Cellular Factor XIII, a Transglutaminase in Human Corneal Keratocytes
Abstract
:1. Introduction
2. Results
2.1. Detection of FXIII-A in the Corneal Tissue by Immunohistochemistry and Western Blotting
2.2. The distribution of FXIII-A-Positive Keratocytes in the Corneal Stroma
2.3. FXIII-A Protein and FXIII-A mRNA in Isolated Keratocytes
2.4. Characterization of Isolated Corneal Keratocytes by Flow Cytometry
2.5. Immunohistochemical Detection and Localization of Isopeptide Protein Cross-Links in the Cornea
3. Discussion
4. Materials and Method
4.1. Cornea Samples
4.2. FXIII Deficient Patients
4.3. Immunohistochemistry
4.4. Western Blotting
4.5. Isolation of Keratocytes from the Cornea and Their Immunofluorescent Analysis
4.6. Detection and Quantification of FXIII-A mRNA in Keratocytes
4.7. Flow Cytometric Analysis of Isolated Keratocytes
4.8. Non-Invasive Ophthalmological Examinations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Cq | quantification cycle |
FXIII | blood coagulation factor XIII |
FXIII-A | FXIII A subunit |
FXIII-B | FXIII B subunit |
cFXIII | cellular FXIII |
pFXIII | plasma FXIII |
PBS | phosphate buffered saline |
TG | transglutaminase |
References
- Komaromi, I.; Bagoly, Z.; Muszbek, L. Factor XIII: Novel structural and functional aspects. J. Thromb. Haemost. 2011, 9, 9–20. [Google Scholar] [CrossRef]
- Iismaa, S.E.; Mearns, B.M.; Lorand, L.; Graham, R.M. Transglutaminases and disease: Lessons from genetically engineered mouse models and inherited disorders. Physiol. Rev. 2009, 89, 991–1023. [Google Scholar] [CrossRef]
- Ricotta, M.; Iannuzzi, M.; Vivo, G.D.; Gentile, V. Physio-pathological roles of transglutaminase-catalyzed reactions. World J. Biol. Chem. 2010, 1, 181–187. [Google Scholar] [CrossRef]
- Facchiano, A.; Facchiano, F. Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 2009, 36, 599–614. [Google Scholar] [CrossRef]
- Griffin, M.; Casadio, R.; Bergamini, C.M. Transglutaminases: nature’s biological glues. Biochem. J. 2002, 368, 377–396. [Google Scholar] [CrossRef]
- Buluk, K. An unknown action of blood platelets; preliminary communication. Pol. Tyg. Lek. Wars 1955, 10, 191. [Google Scholar] [PubMed]
- Luscher, E.F. Fibrin-stabilizing factor from thrombocytes. Schweiz Med. Wochenschr 1957, 87, 1220–1221. [Google Scholar] [PubMed]
- Katona, E.E.; Ajzner, E.; Toth, K.; Karpati, L.; Muszbek, L. Enzyme-linked immunosorbent assay for the determination of blood coagulation factor XIII A-subunit in plasma and in cell lysates. J. Immunol. Methods 2001, 258, 127–135. [Google Scholar] [CrossRef]
- Lopaciuk, S.; Lovette, K.M.; McDonagh, J.; Chuang, H.Y.; McDonagh, R.P. Subcellular distribution of fibrinogen and factor XIII in human blood platelets. Thromb. Res. 1976, 8, 453–465. [Google Scholar] [CrossRef]
- Sixma, J.J.; van den Berg, A.; Schiphorst, M.; Geuze, H.J.; McDonagh, J. Immunocytochemical localization of albumin and factor XIII in thin cryo sections of human blood platelets. Thromb. Haemost. 1984, 51, 388–391. [Google Scholar] [CrossRef]
- Mitchell, J.L.; Lionikiene, A.S.; Fraser, S.R.; Whyte, C.S.; Booth, N.A.; Mutch, N.J. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood 2014, 124, 3982–3990. [Google Scholar] [CrossRef] [PubMed]
- Muszbek, L.; Adany, R.; Szegedi, G.; Polgar, J.; Kavai, M. Factor XIII of blood coagulation in human monocytes. Thromb. Res. 1985, 37, 401–410. [Google Scholar] [CrossRef]
- Adany, R.; Belkin, A.; Vasilevskaya, T.; Muszbek, L. Identification of blood coagulation factor XIII in human peritoneal macrophages. Eur. J. Cell Biol. 1985, 38, 171–173. [Google Scholar] [PubMed]
- Adany, R.; Bardos, H. Factor XIII subunit A as an intracellular transglutaminase. Cell. Mol. Life Sci. 2003, 60, 1049–1060. [Google Scholar] [CrossRef]
- Nurminskaya, M.; Kaartinen, M.T. Transglutaminases in mineralized tissues. Front. Biosci. 2006, 11, 1591–1606. [Google Scholar] [CrossRef]
