K. Promiscuous presentation and recognition of nucleosomal autoepitopes in lupus: Role of autoimmune T cell receptor alpha chain. J. Exp. Med. 1998, 187, 367–378. [Google Scholar] [CrossRef]
- Desai, D.D.; Krishnan, M.R.; Swindle, J.T.; Marion, T.N. Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J. Immunol. 1993, 151, 1614–1626. [Google Scholar]
- Williams, R.C., Jr.; Malone, C.C.; Meyers, C.; Decker, P.; Muller, S. Detection of nucleosome particles in serum and plasma from patients with systemic lupus erythematosus using monoclonal antibody 4H7. J. Rheumatol. 2001, 28, 81–94. [Google Scholar]
- Kramers, C.; Hylkema, M.N.; van Bruggen, M.C.; van de Lagemaat, R.; Dijkman, H.B.; Assmann, K.J.; Smeenk, R.J.; Berden, J.H. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J. Clin. Investig. 1994, 94, 568–577. [Google Scholar] [CrossRef]
- Kramers, K.; Stemmer, C.; Monestier, M.; van Bruggen, M.C.; Rijke-Schilder, T.P.; Hylkema, M.N.; Smeenk, R.J.; Muller, S.; Berden, J.H. Specificity of monoclonal anti-nucleosome auto-antibodies derived from lupus mice. J. Autoimmun. 1996, 9, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, C.; Briand, J.P.; Muller, S. Mapping of linear histone regions exposed at the surface of the nucleosome in solution. J. Mol. Biol. 1997, 273, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Winfield, J.B.; Faiferman, I.; Koffler, D. Avidity of anti-DNA antibodies in serum and IgG glomerular eluates from patients with systemic lupus erythematosus. Association of high avidity antinative DNA antibody with glomerulonephritis. J. Clin. Investig. 1977, 59, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, D.; Smeenk, R. Clinical laboratory assays for measuring anti-dsDNA antibodies. Where are we now? Lupus 2002, 11, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.E.; Lahita, R.G.; Zarro, V.J.; MacWilliam, J.; Koffler, D. Clinical significance of anti-double-stranded DNA antibodies detected by a solid phase enzyme immunoassay. Arthritis Rheum. 1981, 24, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, D.A.; Dudeney, C.; Williams, W.; Addison, I.; Charles, S.; Clarke, J.; Todd-Pokropek, A. Measurement of anti-DNA antibodies: A reappraisal using five different methods. Ann. Rheum. Dis. 1987, 46, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Feltkamp, T.E.; Kirkwood, T.B.; Maini, R.N.; Aarden, L.A. The first international standard for antibodies to double stranded DNA. Ann. Rheum. Dis. 1988, 47, 740–746. [Google Scholar] [CrossRef]
- Ward, M.M.; Pisetsky, D.S.; Christenson, V.D. Antidouble stranded DNA antibody assays in systemic lupus erythematosus: Correlations of longitudinal antibody measurements. J. Rheumatol. 1989, 16, 609–613. [Google Scholar]
- Monier, J.C.; Sault, C.; Veysseyre, C.; Bringuier, J.P. Discrepancies between two procedures for ds-DNA antibody detection: Farr test and indirect immunofluorescence on Crithidia luciliae. J. Clin. Lab. Immunol. 1988, 25, 149–152. [Google Scholar]
- Kadlubowski, M.; Jackson, M.; Yap, P.L.; Neill, G. Lack of specificity for antibodies to double stranded DNA found in four commercial kits. J. Clin. Pathol. 1991, 44, 246–250. [Google Scholar] [CrossRef]
