Computer-Assisted Design of Environmentally Friendly and Light-Stable Fluorescent Dyes for Textile Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biosafety Analysis of Synthetic Processes
2.2. Fluorescence Properties of Designed Dyes
2.3. Dyeing Properties Analysis of Designed Dyes
2.4. Photo-Stability Analysis of Designed Dyes
2.5. Synthesis and Applications of Dyes Z2 and Z5
3. Materials and Methods
3.1. Software and Calculation Methods
3.2. Design and Feasibility Analysis of Dyes
3.2.1. Route Design of Hemicyanine Dyes
3.2.2. Analysis of Charge Density of Intermediates
3.2.3. Analysis of Enthalpy and Gibbs Free Energy
3.3. Sample Synthesis Route
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Das, P.P.; Roy, A.; Agarkar, S.; Devi, P.S. Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells. Dye. Pigment. 2018, 154, 303–313. [Google Scholar] [CrossRef]
- Ooyama, Y.; Nagano, T.; Inoue, S.; Imae, I.; Komaguchi, K.; Ohshita, J.; Harima, Y. Dye-Sensitized Solar Cells Based on Donor-π-Acceptor Fluorescent Dyes with a Pyridine Ring as an Electron-Withdrawing-Injecting Anchoring Group. Chem. Eur. J. 2011, 17, 14837–14843. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, X.; Shi, X.; Clee, S.M.; McGeer, P.L.; Wolf, M.O.; Orvig, C. Biological Imaging with Medium-Sensitive Bichromatic Flexible Fluorescent Dyes. Angew. Chem. Int. Ed. 2017, 56, 15603–15606. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, W.; Wu, J.; Zhou, B.; Niu, G.; Zhang, H.; Ge, J.; Wang, P. Deep-red to near-infrared fluorescent dyes: Synthesis, photophysical properties, and application in cell imaging. Spectrochim. Acta A 2016, 164, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lee, D.; Wang, J.; Li, G.; Yu, J.; Lin, W.; Yoon, J. Development of fluorescent probes based on protection–deprotection of the key functional groups for biological imaging. Chem. Soc. Rev. 2015, 44, 5003–5015. [Google Scholar] [CrossRef]
- Cotruvo, J.A., Jr.; Aron, A.T.; Ramos-Torres, K.M.; Chang, C.J. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 2015, 44, 4400–4414. [Google Scholar] [CrossRef] [PubMed]
- Kolmakov, K.; Hebisch, E.; Wolfram, T.; Lars, A.; Nordwig, L.A.; Wurm, C.A.; Ta, H.; Westphal, V.; Belov, V.S.W. Far-Red Emitting Fluorescent Dyes for Optical Nanoscopy: Fluorinated Silicon–Rhodamines (SiRF Dyes) and Phosphorylated Oxazines. Chem. Eur. J. 2015, 21, 13344–13356. [Google Scholar] [CrossRef]
- Sahl, S.J.; Hell, S.W.; Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell. Biol. 2017, 18, 685–701. [Google Scholar] [CrossRef]
- Ahlström, L.H.; Eskilsson, C.S.; Björklund, E. Determination of banned azo dyes in consumer goods. TrAC Trends Anal. Chem. 2005, 24, 49–56. [Google Scholar] [CrossRef]
- Brüschweiler, B.J.; Küng, S.; Bürgi, D.; Muralt, L.; Erich Nyfeler, E. Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles. Regul. Toxicol. Pharmacol. 2014, 69, 263–272. [Google Scholar] [CrossRef]