- Al-Jallad, H.F.; Myneni, V.D.; Piercy-Kotb, S.A.; Chabot, N.; Mulani, A.; Keillor, J.W.; Kaartinen, M.T. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics. PLoS ONE 2011, 6, e15893. [Google Scholar] [CrossRef]
- Myneni, V.D.; Hitomi, K.; Kaartinen, M.T. Factor XIII-A transglutaminase acts as a switch between preadipocyte proliferation and differentiation. Blood 2014, 124, 1344–1353. [Google Scholar] [CrossRef]
- Raghunath, M.; Cankay, R.; Kubitscheck, U.; Fauteck, J.D.; Mayne, R.; Aeschlimann, D.; Schlotzer-Schrehardt, U. Transglutaminase activity in the eye: Cross-linking in epithelia and connective tissue structures. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2780–2787. [Google Scholar]
- Dyrlund, T.F.; Poulsen, E.T.; Scavenius, C.; Nikolajsen, C.L.; Thogersen, I.B.; Vorum, H.; Enghild, J.J. Human cornea proteome: Identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J. Proteome Res. 2012, 11, 4231–4239. [Google Scholar] [CrossRef]
- Orosz, Z.Z.; Katona, E.; Facsko, A.; Modis, L.; Muszbek, L.; Berta, A. Factor XIII subunits in human tears; their highly elevated levels following penetrating keratoplasty. Clin. Chim. Acta 2011, 412, 271–276. [Google Scholar] [CrossRef]
- DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract. Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Hovakimyan, M.; Falke, K.; Stahnke, T.; Guthoff, R.; Witt, M.; Wree, A.; Stachs, O. Morphological analysis of quiescent and activated keratocytes: A review of ex vivo and in vivo findings. Curr. Eye Res. 2014, 39, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Sosnova, M.; Bradl, M.; Forrester, J.V. CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells 2005, 23, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Inbal, A.; Muszbek, L.; Lubetsky, A.; Katona, E.; Levi, I.; Karpati, L.; Nagler, A. Platelets but not monocytes contribute to the plasma levels of factor XIII subunit A in patients undergoing autologous peripheral blood stem cell transplantation. Blood Coagul. Fibrinolysis 2004, 15, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Beckers, C.M.L.; Simpson, K.R.; Griffin, K.J.; Brown, J.M.; Cheah, L.T.; Smith, K.A.; Vacher, J.; Cordell, P.A.; Kearney, M.T.; Grant, P.J.; et al. Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coagulation Factor XIII-A. Arter. Thromb. Vasc. Biol. 2017, 37, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Cordell, P.A.; Kile, B.T.; Standeven, K.F.; Josefsson, E.C.; Pease, R.J.; Grant, P.J. Association of coagulation factor XIII-A with Golgi proteins within monocyte-macrophages: Implications for subcellular trafficking and secretion. Blood 2010, 115, 2674–2681. [Google Scholar] [CrossRef] [PubMed]
- Akimov, S.S.; Belkin, A.M. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 2001, 98, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Kradin, R.L.; Lynch, G.W.; Kurnick, J.T.; Erikson, M.; Colvin, R.B.; McDonagh, J. Factor XIII A is synthesized and expressed on the surface of U937 cells and alveolar macrophages. Blood 1987, 69, 778–785. [Google Scholar] [CrossRef]
- Conkling, P.R.; Achyuthan, K.E.; Greenberg, C.S.; Newcomb, T.F.; Weinberg, J.B. Human mononuclear phagocyte transglutaminase activity cross-links fibrin. Thromb. Res. 1989, 55, 57–68. [Google Scholar] [CrossRef]
- Holme, P.A.; Brosstad, F.; Solum, N.O. The difference between platelet and plasma FXIII used to study the mechanism of platelet microvesicle formation. Thromb. Haemost. 1993, 70, 681–686. [Google Scholar] [CrossRef]