- Riboldi, P.; Gerosa, M.; Moroni, G.; Radice, A.; Allegri, F.; Sinico, A.; Tincani, A.; Meroni, P.L. Anti-DNA antibodies: A diagnostic and prognostic tool for systemic lupus erythematosus? Autoimmunity 2005, 38, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Antico, A.; Platzgummer, S.; Bassetti, D.; Bizzaro, N.; Tozzoli, R.; Villalta, D.; Study Group on Autoimmune Diseases of the Italian Society of Laboratory, M. Diagnosing systemic lupus erythematosus: New-generation immunoassays for measurement of anti-dsDNA antibodies are an effective alternative to the Farr technique and the Crithidia luciliae immunofluorescence test. Lupus 2010, 19, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Ghirardello, A.; Villalta, D.; Morozzi, G.; Afeltra, A.; Galeazzi, M.; Gerli, R.; Mathieu, A.; Meroni, P.L.; Pregnolato, F.; Migliorini, P.; et al. Diagnostic accuracy of currently available anti-double-stranded DNA antibody assays. An Italian multicentre study. Clin. Exp. Rheumatol. 2011, 29, 50–56. [Google Scholar] [PubMed]
- Maddison, P.J.; Provost, T.T.; Reichlin, M. Serological findings in patients with “ANA-negative” systemic lupus erythematosus. Medicine 1981, 60, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Juby, A.; Johnston, C.; Davis, P. Specificity, sensitivity and diagnostic predictive value of selected laboratory generated autoantibody profiles in patients with connective tissue diseases. J. Rheumatol. 1991, 18, 354–358. [Google Scholar] [PubMed]
- Kavanaugh, A.F.; Solomon, D.H.; American College of Rheumatology Ad Hoc Committee on Immunologic Testing, G. Guidelines for immunologic laboratory testing in the rheumatic diseases: Anti-DNA antibody tests. Arthritis Rheum. 2002, 47, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Seredkina, N.; Zykova, S.N.; Rekvig, O.P. Progression of murine lupus nephritis is linked to acquired renal Dnase1 deficiency and not to up-regulated apoptosis. Am. J. Pathol. 2009, 175, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Seredkina, N.; Rekvig, O.P. Acquired loss of renal nuclease activity is restricted to DNaseI and is an organ-selective feature in murine lupus nephritis. Am. J. Pathol. 2011, 179, 1120–1128. [Google Scholar] [CrossRef] [Green Version]
- Boule, M.W.; Broughton, C.; Mackay, F.; Akira, S.; Marshak-Rothstein, A.; Rifkin, I.R. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 2004, 199, 1631–1640. [Google Scholar] [CrossRef] [Green Version]
- Pisetsky, D.S. Anti-DNA antibodies--quintessential biomarkers of SLE. Nat. Rev. Rheumatol. 2016, 12, 102–110. [Google Scholar] [CrossRef]
- Tron, F.; Letarte, J.; Roque-Antunes Barreira, M.C.; Lesavre, P. Specific detection of circulating DNA:anti-DNA immune complexes in human systemic lupus erythematosus sera using murine monoclonal anti-DNA antibody. Clin. Exp. Immunol. 1982, 49, 481–487. [Google Scholar] [PubMed]
- Swaak, A.J.; Aarden, L.A.; Statius van Eps, L.W.; Feltkamp, T.E. Anti-dsDNA and complement profiles as prognostic guides in systemic lupus erythematosus. Arthritis Rheum. 1979, 22, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Touma, Z.; Urowitz, M.B.; Ibanez, D.; Gladman, D.D. SLEDAI-2K 10 days versus SLEDAI-2K 30 days in a longitudinal evaluation. Lupus 2011, 20, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Gensous, N.; Marti, A.; Barnetche, T.; Blanco, P.; Lazaro, E.; Seneschal, J.; Truchetet, M.E.; Duffau, P.; Richez, C.; Fhu, A. Predictive biological markers of systemic lupus erythematosus flares: A systematic literature review. Arthritis Res. Ther. 2017, 19, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petri, M.A.; van Vollenhoven, R.F.; Buyon, J.; Levy, R.A.; Navarra, S.V.; Cervera, R.; Zhong, Z.J.; Freimuth, W.W.; BLISS-52 and BLISS-76 Study Groups. Baseline predictors of systemic lupus erythematosus flares: Data from the combined placebo groups in the phase III belimumab trials. Arthritis Rheum. 