- Fadadu, K.B.; Soni, S.S. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage: Probing chain length effect on performance. Electrochim. Acta 2013, 88, 270–277. [Google Scholar] [CrossRef]
- Jędrzejewska, B.; Kabatc, J.; Pączkowski, J. Dichromophoric hemicyanine dyes. Synthesis and spectroscopic investigation. Dye. Pigment. 2007, 74, 262–268. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Chen, Y.; Ma, J.; Chen, H.S.; Zhang, M.L. Density Functional Theory Study on Organic Dye Sensitizers Containing Bis-dimethylfluorenyl Amino Benzofuran. Chin. J. Chem. Phys. 2009, 22, 489–496. [Google Scholar] [CrossRef]
- Wang, Z.S.; Li, F.Y.; Huang, C.H. Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid. J. Phys. Chem. B 2001, 105, 9210–9217. [Google Scholar] [CrossRef]
- Das, P.J.; Das, J.; Das, D. An Efficient Conversion of Alcohols to Alkyl Bromides Using Pyridinium Based Ionic Liquids: A Green Alternative to Appel Reaction. Asian J. Chem. 2018, 30, 651–654. [Google Scholar] [CrossRef]
- Jin, F.; Cai, Z.B.; Huang, J.Q.; Sheng, L.L.; Yu, P.T. Investigation of two-photon absorption properties in new A–D–A compounds emitting blue and yellow fluorescence. J. Mol. Struct. 2015, 1093, 33–38. [Google Scholar] [CrossRef]
- Krieg, R.; Eitner, A.; Günther, W.; Halbhuber, K.J. Optimization of heterocyclic 4-hydroxystyryl derivatives for histological localization of endogenous and immunobound peroxidase activity. Biotech. Histochem. 2007, 82, 235–262. [Google Scholar] [CrossRef]
- Ikeda, T.; Tadaki, Y.; Funajima, R.; Tatewaki, Y.; Okad, S. Aminostilbazolium Derivatives Substituted by Hydroxyethyl Groups for Second-Order Nonlinear Optics. Mol. Cryst. Liq. Cryst. 2011, 539, 142–147. [Google Scholar] [CrossRef]
- Wei, B.X.; Zhao, L.; Wang, T.J.; Gao, H.; Wu, H.X.; Jin, Y. Photo-stability of TiO2 particles coated with several transition metal oxides and its measurement by rhodamine-B degradation. Adv. Powder Technol. 2013, 24, 708–713. [Google Scholar] [CrossRef]
- Yang, S.; Tian, H.; Xiao, H.; Shang, H.; Gong, X.D.; Yao, S.; Chen, K. Photodegradation of cyanine and merocyanine dyes. Dye. Pigment. 2001, 49, 93–101. [Google Scholar] [CrossRef]
- Chang, X.P.; Gao, Y.J.; Fang, W.H.; Cui, G.; Thiel, W. Quantum Mechanics/Molecular Mechanics Study on the Photoreactions of Dark-and Light-Adapted States of a Blue-Light YtvA LOV Photoreceptor. Angew. Chem. 2017, 129, 9469–9473. [Google Scholar] [CrossRef]
- Zhan, Y.Z.; Zhao, X.; Wang, W. Theoretical study of the interaction energy of benzodifuranone dye molecule rings. Color. Technol. 2017, 133, 50–56. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhao, X.; Wang, W. Synthesis of phthalimide disperse dyes and study on the interaction energy. Dye. Pigment. 2017, 146, 240–250. [Google Scholar] [CrossRef]
