Mechanisms of Developmental Toxicity of Dioxins and Related Compounds
Abstract
:1. Introduction
2. Cleft Palate
2.1. Characterization of TCDD-Induced Cleft Palate
2.2. Molecular Basis of TCDD-Induced Cleft Palate Onset
3. Hydronephrosis
3.1. TCDD-Induced Hydronephrosis
3.2. Characterization of TCDD-Induced Neonatal Hydronephrosis
3.3. Molecular Targets Linking TCDD Exposure and TiNH
3.4. Molecular Basis of the TiNH Window and TiNH Susceptibility
3.5. Pathophysiology and Mechanisms of TCDD-Induced Fetal Hydronephrosis
3.6. Hydronephrosis in Rats
4. Abnormal Development of Prostate
4.1. Characteristics of TCDD-Induced Abnormality of Prostate Development
4.2. Molecular Basis of TCDD-Induced Prostate Malformations
5. Heart and Craniofacial Malformations
5.1. Heart Malformation
5.2. Craniofacial Malformation
6. Perspectives for Future Research
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
AhR | Aryl hydrocarbon receptor |
GD | Gestational day |
PND | Postnatal day |
hpf | Hour(s) post-fertilization |
References
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 world health organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Couture, L.A.; Abbott, B.D.; Birnbaum, L.S. A critical review of the developmental toxicity and teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin: Recent advances toward understanding the mechanism. Teratology 1990, 42, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Nebert, D.W. Aryl hydrocarbon receptor (AHR): “Pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog. Lipid Res. 2017, 67, 38–57. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.E.; Karchner, S.I.; Merson, R.R. Diversity as opportunity: Insights from 600 million years of AHR evolution. Curr. Opin. Toxicol. 2017, 2, 58–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimura, J.; Yamashita, K.; Nakamura, K.; Morita, M.; Takagi, T.N.; Nakao, K.; Ema, M.; Sogawa, K.; Yasuda, M.; Katsuki, M.; et al. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 1997, 2, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Matsumura, F.; Vogel, C.F.; Nishimura, H.; Yonemoto, J.; Yoshioka, W.; Tohyama, C. Critical role of cyclooxygenase-2 activation in pathogenesis of hydronephrosis caused by lactational exposure of mice to dioxin. Toxicol. Appl. Pharmacol. 2008, 231, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.R.; Bugel, S.M.; Truong, L.; Spagnoli, S.; Tanguay, R.L. AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish. PLoS ONE 2018, 13, e0193484. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, W.; Peterson, R.E.; Tohyama, C. Molecular targets that link dioxin exposure to toxicity phenotypes. J. Steroid Biochem. Mol. Biol. 2011, 127, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S.; et al. Updated national birth prevalence estimates for selected birth defects in the united states, 2004–2006. Birth Defects Res. Part A 2010, 88, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Natsume, N.; Niimi, T.; Furukawa, H.; Kawai, T.; Ogi, N.; Suzuki, Y.; Kawai, T. Survey of congenital anomalies associated with cleft lip and/or palate in 701,181 Japanese people. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 91, 157–161. [Google Scholar] [CrossRef]
- Kransler, K.M.; McGarrigle, B.P.; Olson, J.R. Comparative developmental toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the hamster, rat and guinea pig. Toxicology 2007, 229, 214–225. [Google Scholar] [CrossRef]
- Schwetz, B.A.; Norris, J.M.; Sparschu, G.L.; Rowe, U.K.; Gehring, P.J.; Emerson, J.L.; Gerbig, C.G. Toxicology of chlorinated dibenzo-p-dioxins. Environ. Health Perspect. 1973, 5, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Courtney, K.D.; Moore, J.A. Teratology studies with 2,4,5-trichlorophenoxyacetic acid and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 1971, 20, 396–403. [Google Scholar] [CrossRef]
- Yamada, T.; Mishima, K.; Fujiwara, K.; Imura, H.; Sugahara, T. Cleft lip and palate in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin: A morphological in vivo study. Congenit. Anom. 2006, 46, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Pratt, R.M.; Dencker, L.; Diewert, V.M. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate in the mouse: Evidence for alterations in palatal shelf fusion. Teratog. Carcinog. Mutagen. 1984, 4, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Couture, L.A.; Harris, M.W.; Birnbaum, L.S. Characterization of the peak period of sensitivity for the induction of hydronephrosis in C57BL6N mice following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fundam. Appl. Toxicol. 1990, 15, 142–150. [Google Scholar] [CrossRef]