2013, 65, 2143–2153. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Singh, S.; Tesfasyone, H.; Malik, A. Prevalence of flare and influence of demographic and serologic factors on flare risk in systemic lupus erythematosus: A prospective study. J. Rheumatol. 2009, 36, 2476–2480. [Google Scholar] [CrossRef] [PubMed]
- Swaak, A.J.; Groenwold, J.; Aarden, L.A.; Statius van Eps, L.W.; Feltkamp, E.W. Prognostic value of anti-dsDNA in SLE. Ann. Rheum. Dis. 1982, 41, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Swaak, A.J.; Groenwold, J.; Bronsveld, W. Predictive value of complement profiles and anti-dsDNA in systemic lupus erythematosus. Ann. Rheum. Dis. 1986, 45, 359–366. [Google Scholar] [CrossRef] [Green Version]
- ter Borg, E.J.; Horst, G.; Hummel, E.J.; Limburg, P.C.; Kallenberg, C.G. Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum. 1990, 33, 634–643. [Google Scholar] [CrossRef]
- Abrass, C.K.; Nies, K.M.; Louie, J.S.; Border, W.A.; Glassock, R.J. Correlation and predictive accuracy of circulating immune complexes with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 1980, 23, 273–282. [Google Scholar] [CrossRef]
- Lloyd, W.; Schur, P.H. Immune complexes, complement, and anti-DNA in exacerbations of systemic lupus erythematosus (SLE). Medicine 1981, 60, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Esdaile, J.M.; Abrahamowicz, M.; Joseph, L.; MacKenzie, T.; Li, Y.; Danoff, D. Laboratory tests as predictors of disease exacerbations in systemic lupus erythematosus. Why some tests fail. Arthritis Rheum. 1996, 39, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Mjelle, J.E.; Kalaaji, M.; Rekvig, O.P. Exposure of chromatin and not high affinity for dsDNA determines the nephritogenic impact of anti-dsDNA antibodies in (NZBxNZW)F1 mice. Autoimmunity 2009, 42, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liang, Z.; Chang, S.; Mohan, C. Use of a novel elution regimen reveals the dominance of polyreactive antinuclear autoantibodies in lupus kidneys. Arthritis Rheum. 2003, 48, 2343–2352. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Sinico, R.A.; Moroni, G.; Pratesi, F.; Migliorini, P.; Galetti, M.; Murtas, C.; Tincani, A.; Madaio, M.; Radice, A.; et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: Alpha-enolase and annexin AI. J. Am. Soc. Nephrol. 2014, 25, 2483–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruschi, M.; Galetti, M.; Sinico, R.A.; Moroni, G.; Bonanni, A.; Radice, A.; Tincani, A.; Pratesi, F.; Migliorini, P.; Murtas, C.; et al. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo (2): Planted Antigens. J. Am. Soc. Nephrol. 2015, 26, 1905–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonanni, A.; Vaglio, A.; Bruschi, M.; Sinico, R.A.; Cavagna, L.; Moroni, G.; Franceschini, F.; Allegri, L.; Pratesi, F.; Migliorini, P.; et al. Multi-antibody composition in lupus nephritis: Isotype and antigen specificity make the difference. Autoimmun. Rev. 2015, 14, 692–702. [Google Scholar] [CrossRef]
- Kalaaji, M.; Sturfelt, G.; Mjelle, J.E.; Nossent, H.; Rekvig, O.P. Critical comparative analyses of anti-alpha-actinin and glomerulus-bound antibodies in human and murine lupus nephritis. Arthritis Rheum. 2006, 54, 914–926. [Google Scholar] [CrossRef]