- Sokołowska, J.; Czajkowski, W.; Podsiadły, R. The photostability of some fluorescent disperse dyes derivatives of coumarin. Dye. Pigment. 2001, 49, 187–191. [Google Scholar] [CrossRef]
- Patel, D.R.; Bilimoriya, J.T.; Patel, B.M.; Paresh, S.; Patel, S.H.; Mehta, K.M.; Patel, S.A.; Patel, K.C.; Patel, B.S.; Sahoo, S.K. Monoazo Styryl Quinazolinone Reactive Dyes: Their Synthesis, Application and Density Function Theory (DFT) Calculation. Proc. Nat. Acad. Sci. India Sect. A 2017, 87, 339–348. [Google Scholar] [CrossRef]
- Cash, G.G. Prediction of chemical toxicity to aquatic organisms: ECOSAR vs. Microtox® Assay. Environ. Toxicol. Water Qual. 1998, 13, 211–216. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, C.; Chen, G.; Sun, G. A study on computerized selection of fluorescent dyes for environmentally friendly textile applications. Dye. Pigment. 2019, 165, 256–263. [Google Scholar] [CrossRef]
- Karst, D.; Yang, Y. Using the solubility parameter to explain disperse dye sorption on polylactide. J. Appl. Polym. Sci. 2005, 96, 416–422. [Google Scholar] [CrossRef]
- Tamizifar, M.; Sun, G. Control of surface radical graft polymerization on polyester fibers by using Hansen solubility parameters as a measurement of the affinity of chemicals to materials. RSC Adv. 2017, 7, 13299–13303. [Google Scholar] [CrossRef]
- Knox, B.H.; Weigmann, H.D.; Scott, M.G. Interactions of nonaqueous solvents with textile fibers: Part V: Application of the solubility parameter concept to polyester fiber-solvent interactions. Text. Res. J. 1975, 45, 203–217. [Google Scholar] [CrossRef]
- Montgomery, J.A., Jr.; Frisch, M.J.; Ochterski, J.W.; Petersson, G. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999, 110, 2822–2827. [Google Scholar] [CrossRef]
- Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Redfern, P.C.; Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 1999, 110, 7650–7657. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Raghavachari, K.; Pople, J.A. Gaussian-3X (G3X) theory: Use of improved geometries, zero-point energies, and Hartree–Fock basis sets. J. Chem. Phys. 2001, 114, 108–117. [Google Scholar] [CrossRef]
- Cai, Z.L.; Crossley, M.J.; Reimers, J.R.; Kobayashi, R.; Amos, R.D. Density functional theory for charge transfer: The nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J. Phys. Chem. B 2006, 110, 15624–15632. [Google Scholar] [CrossRef]
- Civalleri, B.; Zicovich-Wilson, C.M.; Valenzano, L.; Ugliengo, P. B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. Cryst Eng Comm 2008, 10, 405–410. [Google Scholar] [CrossRef]
- Jacquemin, D.; Preat, J.; Perpète, E.A. A TD-DFT study of the absorption spectra of fast dye salts. Chem. Phys. Lett. 2005, 410, 254–259. [Google Scholar] [CrossRef]
- Guillaumont, D.; Nakamura, S. Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT). Dye. Pigment. 2000, 46, 85–92. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Y.; Wu, W.; Guo, H.; Zhao, J.; Yu, X. Fluorescent coumarin derivatives with large stokes shift, dual emission and solid state luminescent properties: An experimental and theoretical study. Dye. Pigment. 2012, 92, 1361–1369. [Google Scholar] [CrossRef]