- Yoon, B.I.; Inoue, T.; Kaneko, T. Teratological effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): Induction of cleft palate in the ddy and C57BL/6 mouse. J. Vet. Sci. 2000, 1, 113–119. [Google Scholar]
- Buser, M.C.; Pohl, H.R. Windows of sensitivity to toxic chemicals in the development of cleft palates. J Toxicol. Environ. Health Part B 2015, 18, 242–257. [Google Scholar] [CrossRef]
- Pratt, R.M. Mechanisms of chemically-induced cleft palate. Trends Pharmacol. Sci. 1983, 4, 160–162. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, J.; Jiang, R. Cellular and molecular mechanisms of palatogenesis. Curr. Top. Dev. Biol. 2015, 115, 59–84. [Google Scholar]
- Fujiwara, K.; Yamada, T.; Mishima, K.; Imura, H.; Sugahara, T. Morphological and immunohistochemical studies on cleft palates induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Congenit. Anom. 2008, 48, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Imura, H.; Yamada, T.; Mishima, K.; Fujiwara, K.; Kawaki, H.; Hirata, A.; Sogawa, N.; Ueno, T.; Sugahara, T. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin suggests abnormal palate development after palatal fusion. Congenit. Anom. 2010, 50, 77–84. [Google Scholar] [CrossRef]
- Yamada, T.; Hirata, A.; Sasabe, E.; Yoshimura, T.; Ohno, S.; Kitamura, N.; Yamamoto, T. TCDD disrupts posterior palatogenesis and causes cleft palate. J. Cranio-Maxillofac. Surg. 2014, 42, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.N.; Matsui, K.A.; Yamashita, K.; Ohmori, H.; Yasuda, M. Pathogenesis of cleft palate in mouse embryos exposed to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Teratog. Carcinog. Mutagen. 2000, 20, 73–86. [Google Scholar] [CrossRef]
- Sakuma, C.; Imura, H.; Yamada, T.; Sugahara, T.; Hirata, A.; Ikeda, Y.; Natsume, N. Cleft palate formation after palatal fusion occurs due to the rupture of epithelial basement membranes. J. Craniomaxillofac. Surg. 2018. [Google Scholar] [CrossRef] [PubMed]
- Thomae, T.L.; Stevens, E.A.; Bradfield, C.A. Transforming growth factor-β3 restores fusion in palatal shelves exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 2005, 280, 12742–12746. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.D.; Birnbaum, L.S. TCDD alters medial epithelial cell differentiation during palatogenesis. Toxicol. Appl. Pharmacol. 1989, 99, 276–286. [Google Scholar] [CrossRef]
- Abbott, B.D.; Diliberto, J.J.; Birnbaum, L.S. 2,3,7,8-tetrachlorodibenzo-p-dioxin alters embryonic palatal medial epithelial cell differentiation in vitro. Toxicol. Appl. Pharmacol. 1989, 100, 119–131. [Google Scholar] [CrossRef]
- Yuan, X.; Qiu, L.; Pu, Y.; Liu, C.; Zhang, X.; Wang, C.; Pu, W.; Fu, Y. Histone acetylation is involved in TCDDinduced cleft palate formation in fetal mice. Mol. Med. Rep. 2016, 14, 1139–1145. [Google Scholar] [CrossRef]
- Gan, L.Q.; Fu, Y.X.; Liu, X.; Qiu, L.; Wu, S.D.; Tian, X.F.; Liu, Y.; Wei, G.H. Transforming growth factor-β3 expression up-regulates on cleft palates induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Toxicol. Ind. Health 2009, 25, 473–478. [Google Scholar] [CrossRef]
- Burns, F.R.; Peterson, R.E.; Heideman, W. Dioxin disrupts cranial cartilage and dermal bone development in zebrafish larvae. Aquat. Toxicol. 2015, 164, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frøkiær, J.; Zeidel, M.L. Urinary tract obstruction. In The kidney, 9th ed.; Taal, M.W., Chertow, G.M., Marsden, P.A., Skorecki, K., Yu, A.S.L., Brenner, B.M., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2011; Volume 1, pp. 1383–1410. [Google Scholar]
- Lee, R.S.; Cendron, M.; Kinnamon, D.D.; Nguyen, H.T. Antenatal hydronephrosis as a predictor of postnatal outcome: A meta-analysis. Pediatrics 2006, 118, 586–593. [Google Scholar] [CrossRef]
- Yamacake, K.G.; Nguyen, H.T. Current management of antenatal hydronephrosis. Pediatr. Nephrol. 2013, 28, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Blake, J.A.; Kadin, J.A.; Richardson, J.E.; Bult, C.J.; Mouse Genome Database Group. Mouse genome database (MGD)-2018: Knowledgebase for the laboratory mouse. Nucleic Acids Res. 2018, 46, D836–D842. [Google Scholar] [CrossRef]
- MGD. Search Results for “Hydronephrosis”. Available online: http://www.informatics.jax.org/searchtool/Search.do?query=hydronephrosis (accessed on 12 December 2018).