- Kalaaji, M.; Mortensen, E.; Jorgensen, L.; Olsen, R.; Rekvig, O.P. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am. J. Pathol. 2006, 168, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, M.R.; Wang, C.; Marion, T.N. Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int. 2012, 82, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Yung, S.; Cheung, K.F.; Zhang, Q.; Chan, T.M. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J. Am. Soc. Nephrol. 2010, 21, 1912–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romay-Penabad, Z.; Montiel-Manzano, M.G.; Shilagard, T.; Papalardo, E.; Vargas, G.; Deora, A.B.; Wang, M.; Jacovina, A.T.; Garcia-Latorre, E.; Reyes-Maldonado, E.; et al. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood 2009, 114, 3074–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M.; Leffler, J.; Blom, A.M. Annexin A2 and A5 serve as new ligands for C1q on apoptotic cells. J. Biol. Chem. 2012, 287, 33733–33744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Font, J.; Cervera, R.; Ramos-Casals, M.; Garcia-Carrasco, M.; Sents, J.; Herrero, C.; del Olmo, J.A.; Darnell, A.; Ingelmo, M. Clusters of clinical and immunologic features in systemic lupus erythematosus: Analysis of 600 patients from a single center. Semin. Arthritis Rheum. 2004, 33, 217–230. [Google Scholar] [CrossRef]
- Alba, P.; Bento, L.; Cuadrado, M.J.; Karim, Y.; Tungekar, M.F.; Abbs, I.; Khamashta, M.A.; D’Cruz, D.; Hughes, G.R. Anti-dsDNA, anti-Sm antibodies, and the lupus anticoagulant: Significant factors associated with lupus nephritis. Ann. Rheum. Dis. 2003, 62, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Olson, S.W.; Lee, J.J.; Prince, L.K.; Baker, T.P.; Papadopoulos, P.; Edison, J.; Abbott, K.C. Elevated subclinical double-stranded DNA antibodies and future proliferative lupus nephritis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1702–1708. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.; Amigues, I.; Lyman, S.; Duculan, R.; Aziz, F.; Crow, M.K.; Kirou, K.A. A surge in anti-dsDNA titer predicts a severe lupus flare within six months. Lupus 2014, 23, 293–298. [Google Scholar] [CrossRef]
- Hillebrand, J.J.; Bernelot Moens, H.J.; Mulder, A.H. Changes in Farr radioimmunoassay and EliA fluorescence immunoassay anti-dsDNA in relation to exacerbation of SLE. Lupus 2013, 22, 1169–1173. [Google Scholar] [CrossRef]
- Matrat, A.; Veysseyre-Balter, C.; Trolliet, P.; Villar, E.; Dijoud, F.; Bienvenu, J.; Fabien, N. Simultaneous detection of anti-C1q and anti-double stranded DNA autoantibodies in lupus nephritis: Predictive value for renal flares. Lupus 2011, 20, 28–34. [Google Scholar] [CrossRef]
- Meyrier, A.; Noel, L.H.; Auriche, P.; Callard, P. Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Collaborative Group of the Societe de Nephrologie. Kidney Int. 1994, 45, 1446–1456. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xu, Z.; Sui, M.; Han, J.; Sun, L.; Jia, X.; Zhang, H.; Han, C.; Jin, X.; Gao, F.; et al. Co-Positivity for Anti-dsDNA, -Nucleosome and -Histone Antibodies in Lupus Nephritis Is Indicative of High Serum Levels and Severe Nephropathy. PLoS ONE 2015, 10, e0140441. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Hernandez, J.; Ordi-Ros, J.; Labrador, M.; Bujan, S.; Balada, E.; Segarra, A.; Vilardell-Tarres, M. Antihistone and anti-double-stranded deoxyribonucleic acid antibodies are associated with renal disease in systemic lupus erythematosus. Am. J. Med. 2004, 116, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Moroni, G.; Quaglini, S.; Radice, A.; Trezzi, B.; Raffiotta, F.; Messa, P.; Sinico, R.A. The value of a panel of autoantibodies for predicting the activity of lupus nephritis at time of renal biopsy. J. Immunol. Res. 2015, 2015, 106904. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.Y.; Ng, K.P.; Cambridge, G.; Leandro, M.J.; Edwards, J.C.; Ehrenstein, M.; Isenberg, D.A. A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: The first fifty patients. Arthritis Rheum. 2009, 61, 482–487. [Google Scholar] [CrossRef]
- Stohl, W.; Hiepe, F.; Latinis, K.M.; Thomas, M.; Scheinberg, M.A.; Clarke, A.; Aranow, C.; Wellborne, F.R.; Abud-Mendoza, C.; Hough, D.R.; et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2328–2337. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.B.; Won, S.; Bae, S.C. Outcomes of multitarget therapy using mycophenolate mofetil and tacrolimus for refractory or relapsing lupus nephritis. Lupus 2018, 27, 1007–1011. [Google Scholar] [CrossRef]
- Gheita, T.A.; Abaza, N.M.; Hammam, N.; Mohamed, A.A.A.; El, G., II; Eissa, A.H. Anti-dsDNA titre in female systemic lupus erythematosus patients: Relation to disease manifestations, damage and antiphospholipid antibodies. Lupus 2018, 27, 1081–1087. [Google Scholar] [CrossRef]
- Linnik, M.D.; Hu, J.Z.; Heilbrunn, K.R.; Strand, V.; Hurley, F.L.; Joh, T.; Consortium, L.J.P.I. Relationship between anti-double-stranded DNA antibodies and exacerbation of renal disease in patients with systemic lupus erythematosus. Arthritis Rheum. 2005, 52, 1129–1137. [Google Scholar] [CrossRef]
- Ho, A.; Magder, L.S.; Barr, S.G.; Petri, M. Decreases in anti-double-stranded DNA levels are associated with concurrent flares in patients with systemic lupus erythematosus. Arthritis Rheum. 2001, 44, 2342–2349. [Google Scholar] [CrossRef]
- Bijl, M.; Horst, G.; Bootsma, H.; Limburg, P.C.; Kallenberg, C.G. Mycophenolate mofetil prevents a clinical relapse in patients with systemic lupus erythematosus at risk. Ann. Rheum. Dis. 2003, 62, 534–539. [Google Scholar] [CrossRef] [Green Version]
- DeGiorgio, L.A.; Konstantinov, K.N.; Lee, S.C.; Hardin, J.A.; Volpe, B.T.; Diamond, B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 2001, 7, 1189–1193. [Google Scholar] [CrossRef]
- Kowal, C.; Degiorgio, L.A.; Lee, J.Y.; Edgar, M.A.; Huerta, P.T.; Volpe, B.T.; Diamond, B. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl. Acad. Sci. USA 2006, 103, 19854–19859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rekvig, O.P.; van der Vlag, J.; Seredkina, N. Review: Antinucleosome antibodies: A critical reflection on their specificities and diagnostic impact. Arthritis Rheumatol. 2014, 66, 1061–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Puerta, J.A.; Burlingame, R.W.; Cervera, R. Anti-chromatin (anti-nucleosome) antibodies: Diagnostic and clinical value. Autoimmun. Rev. 2008, 7, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Kiss, E.; Lakos, G.; Szegedi, G.; Poor, G.; Szodoray, P. Anti-nuscleosome antibody, a reliable indicator for lupus nephritis. Autoimmunity 2009, 42, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, S.; Kamaliah, D.; Nadeem, A.; Naing, N.N.; Che Maraina, C.H. Anti-nucleosome antibodies as a disease activity marker in patients with systemic lupus erythematosus. Int. J. Rheum. Dis. 2009, 12, 100–106. [Google Scholar] [CrossRef]