- Shao, J.; Sun, H.; Guo, H.; Ji, S.; Zhao, J.; Wu, W.; James, T.D. A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine: An experimental and theoretical study. Chem. Sci. 2012, 3, 1049–1061. [Google Scholar] [CrossRef]
- Huynh, H.V.; He, X.; Baumgartner, T. Halochromic generation of white light emission using a single dithienophosphole luminophore. Chem. Commun. 2013, 49, 4899–4901. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Petersson, G.A. Gaussian 09, revision A. 1. Gaussian Inc. Wallingford CT 2009, 27, 34. [Google Scholar]
- Netzeva, T.I.; Pavan, M.; Worth, A.P. Review of (quantitative) structure–activity relationships for acute aquatic toxicity. QSAR Comb. Sci. 2008, 27, 77–90. [Google Scholar] [CrossRef]
- Cronin, M.T.D. Predicting Chemical Toxicity and Fate. In The Use by Governmental Regulatory Agencies of quantitative Structure-Activity Relationships and Expert Systems to Predict Toxicity; CRC Press: Boca Raton, FL, USA, 2004; pp. 414–425. [Google Scholar]
- Nickell, J.R.; Culver, J.P.; Janganati, V.; Zheng, G.; Dwoskin, L.P.; Crooks, P.A. 1, 4-Diphenalkylpiperidines: A new scaffold for the design of potent inhibitors of the vesicular monoamine transporter-2. Bioorganic Med. Chem. Lett. 2016, 26, 2997–3000. [Google Scholar] [CrossRef] [Green Version]
- Hauser, S.A.; Korinth, V.; Herdtweck, E.; Cokoja, M.; Herrmann, W.A.; Kühn, F.E. Chromophoric Lewis Base Adducts of Methyltrioxorhenium: Synthesis, Catalysis and Photochemistry. Eur. J. Inorg. Chem. 2010, 26, 4083–4090. [Google Scholar] [CrossRef]
- Lacroix, P.G.; Munoz, M.C.; Gaspar, A.B.; Gaspar, A.B.; Real, J.A.; Bonhommeau, S.; Rodriguez, V.; Nakatani, K. Synthesis, crystal structures, and solid state quadratic nonlinear optical properties of a series of stilbazolium cations combined with gold cyanide counter-ion. J. Mater. Chem. 2011, 21, 15940–15949. [Google Scholar] [CrossRef]
- Agustí, G.; Gaspar, A.B.; Muñoz, M.C.; Lacroix, P.G.; Real, J.A. Spin Crossover and Paramagnetic Behaviour in Two-Dimensional Iron (ii) Coordination Polymers with Stilbazole Push–Pull Ligands. Aust. J. Chem. 2009, 62, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Cicchi, S.; Fabbrizzi, P.; Ghini, G.; Brandi, A.; Foggi, P.; Marcelli, A.; Botta, C. Pyrene-Excimers-Based Antenna Systems. Chem. Eur. J. 2009, 15, 754–764. [Google Scholar] [CrossRef]
- Li, D.; Sun, X.; Shao, N.; Wu, J.; Tian, Y. Self-Assembly of Organic Chromosphere Cations with Inorganic Lanthanide (III) Complex Counterions. Zeitschrift Für Anorganische Und Allgemeine Chemie 2014, 640, 2283–2286. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.; Tian, Y.; Zhou, H.; Li, L.; Wu, J.; Zhou, G. Design, crystal structures and enhanced frequency-upconverted lasing efficiencies of a new series of dyes from hybrid of inorganic polymers and organic chromophores. J. Mater. Chem. 2009, 19, 9163–9169. [Google Scholar] [CrossRef]