- Nomura, N.; Tajima, M.; Sugawara, N.; Morimoto, T.; Kondo, Y.; Ohno, M.; Uchida, K.; Mutig, K.; Bachmann, S.; Soleimani, M.; et al. Generation and analyses of R8L barttin knockin mouse. Am. J. Physiol. Renal Physiol. 2011, 301, F297–F307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, P.P.; Cao, X.R.; Qu, J.; Volk, K.A.; Kirby, P.; Williamson, R.A.; Stokes, J.B.; Yang, B. Nephrogenic diabetes insipidus in mice caused by deleting cooh-terminal tail of aquaporin-2. Am. J. Physiol. Renal Physiol. 2007, 292, F1334–F1344. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Chernavvsky, D.R.; Gomez, R.A.; Igarashi, P.; Gitelman, H.J.; Smithies, O. Uncompensated polyuria in a mouse model of bartter’s syndrome. Proc. Natl. Acad. Sci. USA 2000, 97, 5434–5439. [Google Scholar] [CrossRef] [PubMed]
- Kemter, E.; Rathkolb, B.; Bankir, L.; Schrewe, A.; Hans, W.; Landbrecht, C.; Klaften, M.; Ivandic, B.; Fuchs, H.; Gailus-Durner, V.; et al. Mutation of the Na+-K+-2Cl− cotransporter NKCC2 in mice is associated with severe polyuria and a urea-selective concentrating defect without hyperreninemia. Am. J Physiol. Renal Physiol. 2010, 298, F1405–F1415. [Google Scholar] [CrossRef]
- Jeong, H.W.; Jeon, U.S.; Koo, B.K.; Kim, W.Y.; Im, S.K.; Shin, J.; Cho, Y.; Kim, J.; Kong, Y.Y. Inactivation of notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J. Clin. Investig. 2009, 119, 3290–3300. [Google Scholar] [CrossRef]
- Yun, J.; Schoneberg, T.; Liu, J.; Schulz, A.; Ecelbarger, C.A.; Promeneur, D.; Nielsen, S.; Sheng, H.; Grinberg, A.; Deng, C.; et al. Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J. Clin. Investig. 2000, 106, 1361–1371. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.A.; Gupta, B.N.; Zinkl, J.G.; Vos, J.G. Postnatal effects of maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Environ. Health Perspect. 1973, 5, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Yonemoto, J.; Nishimura, H.; Tohyama, C. Localization of cytochrome P450 1A1 in a specific region of hydronephrotic kidney of rat neonates lactationally exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology 2006, 227, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Couture-Haws, L.; Harris, M.W.; McDonald, M.M.; Lockhart, A.C.; Birnbaum, L.S. Hydronephrosis in mice exposed to TCDD-contaminated breast milk: Identification of the peak period of sensitivity and assessment of potential recovery. Toxicol. Appl. Pharmacol. 1991, 107, 413–428. [Google Scholar] [CrossRef]
- Yoshioka, W.; Kawaguchi, T.; Nishimura, N.; Akagi, T.; Fujisawa, N.; Yanagisawa, H.; Matsumura, F.; Tohyama, C. Polyuria-associated hydronephrosis induced by xenobiotic chemical exposure in mice. Am. J. Physiol. Renal Physiol. 2016, 311, F752–F762. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, W.; Aida-Yasuoka, K.; Fujisawa, N.; Kawaguchi, T.; Ohsako, S.; Hara, S.; Uematsu, S.; Akira, S.; Tohyama, C. Critical role of microsomal prostaglandin E synthase-1 in the hydronephrosis caused by lactational exposure to dioxin in mice. Toxicol. Sci. 2012, 127, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, W.; Kawaguchi, T.; Fujisawa, N.; Aida-Yasuoka, K.; Shimizu, T.; Matsumura, F.; Tohyama, C. Predominant role of cytosolic phospholipase A2α in dioxin-induced neonatal hydronephrosis in mice. Sci. Rep. 2014, 4, 4042. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Matsumura, F. Roles of cytosolic phospholipase A2 and Src Kinase in the early action of 2,3,7,8-tetrachlorodibenzo-p-dioxin through a nongenomic pathway in MCF10A cells. Mol. Pharmacol. 2008, 74, 255–263. [Google Scholar] [CrossRef]