- Jayo, A.; Conde, I.; Lastres, P.; Jimenez-Yuste, V.; Gonzalez-Manchon, C. New insights into the expression and role of platelet factor XIII-A. J. Thromb. Haemost. 2009, 7, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Jackson, S.P. Platelet factor XIII and calpain negatively regulate integrin alphaIIbbeta3 adhesive function and thrombus growth. J. Biol. Chem. 2004, 279, 30697–30706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, K.; Devine, D.V. Intracellular factor XIII crosslinks platelet cytoskeletal elements upon platelet activation. Thromb. Haemost. 2002, 88, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Lim, C.T.; Kahn, D.R.; Glaser, T.; Gerrard, J.M.; White, J.G. Disulfide-linked and transglutaminase-catalyzed protein assemblies in platelets. Blood 1985, 66, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muszbek, L.; Polgar, J.; Boda, Z. Platelet factor XIII becomes active without the release of activation peptide during platelet activation. Thromb. Haemost. 1993, 69, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Muszbek, L.; Haramura, G.; Polgar, J. Transformation of cellular factor XIII into an active zymogen transglutaminase in thrombin-stimulated platelets. Thromb. Haemost. 1995, 73, 702–705. [Google Scholar] [CrossRef]
- Rao, K.M.; Newcomb, T.F. Clot retraction in a factor XIII free system. Scand. J. Haematol. 1980, 24, 142–148. [Google Scholar] [CrossRef]
- Sarvary, A.; Szucs, S.; Balogh, I.; Becsky, A.; Bardos, H.; Kavai, M.; Seligsohn, U.; Egbring, R.; Lopaciuk, S.; Muszbek, L.; et al. Possible role of factor XIII subunit A in Fcgamma and complement receptor-mediated phagocytosis. Cell Immunol. 2004, 228, 81–90. [Google Scholar] [CrossRef]
- Johnson, K.A.; Rose, D.M.; Terkeltaub, R.A. Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J. Cell Sci. 2008, 121, 2256–2264. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.; Hashimoto, S.; Lotz, M.; Pritzker, K.; Terkeltaub, R. Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am. J. Pathol. 2001, 159, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Kaartinen, M.T. Transglutaminase activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics. J. Cell. Physiol. 2018, 233, 7497–7513. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Al-Jallad, H.F.; Mousa, A.; Kaartinen, M.T. Expression and localization of plasma transglutaminase factor XIIIA in bone. J. Histochem. Cytochem. 2007, 55, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Al-Jallad, H.F.; Nakano, Y.; Chen, J.L.; McMillan, E.; Lefebvre, C.; Kaartinen, M.T. Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MC3T3-E1 osteoblast cultures. Matrix Biol. 2006, 25, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Cui, C.; Song, A.; Myneni, V.D.; Sun, H.; Li, J.J.; Murshed, M.; Melino, G.; Kaartinen, M.T. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ. 2017, 24, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Cordell, P.A.; Newell, L.M.; Standeven, K.F.; Adamson, P.J.; Simpson, K.R.; Smith, K.A.; Jackson, C.L.; Grant, P.J.; Pease, R.J. Normal Bone Deposition Occurs in Mice Deficient in Factor XIII-A and Transglutaminase 2. Matrix Biol. 2015, 43, 85–96. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komaromi, I.; Katona, E. Factor XIII: A coagulation factor with multiple plasmatic and cellular functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, V.; Kohler, H.P. Factor XIII: Structure and function. Semin. Thromb. Hemost. 2016, 42, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Kaartinen, M.T. Transglutaminases in Monocytes and Macrophages. Med. Sci. 2018, 6, 115. [Google Scholar] [CrossRef] [Green Version]
- Eckert, R.L.; Kaartinen, M.T.; Nurminskaya, M.; Belkin, A.M.; Colak, G.; Johnson, G.V.; Mehta, K. Transglutaminase regulation of cell function. Physiol. Rev. 2014, 94, 383–417. [Google Scholar] [CrossRef] [Green Version]
- Eghrari, A.O.; Riazuddin, S.A.; Gottsch, J.D. Overview of the Cornea: Structure, Function, and Development. Prog. Mol. Biol. Transl. Sci. 2015, 134, 7–23. [Google Scholar] [CrossRef]
- Gouveia, R.M.; Lepert, G.; Gupta, S.; Mohan, R.R.; Paterson, C.; Connon, C.J. Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nat. Commun. 2019, 10, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naderi, M.; Dorgalaleh, A.; Alizadeh, S.; Tabibian, S.; Hosseini, S.; Shamsizadeh, M.; Bamedi, T. Clinical manifestations and management of life-threatening bleeding in the largest group of patients with severe factor XIII deficiency. Int. J. Hematol. 2014, 100, 443–449. [Google Scholar] [CrossRef]