- Guggenheim, E.A. Thermodynamics-an advanced treatment for chemists and physicists. In Thermodynamics—An Advanced Treatment for Chemists and Physicists, 7th ed.; Amsterdam, North-Holland: New York, NY, USA, 1985; p. 414. [Google Scholar]
- Zumdahl, S.S. Thermochemistry. In Chemistry; Cengage Learning: Boston, MA, USA, 2008; p. 243. [Google Scholar]
- Strickler, S.J.; Berg, R.A. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 1962, 37, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm. 2011, 407, 63–71. [Google Scholar] [CrossRef]
- Hansen, C.M. Aspects of solubility, surfaces and diffusion in polymers. Prog. Org. Coat. 2004, 51, 55–66. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, C.; Qing, F.L.; Yan, K.; Sun, G. Antiwrinkle finishing of cotton fabrics with 5-(Carbonyloxy succinic)-benzene-1, 2, 4-tricarboxylic acid: Comparison with other acids. Ind. Eng. Chem. Res. 2016, 55, 11850–11856. [Google Scholar] [CrossRef]
- Launay, H.; Hansen, C.M.; Almdal, K. Hansen solubility parameters for a carbon fiber/epoxy composite. Carbon 2007, 45, 2859–2865. [Google Scholar] [CrossRef] [Green Version]
- Ji, B.; Zhao, C.; Yan, K.; Sun, G. Effects of acid diffusibility and affinity to cellulose on strength loss of polycarboxylic acid crosslinked fabrics. Carbohydr. Polym. 2016, 144, 282–288. [Google Scholar] [CrossRef]
- Qin, C.; Qin, Z. Research on the fluorescent whiteners for textiles. Text. Aux. 2005, 9, 1–3. [Google Scholar]
- Christie, R.M. Review of Progress in Coloration and Related Topics. Fluoresc. Dye. 1993, 23, 1–18. [Google Scholar]
- Bi, L.; Zhang, W.; QIN, C. Dyeing behaviors of three phthalocyanine dyes on acrylic fabric. China Dye. Finish. 2014, 8, 1–4. [Google Scholar]
- Tang, S.; Qin, C.; Chen, G.; Bao, Z.M.; Hou, X.N. Synthesis and dyeing properties of three hemicyanine-based fluorescent polymeric dyes. AATCC J. Res. 2018, 5, 19–25. [Google Scholar] [CrossRef]
Item | Name | Fish 96h-LC50 (mg/L) | Daphnid 48h-LC50 (mg/L) | Green Algae 96h-EC50 (mg/L) |
---|---|---|---|---|
Raw materials | A1 | 292.3 | 156.33 | 90.92 |
A2 | 3,727,904 | 1,489,483.88 | 259,458.53 | |
A3 | 3,727,904 | 1,489,483.88 | 259,458.53 | |
A4 | 3,727,904 | 1,489,483.88 | 259,458.53 | |
A5 | 11,169.25 | 5724.55 | 2792.02 | |
A6 | 91.92 | 5.36 | 8.56 | |
Intermediates | B1 | 15,283,593 | 5,209,308.5 | 470,385.34 |
B2 | 11,033,896,960 | 3,153,353,728 | 137,435,888 | |
B3 | 11,033,896,960 | 3,153,353,728 | 137,435,888 | |
B4 | 11,033,896,960 | 3,153,353,728 | 137,435,888 | |
B5 | 482,951,392 | 157,749,760 | 11,945,150 | |
B6 | 391,939.94 | 2527.1 | 61,436.25 | |
Designed dyes | Z1 | 3094.48 | 1582.45 | 764.68 |
Z2 | 25,924,188 | 9,904,030 | 1,433,391.12 | |