- Dong, B.; Nishimura, N.; Vogel, C.F.; Tohyama, C.; Matsumura, F. TCDD-induced cyclooxygenase-2 expression is mediated by the nongenomic pathway in mouse MMDD1 macula densa cells and kidneys. Biochem. Pharmacol. 2010, 79, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Kinehara, M.; Fukuda, I.; Yoshida, K.; Ashida, H. Aryl hydrocarbon receptor-mediated induction of the cytosolic phospholipase A2α gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse hepatoma Hepa-1c1c7 cells. J. Biosci. Bioeng. 2009, 108, 277–281. [Google Scholar] [CrossRef]
- Kinehara, M.; Fukuda, I.; Yoshida, K.; Ashida, H. High-throughput evaluation of aryl hydrocarbon receptor-binding sites selected via chromatin immunoprecipitation-based screening in Hepa-1c1c7 cells stimulated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Genes Genet Syst. 2008, 83, 455–468. [Google Scholar] [CrossRef]
- Vorderstrasse, B.A.; Fenton, S.E.; Bohn, A.A.; Cundiff, J.A.; Lawrence, B.P. A novel effect of dioxin: Exposure during pregnancy severely impairs mammary gland differentiation. Toxicol. Sci. 2004, 78, 248–257. [Google Scholar] [CrossRef]
- Basham, K.J.; Leonard, C.J.; Kieffer, C.; Shelton, D.N.; McDowell, M.E.; Bhonde, V.R.; Looper, R.E.; Welm, B.E. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol. Sci. 2015, 143, 36–45. [Google Scholar] [CrossRef]
- Lew, B.J.; Manickam, R.; Lawrence, B.P. Activation of the aryl hydrocarbon receptor during pregnancy in the mouse alters mammary development through direct effects on stromal and epithelial tissues. Biol. Reprod. 2011, 84, 1094–1102. [Google Scholar] [CrossRef]
- Mimura, J.; Fujii-Kuriyama, Y. Functional role of AHR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta 2003, 1619, 263–268. [Google Scholar] [CrossRef]
- Murray, I.A.; Perdew, G.H. Omeprazole stimulates the induction of human insulin-like growth factor binding protein-1 through aryl hydrocarbon receptor activation. J. Pharmacol. Exp. Ther. 2008, 324, 1102–1110. [Google Scholar] [CrossRef]
- Matsumura, F. The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochem. Pharmacol. 2009, 77, 608–626. [Google Scholar] [CrossRef]
- Zelenina, M.; Christensen, B.M.; Palmer, J.; Nairn, A.C.; Nielsen, S.; Aperia, A. Prostaglandin E2 interaction with AVP: Effects on AQP2 phosphorylation and distribution. Am. J. Physiol. Renal Physiol. 2000, 278, F388–F394. [Google Scholar] [CrossRef]
- Nadler, S.P.; Zimpelmann, J.A.; Hebert, R.L. PGE2 inhibits water permeability at a post-cAMP site in rat terminal inner medullary collecting duct. Am. J. Physiol. 1992, 262, F229–F235. [Google Scholar] [CrossRef]
- Hebert, R.L.; Jacobson, H.R.; Fredin, D.; Breyer, M.D. Evidence that separate PGE2 receptors modulate water and sodium transport in rabbit cortical collecting duct. Am. J. Physiol. 1993, 265, F643–F650. [Google Scholar] [CrossRef]
- Aida-Yasuoka, K.; Yoshioka, W.; Kawaguchi, T.; Ohsako, S.; Tohyama, C. A mouse strain less responsive to dioxin-induced prostaglandin E2 synthesis is resistant to the onset of neonatal hydronephrosis. Toxicol. Sci. 2014, 141, 465–474. [Google Scholar] [CrossRef]
- McConnell, E.E.; Moore, J.A.; Haseman, J.K.; Harris, M.W. The comparative toxicity of chlorinated dibenzo-p-dioxins in mice and guinea pigs. Toxicol. Appl. Pharmacol. 1978, 44, 335–356. [Google Scholar] [CrossRef]
- Henck, J.M.; New, M.A.; Kociba, R.J.; Rao, K.S. 2,3,7,8-tetrachlorodibenzo-p-dioxin: Acute oral toxicity in hamsters. Toxicol. Appl. Pharmacol. 1981, 59, 405–407. [Google Scholar] [CrossRef]