- Muszbek, L.; Katona, E. Diagnosis and Management of Congenital and Acquired FXIII Deficiencies. Semin. Thromb. Hemost. 2016, 42, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Inbal, A.; Lubetsky, A.; Krapp, T.; Castel, D.; Shaish, A.; Dickneitte, G.; Modis, L.; Muszbek, L.; Inbal, A. Impaired wound healing in factor XIII deficient mice. Thromb. Haemost. 2005, 94, 432–437. [Google Scholar] [CrossRef]
- Han, B.; Schwab, I.R.; Madsen, T.K.; Isseroff, R.R. A fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea 2002, 21, 505–510. [Google Scholar] [CrossRef]
- Dardik, R.; Solomon, A.; Loscalzo, J.; Eskaraev, R.; Bialik, A.; Goldberg, I.; Schiby, G.; Inbal, A. Novel proangiogenic effect of factor XIII associated with suppression of thrombospondin 1 expression. Arter. Thromb. Vasc. Biol. 2003, 23, 1472–1477. [Google Scholar] [CrossRef] [Green Version]
- Polgar, J.; Hidasi, V.; Muszbek, L. Non-proteolytic activation of cellular protransglutaminase (placenta macrophage factor XIII). Biochem. J. 1990, 267, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.F.E.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Nolan, T.; Hands, R.E.; Ogunkolade, W.; Bustin, S.A. SPUD: A quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal. Biochem. 2006, 351, 308–310. [Google Scholar] [CrossRef]
- Rabinowitz, Y.S. Videokeratographic indices to aid in screening for keratoconus. J. Refract. Surg. 1995, 11, 371–379. [Google Scholar]
- Li, Y.; Meisler, D.M.; Tang, M.; Lu, A.T.; Thakrar, V.; Reiser, B.J.; Huang, D. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology 2008, 115, 2159–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pts | Age | Gender | Mutations | Inferior-Superior Diopter Asymmetry | Inferior Steepening, Asymmetric Bow-Tie Pattern by Topography | ||
---|---|---|---|---|---|---|---|
OD | OS | OD | OS | ||||
1 | 60 | F | IVS5(-1) G>A | 0.0 | 0.4 | − | − |
2 | 62 | M | IVS5(-1) G>A | 0.4 | 0.8 | − | − |
3 | 20 | M | p.R662Y | 0.4 | 0.2 | + | + |
4 | 55 | F | p.R662S | 1.5 | 2.6 | + | + |
5 | 57 | F | * | 1.8 | 0.2 | − | − |
6 | 36 | F | p.M159R | 0.7 | 1.0 | + | + |
7 | 60 | M | p.M159R p.R661X | 1.9 | 1.4 | + | + |
8 | 22 | M | p.R382S p.Q400X | 1.4 | 1.3 | + | + |
9 | 18 | M | IVS5 (-1) G>A | 0.5 | 0.6 | + | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orosz, Z.Z.; Bárdos, H.; Shemirani, A.H.; Beke Debreceni, I.; Lassila, R.; Riikonen, A.S.; Kremer Hovinga, J.A.; Seiler, T.G.; van Dorland, H.A.; Schroeder, V.; et al. Cellular Factor XIII, a Transglutaminase in Human Corneal Keratocytes. Int. J. Mol. Sci. 2019, 20, 5963. https://doi.org/10.3390/ijms20235963
Orosz ZZ, Bárdos H, Shemirani AH, Beke Debreceni I, Lassila R, Riikonen AS, Kremer Hovinga JA, Seiler TG, van Dorland HA, Schroeder V, et al. Cellular Factor XIII, a Transglutaminase in Human Corneal Keratocytes. International Journal of Molecular Sciences. 2019; 20(23):5963. https://doi.org/10.3390/ijms20235963
Chicago/Turabian StyleOrosz, Zsuzsanna Z., Helga Bárdos, Amir H. Shemirani, Ildikó Beke Debreceni, Riitta Lassila, Antti S. Riikonen, Johanna A. Kremer Hovinga, Theo G. Seiler, Hendrika A. van Dorland, Verena Schroeder, and et al. 2019. "Cellular Factor XIII, a Transglutaminase in Human Corneal Keratocytes" International Journal of Molecular Sciences 20, no. 23: 5963. https://doi.org/10.3390/ijms20235963
APA StyleOrosz, Z. Z., Bárdos, H., Shemirani, A. H., Beke Debreceni, I., Lassila, R., Riikonen, A. S., Kremer Hovinga, J. A., Seiler, T. G., van Dorland, H. A., Schroeder, V., Boda, Z., Nemes, L., Früh Eppstein, B., Nagy, B., Facskó, A., Kappelmayer, J., & Muszbek, L. (2019). Cellular Factor XIII, a Transglutaminase in Human Corneal Keratocytes. International Journal of Molecular Sciences, 20(23), 5963. https://doi.org/10.3390/ijms20235963