- Bizzaro, N.; Villalta, D.; Giavarina, D.; Tozzoli, R. Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systematic review and a study of metanalysis. Autoimmun. Rev. 2012, 12, 97–106. [Google Scholar] [CrossRef]
- Bigler, C.; Lopez-Trascasa, M.; Potlukova, E.; Moll, S.; Danner, D.; Schaller, M.; Trendelenburg, M. Antinucleosome antibodies as a marker of active proliferative lupus nephritis. Am. J. Kidney Dis. 2008, 51, 624–629. [Google Scholar] [CrossRef]
- Sui, M.; Lin, Q.; Xu, Z.; Han, X.; Xie, R.; Jia, X.; Guo, X.; Zhang, W.; Guan, X.; Ren, H. Simultaneous positivity for anti-DNA, anti-nucleosome and anti-histone antibodies is a marker for more severe lupus nephritis. J. Clin. Immunol. 2013, 33, 378–387. [Google Scholar] [CrossRef]
- Dieker, J.W.; Fransen, J.H.; van Bavel, C.C.; Briand, J.P.; Jacobs, C.W.; Muller, S.; Berden, J.H.; van der Vlag, J. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum. 2007, 56, 1921–1933. [Google Scholar] [CrossRef]
- Van Bavel, C.C.; Dieker, J.; Muller, S.; Briand, J.P.; Monestier, M.; Berden, J.H.; van der Vlag, J. Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Mol. Immunol. 2009, 47, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Tangsombatvisit, S.; Rosenberg, J.M.; Mandelbaum, G.; Gillespie, E.C.; Gozani, O.P.; Alizadeh, A.A.; Utz, P.J. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res. Ther. 2012, 14, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruschi, M.; Petretto, A.; Santucci, L.; Vaglio, A.; Pratesi, F.; Migliorini, P.; Bertelli, R.; Lavarello, C.; Bartolucci, M.; Candiano, G.; et al. Neutrophil Extracellular Traps protein composition is specific for patients with Lupus nephritis and includes methyl-oxidized alphaenolase (methionine sulfoxide 93). Sci. Rep. 2019, 9, 7934. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Smole, J.; Zimmermann, C.; Hiesberger, H.; Hoefler, E.; Fournel, S.; Muller, S.; Rubin, R.L.; Steiner, G. The autoimmune response to chromatin antigens in systemic lupus erythematosus: Autoantibodies against histone H1 are a highly specific marker for SLE associated with increased disease activity. Lupus 2002, 11, 704–715. [Google Scholar] [CrossRef]
- Garzelli, C.; Manunta, M.; Incaprera, M.; Bazzichi, A.; Conaldi, P.G.; Falcone, G. Antibodies to histones in infectious mononucleosis. Immunol. Lett. 1992, 32, 111–115. [Google Scholar] [CrossRef]
- Bijl, M.; Dijstelbloem, H.M.; Oost, W.W.; Bootsma, H.; Derksen, R.H.; Aten, J.; Limburg, P.C.; Kallenberg, C.G. IgG subclass distribution of autoantibodies differs between renal and extra-renal relapses in patients with systemic lupus erythematosus. Rheumatology 2002, 41, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Haseley, L.A.; Wisnieski, J.J.; Denburg, M.R.; Michael-Grossman, A.R.; Ginzler, E.M.; Gourley, M.F.; Hoffman, J.H.; Kimberly, R.P.; Salmon, J.E. Antibodies to C1q in systemic lupus erythematosus: Characteristics and relation to Fc gamma RIIA alleles. Kidney Int. 1997, 52, 1375–1380. [Google Scholar] [CrossRef] [Green Version]
- Norsworthy, P.; Theodoridis, E.; Botto, M.; Athanassiou, P.; Beynon, H.; Gordon, C.; Isenberg, D.; Walport, M.J.; Davies, K.A. Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum. 1999, 42, 1828–1832. [Google Scholar] [CrossRef]