- Olson, J.R.; Gasiewicz, T.A.; Neal, R.A. Tissue distribution, excretion, and metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the golden syrian hamster. Toxicol. Appl. Pharmacol. 1980, 56, 78–85. [Google Scholar] [CrossRef]
- Shen, E.S.; Gutman, S.I.; Olson, J.R. Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated hepatotoxicity in C57BL/6J and DBA/2J mice. J. Toxicol. Environ. Health 1991, 32, 367–381. [Google Scholar] [CrossRef]
- Poland, A.; Palen, D.; Glover, E. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol. Pharmacol. 1994, 46, 915–921. [Google Scholar]
- Ema, M.; Ohe, N.; Suzuki, M.; Mimura, J.; Sogawa, K.; Ikawa, S.; Fujii-Kuriyama, Y. Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors. J. Biol. Chem. 1994, 269, 27337–27343. [Google Scholar]
- Sorg, O.; Zennegg, M.; Schmid, P.; Fedosyuk, R.; Valikhnovskyi, R.; Gaide, O.; Kniazevych, V.; Saurat, J.H. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) poisoning in victor yushchenko: Identification and measurement of TCDD metabolites. Lancet 2009, 374, 1179–1185. [Google Scholar] [CrossRef]
- Moriguchi, T.; Motohashi, H.; Hosoya, T.; Nakajima, O.; Takahashi, S.; Ohsako, S.; Aoki, Y.; Nishimura, N.; Tohyama, C.; Fujii-Kuriyama, Y.; et al. Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc. Natl. Acad. Sci. USA 2003, 100, 5652–5657. [Google Scholar] [CrossRef] [Green Version]
- Poland, A.; Glover, E. 2,3,7,8,-tetrachlorodibenzo-p-dioxin: Segregation of toxocity with the Ah locus. Mol. Pharmacol. 1980, 17, 86–94. [Google Scholar]
- Abbott, B.D.; Birnbaum, L.S.; Pratt, R.M. TCDD-induced hyperplasia of the ureteral epithelium produces hydronephrosis in murine fetuses. Teratology 1987, 35, 329–334. [Google Scholar] [CrossRef]
- Bryant, P.L.; Schmid, J.E.; Fenton, S.E.; Buckalew, A.R.; Abbott, B.D. Teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the expression of egf and/or TGF-α. Toxicol. Sci. 2001, 62, 103–114. [Google Scholar] [CrossRef]
- Fujisawa, N.; Yoshioka, W.; Yanagisawa, H.; Tohyama, C. Roles of cytosolic phospholipase A2α in reproductive and systemic toxicities in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed mice. Arch. Toxicol. 2018, 92, 789–801. [Google Scholar] [CrossRef]
- Jang, J.Y.; Shin, S.; Choi, B.I.; Park, D.; Jeon, J.H.; Hwang, S.Y.; Kim, J.C.; Kim, Y.B.; Nahm, S.S. Antiteratogenic effects of α-naphthoflavone on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposed mice in utero. Reprod. Toxicol. 2007, 24, 303–309. [Google Scholar] [CrossRef]
- Dragin, N.; Dalton, T.P.; Miller, M.L.; Shertzer, H.G.; Nebert, D.W. For dioxin-induced birth defects, mouse or human CYP1A2 in maternal liver protects whereas mouse CYP1A1 and CYP1B1 are inconsequential. J. Biol. Chem. 2006, 281, 18591–18600. [Google Scholar] [CrossRef]
- Abbott, B.D.; Birnbaum, L.S. Effects of TCDD on embryonic ureteric epithelial EGF receptor expression and cell proliferation. Teratology 1990, 41, 71–84. [Google Scholar] [CrossRef]
- Choi, S.S.; Miller, M.A.; Harper, P.A. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces amphiregulin gene expression in the developing mouse ureter. Toxicol. Sci. 2006, 94, 163–174. [Google Scholar] [CrossRef]
- Miettinen, H.M.; Huuskonen, H.; Partanen, A.M.; Miettinen, P.; Tuomisto, J.T.; Pohjanvirta, R.; Tuomisto, J. Effects of epidermal growth factor receptor deficiency and 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal development in mice. Toxicol. Lett. 2004, 150, 285–291. [Google Scholar] [CrossRef]