Z3 | 25,924,188 | 9,904,030 | 1,433,391.12 | |
Z4 | 25,924,188 | 9,904,030 | 1,433,391.12 | |
Z5 | 90,077.77 | 44,143.83 | 17,888.29 | |
Z6 | 588.73 | 27.57 | 57.77 |
Item | Max Absorption Wavelength | Max Emission Wavelength | Stokes (nm) | ||||
---|---|---|---|---|---|---|---|
1E (ev) | Wavelength (nm) | 2f | E (ev) | Wavelength (nm) | f | ||
Z1 | 2.6105 | 474.94 | 1.4785 | 2.2869 | 542.15 | 1.5166 | 67.21 |
Z2 | 2.5576 | 484.77 | 1.4978 | 2.2167 | 559.32 | 1.5085 | 74.55 |
Z3 | 3.3454 | 370.61 | 0.1305 | - | 419.61 | 1.5554 | 49 |
Z4 | 2.6517 | 467.57 | 1.1095 | 2.4054 | 515.45 | 0.9673 | 47.88 |
Z5 | 2.4842 | 499.09 | 1.3926 | 2.0643 | 600.60 | 1.2270 | 101.51 |
Z6 | 2.3827 | 520.35 | 1.2081 | 1.7730 | 699.31 | 0.8955 | 178.96 |
Dye | HSP (MPa1/2) | Ra1 (MPa1/2) | Ra2 (MPa1/2) | Ra3 (MPa1/2) | Ra4 (MPa1/2) | Ra5 (MPa1/2) | Ra6 (MPa1/2) | ||
---|---|---|---|---|---|---|---|---|---|
δD | δP | δH | |||||||
Z1 | 18.4 | 3.0 | 1.7 | 43.02 | 23.69 | 14.48 | 9.22 | 9.90 | 9.99 |
Z2 | 18.9 | 8.4 | 10.4 | 33.49 | 13.64 | 9.47 | 7.69 | 4.47 | 4.53 |
Z3 | 18.9 | 8.4 | 10.4 | 33.49 | 13.64 | 9.47 | 7.69 | 4.47 | 4.53 |
Z4 | 18.9 | 8.4 | 10.4 | 33.49 | 13.64 | 9.47 | 7.69 | 4.47 | 4.53 |
Z5 | 18.5 | 4.3 | 4.6 | 39.93 | 20.51 | 12.57 | 7.78 | 7.43 | 7.53 |
Z6 | 18.5 | 4.3 | 4.6 | 39.93 | 20.51 | 12.57 | 7.78 | 7.43 | 7.53 |
CI Disperse Yellow 11 | 20.2 | 5.3 | 8.7 | 36.49 | 16.64 | 12.53 | 8.27 | 7.08 | 7.16 |
H2O | 15.5 | 16 | 42.3 | 0 | 20.26 | 36.09 | 39.78 | 36.51 | 36 |
Cellulose (cellobiose) | 18.7 | 12.5 | 23.4 | 20.26 | - | - | - | - | - |
PAN | 17.9 | 16.7 | 6.3 | 36.09 | - | - | - | - | - |
PET | 19.6 | 11.7 | 3.6 | 39.78 | - | - | - | - | - |
Nylon 6 | 18.5 | 11.3 | 7.1 | 36.51 | - | - | - | - | - |
Nylon 66 | 18.5 | 11.4 | 7.1 | 36 | - | - | - | - | - |
Eigenvalues (Hartree) | 3O2 | 1O2 | O2− | |||||
---|---|---|---|---|---|---|---|---|
HOMO | LUMO | HOMO | LUMO | HOMO | LUMO | |||
−0.56418 | 0.16997 | −0.47706 | 0.01129 | −0.12516 | 0.37411 | |||
Atomic orbital coefficients | O1 | 2S | 0 | 0.12445 | 0 | 0 | 0 | 0.11664 |
2PX | 0 | 0 | 0 | 0.4592 | 0.49969 | 0 | ||
2PY | 0.54995 | 0 | 0.53402 | 0 | 0 | 0 | ||
2PZ | 0 | −0.06966 | 0 | 0 | 0 | −0.07467 | ||
O2 | 2S | 0 | −0.12445 | 0 | 0 | 0 | −0.11664 | |
2PX | 0 | 0 | 0 | −0.4592 | −0.49969 | 0 | ||
2PY | −0.54995 | 0 | −0.53402 | 0 | 0 | 0 | ||
2PZ | 0 | −0.06966 | 0 | 0 | 0 | −0.07467 |
Item | HOMO 8 | LUMO | ||
---|---|---|---|---|
Active Position | Atomic Orbital Coefficients | Active Position | Atomic Orbital Coefficients | |
Z1 | N34-C17 | 0.27263, −0.13943 | N46-C2 | 0.22269, −0.18852 |
N46-C3 | 0.22269, −0.15797 | |||
N34-C17 | 0.10212, −0.13939 | |||
Z2 | N34-C17 | 0.26495, −0.1272 | N45-C2 | 0.19891, −0.14321 |
N45-C3 | 0.19891, −0.17116 | |||
N34-C17 | 0.11526, −0.14978 | |||
Z3 | N34-C17 | 0.26631, −0.13001 | N44-C2 | 0.22645, −0.20734 |
N44-C3 | 0.22645, −0.15098 | |||
N34-C17 | 0.10354, −0.13363 | |||