- Gestermann, N.; Di Domizio, J.; Lande, R.; Demaria, O.; Frasca, L.; Feldmeyer, L.; Di Lucca, J.; Gilliet, M. Netting Neutrophils Activate Autoreactive B Cells in Lupus. J. Immunol. 2018, 200, 3364–3371. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Bonanni, A.; Petretto, A.; Vaglio, A.; Pratesi, F.; Santucci, L.; Migliorini, P.; Bertelli, R.; Galetti, M.; Belletti, S.; et al. Neutrophil Extracellular Traps (NETs) profiles in patients with incident SLE and lupus nephritis. J. Rheumatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.L.; Barton, G.M. Trafficking of endosomal Toll-like receptors. Trends Cell Biol. 2014, 24, 360–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, K.; Li, J.; Fang, Y.; Lu, L. Roles of B Cell-Intrinsic TLR Signals in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2015, 16, 13084–13105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schellekens, G.A.; de Jong, B.A.; van den Hoogen, F.H.; van de Putte, L.B.; van Venrooij, W.J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig. 1998, 101, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.A.; Bell, D.A.; Brintnell, W.; Yue, D.; Wehrli, B.; Jevnikar, A.M.; Lee, D.M.; Hueber, W.; Robinson, W.H.; Cairns, E. Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J. Exp. Med. 2008, 205, 967–979. [Google Scholar] [CrossRef]
- Wang, Y.; Wysocka, J.; Sayegh, J.; Lee, Y.H.; Perlin, J.R.; Leonelli, L.; Sonbuchner, L.S.; McDonald, C.H.; Cook, R.G.; Dou, Y.; et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 2004, 306, 279–283. [Google Scholar] [CrossRef]
- Moroni, G.; Trendelenburg, M.; Del Papa, N.; Quaglini, S.; Raschi, E.; Panzeri, P.; Testoni, C.; Tincani, A.; Banfi, G.; Balestrieri, G.; et al. Anti-C1q antibodies may help in diagnosing a renal flare in lupus nephritis. Am. J. Kidney Dis. 2001, 37, 490–498. [Google Scholar] [CrossRef]
- Sinico, R.A.; Rimoldi, L.; Radice, A.; Bianchi, L.; Gallelli, B.; Moroni, G. Anti-C1q autoantibodies in lupus nephritis. Ann. N. Y. Acad. Sci. 2009, 1173, 47–51. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiggeri, G.M.; D’Alessandro, M.; Bartolomeo, D.; Degl’Innocenti, M.L.; Magnasco, A.; Lugani, F.; Prunotto, M.; Bruschi, M. An Update on Antibodies to Necleosome Components as Biomarkers of Sistemic Lupus Erythematosus and of Lupus Flares. Int. J. Mol. Sci. 2019, 20, 5799. https://doi.org/10.3390/ijms20225799
Ghiggeri GM, D’Alessandro M, Bartolomeo D, Degl’Innocenti ML, Magnasco A, Lugani F, Prunotto M, Bruschi M. An Update on Antibodies to Necleosome Components as Biomarkers of Sistemic Lupus Erythematosus and of Lupus Flares. International Journal of Molecular Sciences. 2019; 20(22):5799. https://doi.org/10.3390/ijms20225799
Chicago/Turabian StyleGhiggeri, Gian Marco, Matteo D’Alessandro, Domenico Bartolomeo, Maria Ludovica Degl’Innocenti, Alberto Magnasco, Francesca Lugani, Marco Prunotto, and Maurizio Bruschi. 2019. "An Update on Antibodies to Necleosome Components as Biomarkers of Sistemic Lupus Erythematosus and of Lupus Flares" International Journal of Molecular Sciences 20, no. 22: 5799. https://doi.org/10.3390/ijms20225799
APA StyleGhiggeri, G. M., D’Alessandro, M., Bartolomeo, D., Degl’Innocenti, M. L., Magnasco, A., Lugani, F., Prunotto, M., & Bruschi, M. (2019). An Update on Antibodies to Necleosome Components as Biomarkers of Sistemic Lupus Erythematosus and of Lupus Flares. International Journal of Molecular Sciences, 20(22), 5799. https://doi.org/10.3390/ijms20225799