- Abbott, B.D.; Buckalew, A.R.; DeVito, M.J.; Ross, D.; Bryant, P.L.; Schmid, J.E. EGF and TGF-α expression influence the developmental toxicity of TCDD: Dose response and AHR phenotype in EGF, TGF-α, and EGF + TGF-α knockout mice. Toxicol. Sci. 2003, 71, 84–95. [Google Scholar] [CrossRef]
- Harrill, J.A.; Hukkanen, R.R.; Lawson, M.; Martin, G.; Gilger, B.; Soldatow, V.; Lecluyse, E.L.; Budinsky, R.A.; Rowlands, J.C.; Thomas, R.S. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice. Toxicol. Appl. Pharmacol. 2013, 272, 503–518. [Google Scholar] [CrossRef]
- Toivanen, R.; Shen, M.M. Prostate organogenesis: Tissue induction, hormonal regulation and cell type specification. Development 2017, 144, 1382–1398. [Google Scholar] [CrossRef]
- Ko, K.; Theobald, H.M.; Peterson, R.E. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in the C57BL/6J mouse prostate: Lobe-specific effects on branching morphogenesis. Toxicol. Sci. 2002, 70, 227–237. [Google Scholar] [CrossRef]
- Fritz, W.A.; Lin, T.M.; Moore, R.W.; Cooke, P.S.; Peterson, R.E. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on the prostate and its response to castration in senescent C57BL/6J mice. Toxicol. Sci. 2005, 86, 387–395. [Google Scholar] [CrossRef]
- Ricke, W.A.; Lee, C.W.; Clapper, T.R.; Schneider, A.J.; Moore, R.W.; Keil, K.P.; Abler, L.L.; Wynder, J.L.; Lopez Alvarado, A.; Beaubrun, I.; et al. In utero and lactational TCDD exposure increases susceptibility to lower urinary tract dysfunction in adulthood. Toxicol. Sci. 2016, 150, 429–440. [Google Scholar] [CrossRef]
- Lin, T.M.; Simanainen, U.; Moore, R.W.; Peterson, R.E. Critical windows of vulnerability for effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on prostate and seminal vesicle development in C57BL/6 mice. Toxicol. Sci. 2002, 69, 202–209. [Google Scholar] [CrossRef]
- Vezina, C.M.; Allgeier, S.H.; Moore, R.W.; Lin, T.M.; Bemis, J.C.; Hardin, H.A.; Gasiewicz, T.A.; Peterson, R.E. Dioxin causes ventral prostate agenesis by disrupting dorsoventral patterning in developing mouse prostate. Toxicol. Sci. 2008, 106, 488–496. [Google Scholar] [CrossRef]
- Lin, T.M.; Ko, K.; Moore, R.W.; Simanainen, U.; Oberley, T.D.; Peterson, R.E. Effects of aryl hydrocarbon receptor null mutation and in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on prostate and seminal vesicle development in C57BL/6 mice. Toxicol. Sci. 2002, 68, 479–487. [Google Scholar] [CrossRef]
- Lin, T.M.; Rasmussen, N.T.; Moore, R.W.; Albrecht, R.M.; Peterson, R.E. 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits prostatic epithelial bud formation by acting directly on the urogenital sinus. J. Urol. 2004, 172, 365–368. [Google Scholar] [CrossRef]
- Ko, K.; Moore, R.W.; Peterson, R.E. Aryl hydrocarbon receptors in urogenital sinus mesenchyme mediate the inhibition of prostatic epithelial bud formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 2004, 196, 149–155. [Google Scholar] [CrossRef]
- Schneider, A.J.; Moore, R.W.; Branam, A.M.; Abler, L.L.; Keil, K.P.; Mehta, V.; Vezina, C.M.; Peterson, R.E. In utero exposure to TCDD alters wnt signaling during mouse prostate development: Linking ventral prostate agenesis to downregulated β-catenin signaling. Toxicol. Sci. 2014, 141, 176–187. [Google Scholar] [CrossRef]
- Allgeier, S.H.; Lin, T.M.; Vezina, C.M.; Moore, R.W.; Fritz, W.A.; Chiu, S.Y.; Zhang, C.; Peterson, R.E. WNT5A selectively inhibits mouse ventral prostate development. Dev. Biol. 2008, 324, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.J.; Branam, A.M.; Peterson, R.E. Intersection of AHR and wnt signaling in development, health, and disease. Int. J. Mol. Sci. 2014, 15, 17852–17885. [Google Scholar] [CrossRef]