Z4 | N39-C18 | 0.28064, −0.14857 | N43-C41 | 0.28690, −0.16810 |
N43-C4 | 0.28690, −0.25597 | |||
C2-C1 | 0.30619, −0.15157 | |||
Z5 | N33-C16 | 0.26451, −0.13186 | N45-C2 | 0.18462, −0.20217 |
N45-C3 | 0.18462, −0.09251 | |||
N33-C16 | 0.10986, −0.14634 | |||
Z6 | N34-C17 | 0.26918, −0.1317 | N44-C2 | 0.22579, −0.20415 |
N44-C3 | 0.22579, −0.14513 | |||
N34-C17 | 0.10063, −0.13091 |
Item | ΔfH (Hartree) | ΔfG (Hartree) | Item | ΔfH (Hartree) | ΔfG (Hartree) | ΔrH (Hartree) | ΔG (Hartree) |
---|---|---|---|---|---|---|---|
A1 | −287.48332 | −287.53033 | B1 | −2938.370434 | −2938.438338 | −0.022028 | −0.002863 |
A2 | −911.256057 | −911.316383 | B2 | −3562.148829 | −3562.223358 | −0.027686 | −0.00183 |
A3 | −911.264174 | −911.326257 | B3 | −3562.139176 | −3562.218212 | −0.009916 | 0.01319 |
A4 | −911.258738 | −911.321063 | B4 | −3562.13095 | −3562.212119 | −0.007126 | 0.014089 |
A5 | −476.036178 | −476.091818 | B5 | −3126.917758 | −3126.99308 | −0.016494 | 0.003883 |
A6 | −476.039513 | −476.096557 | B6 | −3126.905813 | −3126.980969 | −0.001214 | 0.020733 |
D | −2650.865086 | −2650.905145 | - | - | - | - | - |
Item | ΔfH (1Hartree) | ΔfG (Hartree) | Item | ΔfH (Hartree) | ΔfG (Hartree) | ΔH (Hartree) | ΔG (Hartree) |
---|---|---|---|---|---|---|---|
B1 | −366.48955 | −366.545969 | Z1 | −848.007794 | −848.103322 | 0.015431 | 0.019032 |
B2 | −990.24633 | −990.315512 | Z2 | −1471.772855 | −1471.88174 | 0.00715 | 0.010157 |
B3 | −990.238486 | −990.308045 | Z3 | −1471.762939 | −1471.871835 | 0.009222 | 0.012595 |
B4 | −990.249985 | −990.320103 | Z4 | −1471.761824 | −1471.871864 | 0.021836 | 0.024624 |
B5 | −555.034403 | −555.097776 | Z5 | −1036.548901 | −1036.654302 | 0.019177 | 0.019859 |
B6 | −555.02708 | −555.092909 | Z6 | −1036.547848 | −1036.651849 | 0.012907 | 0.017445 |
E | −557.924048 | −557.992916 | F | −76.390373 | −76.416531 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Chen, G.; Sun, G. Computer-Assisted Design of Environmentally Friendly and Light-Stable Fluorescent Dyes for Textile Applications. Int. J. Mol. Sci. 2019, 20, 5971. https://doi.org/10.3390/ijms20235971
Tang S, Chen G, Sun G. Computer-Assisted Design of Environmentally Friendly and Light-Stable Fluorescent Dyes for Textile Applications. International Journal of Molecular Sciences. 2019; 20(23):5971. https://doi.org/10.3390/ijms20235971
Chicago/Turabian StyleTang, Songsong, Guoqiang Chen, and Gang Sun. 2019. "Computer-Assisted Design of Environmentally Friendly and Light-Stable Fluorescent Dyes for Textile Applications" International Journal of Molecular Sciences 20, no. 23: 5971. https://doi.org/10.3390/ijms20235971
APA StyleTang, S., Chen, G., & Sun, G. (2019). Computer-Assisted Design of Environmentally Friendly and Light-Stable Fluorescent Dyes for Textile Applications. International Journal of Molecular Sciences, 20(23), 5971. https://doi.org/10.3390/ijms20235971