- King-Heiden, T.C.; Mehta, V.; Xiong, K.M.; Lanham, K.A.; Antkiewicz, D.S.; Ganser, A.; Heideman, W.; Peterson, R.E. Reproductive and developmental toxicity of dioxin in fish. Mol. Cell. Endocrinol. 2012, 354, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Antkiewicz, D.S.; Peterson, R.E.; Heideman, W. Blocking expression of AHR2 and ARNT1 in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 2006, 94, 175–182. [Google Scholar] [CrossRef]
- Shiu, W.Y.; Doucette, W.; Gobas, F.A.P.C.; Andren, A.; Mackay, D. Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environ. Sci. Technol. 1988, 22, 651–658. [Google Scholar] [CrossRef]
- McCarty, L.S.; Landrum, P.F.; Luoma, S.N.; Meador, J.P.; Merten, A.A.; Shephard, B.K.; van Wezel, A.P. Advancing environmental toxicology through chemical dosimetry: External exposures versus tissue residues. Integr. Environ. Assess. Manag. 2011, 7, 7–27. [Google Scholar] [CrossRef]
- Lanham, K.A.; Peterson, R.E.; Heideman, W. Sensitivity to dioxin decreases as zebrafish mature. Toxicol. Sci. 2012, 127, 360–370. [Google Scholar] [CrossRef]
- Antkiewicz, D.S.; Burns, C.G.; Carney, S.A.; Peterson, R.E.; Heideman, W. Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol. Sci. 2005, 84, 368–377. [Google Scholar] [CrossRef]
- Plavicki, J.; Hofsteen, P.; Peterson, R.E.; Heideman, W. Dioxin inhibits zebrafish epicardium and proepicardium development. Toxicol. Sci. 2013, 131, 558–567. [Google Scholar] [CrossRef]
- Bugiak, B.J.; Weber, L.P. Phenotypic anchoring of gene expression after developmental exposure to aryl hydrocarbon receptor ligands in zebrafish. Aquat. Toxicol. 2010, 99, 423–437. [Google Scholar] [CrossRef]
- Lanham, K.A.; Plavicki, J.; Peterson, R.E.; Heideman, W. Cardiac myocyte-specific AHR activation phenocopies TCDD-induced toxicity in zebrafish. Toxicol. Sci. 2014, 141, 141–154. [Google Scholar] [CrossRef]
- Souder, J.P.; Gorelick, D.A. AHR2, but not AHR1a or AHR1b, is required for craniofacial and fin development and TCDD-dependent cardiotoxicity in zebrafish. bioRxiv 2018. [Google Scholar] [CrossRef]
- Goodale, B.C.; La Du, J.K.; Bisson, W.H.; Janszen, D.B.; Waters, K.M.; Tanguay, R.L. AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish. PLoS ONE 2012, 7, e29346. [Google Scholar] [CrossRef]
- Hofsteen, P.; Plavicki, J.; Johnson, S.D.; Peterson, R.E.; Heideman, W. Sox9b is required for epicardium formation and plays a role in TCDD-induced heart malformation in zebrafish. Mol. Pharmacol. 2013, 84, 353–360. [Google Scholar] [CrossRef]
- Gawdzik, J.C.; Yue, M.S.; Martin, N.R.; Elemans, L.M.H.; Lanham, K.A.; Heideman, W.; Rezendes, R.; Baker, T.R.; Taylor, M.R.; Plavicki, J.S. Sox9b is required in cardiomyocytes for cardiac morphogenesis and function. Sci. Rep. 2018, 8, 13906. [Google Scholar] [CrossRef]
- Teraoka, H.; Dong, W.; Ogawa, S.; Tsukiyama, S.; Okuhara, Y.; Niiyama, M.; Ueno, N.; Peterson, R.E.; Hiraga, T. 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: Altered regional blood flow and impaired lower jaw development. Toxicol. Sci. 2002, 65, 192–199. [Google Scholar] [CrossRef]
- Henry, T.R.; Spitsbergen, J.M.; Hornung, M.W.; Abnet, C.C.; Peterson, R.E. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 1997, 142, 56–68. [Google Scholar] [CrossRef]
- Xiong, K.M.; Peterson, R.E.; Heideman, W. Aryl hydrocarbon receptor-mediated down-regulation of Sox9b causes jaw malformation in zebrafish embryos. Mol. Pharmacol. 2008, 74, 1544–1553. [Google Scholar] [CrossRef]
- Watson, A.T.; Planchart, A.; Mattingly, C.J.; Winkler, C.; Reif, D.M.; Kullman, S.W. Embryonic exposure to TCDD impacts osteogenesis of the axial skeleton in Japanese medaka (Oryzias latipes). Toxicol. Sci. 2017, 155, 485–496. [Google Scholar] [CrossRef]
- Incardona, J.P.; Collier, T.K.; Scholz, N.L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 2004, 196, 191–205. [Google Scholar] [CrossRef]
- Prasch, A.L.; Teraoka, H.; Carney, S.A.; Dong, W.; Hiraga, T.; Stegeman, J.J.; Heideman, W.; Peterson, R.E. Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol. Sci. 2003, 76, 138–150. [Google Scholar] [CrossRef]
- Yan, Y.L.; Willoughby, J.; Liu, D.; Crump, J.G.; Wilson, C.; Miller, C.T.; Singer, A.; Kimmel, C.; Westerfield, M.; Postlethwait, J.H. A pair of Sox: Distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 2005, 132, 1069–1083. [Google Scholar] [CrossRef]
- Garcia, G.R.; Shankar, P.; Dunham, C.L.; Garcia, A.; La Du, J.K.; Truong, L.; Tilton, S.C.; Tanguay, R.L. Signaling events downstream of AHR activation that contribute to toxic responses: The functional role of an AHR-dependent long noncoding RNA (slincR) using the zebrafish model. Environ. Health Perspect. 2018, 126, 117002. [Google Scholar] [CrossRef]
- Garcia, G.R.; Goodale, B.C.; Wiley, M.W.; La Du, J.K.; Hendrix, D.A.; Tanguay, R.L. In vivo characterization of an AHR-dependent long noncoding RNA required for proper sox9b expression. Mol. Pharmacol. 2017, 91, 609–619. [Google Scholar] [CrossRef]
- Ames, J.; Warner, M.; Brambilla, P.; Mocarelli, P.; Satariano, W.A.; Eskenazi, B. Neurocognitive and physical functioning in the seveso women’s health study. Environ. Res. 2018, 162, 55–62. [Google Scholar] [CrossRef]
- Mocarelli, P.; Gerthoux, P.M.; Ferrari, E.; Patterson, D.G., Jr.; Kieszak, S.M.; Brambilla, P.; Vincoli, N.; Signorini, S.; Tramacere, P.; Carreri, V.; et al. Paternal concentrations of dioxin and sex ratio of offspring. Lancet 2000, 355, 1858–1863. [Google Scholar] [CrossRef] [Green Version]
- Li, M.C.; Chen, P.C.; Tsai, P.C.; Furue, M.; Onozuka, D.; Hagihara, A.; Uchi, H.; Yoshimura, T.; Guo, Y.L. Mortality after exposure to polychlorinated biphenyls and polychlorinated dibenzofurans: A meta-analysis of two highly exposed cohorts. Int. J. Cancer 2015, 137, 1427–1432. [Google Scholar] [CrossRef] [Green Version]
- WHO. Assessment of the health risk of dioxins: Re-evaluation of the tolerable daily intake (TDI). In Proceedings of the WHO Consultation, Geneva, Switzerland, 25–29 May 1998; World Health Organization: Geneva, Switzerland, 2000; pp. 1–28. [Google Scholar]
- JECFA. Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives; Food and Agriculture Organization: Rome, Italy; World Health Organization: Geneva, Switzerland, 2002; pp. 121–146. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshioka, W.; Tohyama, C. Mechanisms of Developmental Toxicity of Dioxins and Related Compounds. Int. J. Mol. Sci. 2019, 20, 617. https://doi.org/10.3390/ijms20030617
Yoshioka W, Tohyama C. Mechanisms of Developmental Toxicity of Dioxins and Related Compounds. International Journal of Molecular Sciences. 2019; 20(3):617. https://doi.org/10.3390/ijms20030617
Chicago/Turabian StyleYoshioka, Wataru, and Chiharu Tohyama. 2019. "Mechanisms of Developmental Toxicity of Dioxins and Related Compounds" International Journal of Molecular Sciences 20, no. 3: 617. https://doi.org/10.3390/ijms20030617
APA StyleYoshioka, W., & Tohyama, C. (2019). Mechanisms of Developmental Toxicity of Dioxins and Related Compounds. International Journal of Molecular Sciences, 20(3), 617. https://doi.org/10.3390/ijms20030617