Circulating Chemerin Levels, but not the RARRES2 Polymorphisms, Predict the Long-Term Outcome of Angiographically Confirmed Coronary Artery Disease
Abstract
:1. Introduction
2. Results
2.1. Clinical and Biochemical Characteristics of TWB Participants and CAD Patients
2.2. Results of GWAS and Replication Genotyping
2.3. Associations Between Chemerin and CRP Levels and Clinical and Biochemical Correlations in the CAD Patients
2.4. Circulating Chemerin Levels, RARRES2 Genotypes, and Long-Term Prognosis in Patients with CAD
3. Discussion
3.1. Chemerin Levels and the Long-Term Outcome of Various Disease States Including CAD
3.2. The Role of Chemerin in the Pathophysiology of CAD
3.3. Combining Biomarkers and Risk Scores for the Prognosis of CAD
3.4. Lead SNP of RARRES2 Polymorphisms for Chemerin Levels
3.5. Limitations of the Study
4. Materials and Methods
4.1. Participants
4.2. Genomic DNA Extraction and Genotyping
4.3. GWAS Analysis
4.4. Laboratory Examinations
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Roman, A.A.; Parlee, S.D.; Sinal, C.J. Chemerin: A potential endocrine link between obesity and type 2 diabetes. Endocrine 2012, 42, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Molica, F.; Morel, S.; Kwak, B.R.; Rohner-Jeanrenaud, F.; Steffens, S. Adipokines at the crossroad between obesity and cardiovascular disease. Thromb. Haemost. 2015, 113, 553–566. [Google Scholar] [PubMed]
- Goralski, K.B.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D.; Muruganandan, S.; Sinal, C.J. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 2007, 282, 28175–28188. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Kurt, R.; Gurdal, A.; Alahdab, Y.O.; Yonal, O.; Senates, E.; Polat, N.; Eren, F.; Imeryuz, N.; Oflaz, H. Circulating vaspin levels and epicardial adipose tissue thickness are associated with impaired coronary flow reserve in patients with nonalcoholic fatty liver disease. Atherosclerosis 2011, 217, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Ferland, D.J.; Watts, S.W. Chemerin: A comprehensive review elucidating the need for cardiovascular research. Pharmacol. Res. 2015, 99, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabel, B.A.; Allen, S.J.; Kulig, P.; Allen, J.A.; Cichy, J.; Handel, T.M.; Butcher, E.C. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 2005, 280, 34661–34666. [Google Scholar] [CrossRef] [PubMed]
- Er, L.K.; Wu, S.; Hsu, L.A.; Teng, M.S.; Sun, Y.C.; Ko, Y.L. Pleiotropic Associations of RARRES2 Gene Variants and Circulating Chemerin Levels: Potential Roles of Chemerin Involved in the Metabolic and Inflammation-Related Diseases. Mediat. Inflamm. 2018, 2018, 4670521. [Google Scholar] [CrossRef] [PubMed]
- Lehrke, M.; Becker, A.; Greif, M.; Stark, R.; Laubender, R.P.; von Ziegler, F.; Lebherz, C.; Tittus, J.; Reiser, M.; Becker, C.; et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 2009, 161, 339–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, K.B.; Lobato, N.S.; Lopes, R.A.; Filgueira, F.P.; Zanotto, C.Z.; Oliveira, A.M.; Tostes, R.C. Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: A link to vascular dysfunction in obesity? Clin. Sci. 2014, 127, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Weigert, J.; Neumeier, M.; Wanninger, J.; Filarsky, M.; Bauer, S.; Wiest, R.; Farkas, S.; Scherer, M.N.; Schaffler, A.; Aslanidis, C.; et al. Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. 2010, 72, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herova, M.; Schmid, M.; Gemperle, C.; Loretz, C.; Hersberger, M. Low dose aspirin is associated with plasma chemerin levels and may reduce adipose tissue inflammation. Atherosclerosis 2014, 235, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.; Greaves, D.R. Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J. Immunol. 2010, 185, 3728–3739. [Google Scholar] [CrossRef] [PubMed]
- Tonjes, A.; Scholz, M.; Breitfeld, J.; Marzi, C.; Grallert, H.; Gross, A.; Ladenvall, C.; Schleinitz, D.; Krause, K.; Kirsten, H.; et al. Genome wide meta-analysis highlights the role of genetic variation in RARRES2 in the regulation of circulating serum chemerin. PLoS Genet. 2014, 10, e1004854. [Google Scholar] [CrossRef] [PubMed]
- Bozaoglu, K.; Curran, J.E.; Stocker, C.J.; Zaibi, M.S.; Segal, D.; Konstantopoulos, N.; Morrison, S.; Carless, M.; Dyer, T.D.; Cole, S.A.; et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J. Clin. Endocrinol. Metab. 2010, 95, 2476–2485. [Google Scholar] [CrossRef] [PubMed]
- Leiherer, A.; Muendlein, A.; Kinz, E.; Vonbank, A.; Rein, P.; Fraunberger, P.; Malin, C.; Saely, C.H.; Drexel, H. High plasma chemerin is associated with renal dysfunction and predictive for cardiovascular events–Insights from phenotype and genotype characterization. Vasc. Pharmacol. 2016, 77, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef] [PubMed]
- Dessein, P.H.; Tsang, L.; Woodiwiss, A.J.; Norton, G.R.; Solomon, A. Circulating concentrations of the novel adipokine chemerin are associated with cardiovascular disease risk in rheumatoid arthritis. J. Rheumatol. 2014, 41, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Ji, W.; Zhang, Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome. Int. Med. 2011, 50, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulos, C.G.; Spiroglou, S.G.; Varakis, J.N.; Apostolakis, E.; Papadaki, H.H. Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: Implication of local adipokine signaling in atherosclerosis? Cardiovasc. Pathol. 2014, 23, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Xiaotao, L.; Xiaoxia, Z.; Yue, X.; Liye, W. Serum chemerin levels are associated with the presence and extent of coronary artery disease. Coron. Artery Dis. 2012, 23, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Gasbarrino, K.; Mantzoros, C.; Gorgui, J.; Veinot, J.P.; Lai, C.; Daskalopoulou, S.S. Circulating Chemerin Is Associated With Carotid Plaque Instability, Whereas Resistin Is Related to Cerebrovascular Symptomatology. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1670–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichelmann, F.; Schulze, M.B.; Wittenbecher, C.; Menzel, J.; Weikert, C.; di Giuseppe, R.; Biemann, R.; Isermann, B.; Fritsche, A.; Boeing, H.; et al. Chemerin as a Biomarker Linking Inflammation and Cardiovascular Diseases. J. Am. Coll. Cardiol. 2019, 73, 378–379. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ruiz, I. Immune system and cardiovascular disease. Nat. Rev. Cardiol. 2016, 13, 503. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.W.; Dorrance, A.M.; Penfold, M.E.; Rourke, J.L.; Sinal, C.J.; Seitz, B.; Sullivan, T.J.; Charvat, T.T.; Thompson, J.M.; Burnett, R.; et al. Chemerin connects fat to arterial contraction. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, K.; Friebe, D.; Ullrich, T.; Kratzsch, J.; Dittrich, K.; Herberth, G.; Adams, V.; Kiess, W.; Erbs, S.; Korner, A. Chemerin as a mediator between obesity and vascular inflammation in children. J. Clin. Endocrinol. Metab. 2012, 97, E556–E564. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Adya, R.; Tan, B.K.; Chen, J.; Randeva, H.S. Identification of chemerin receptor (ChemR23) in human endothelial cells: Chemerin-induced endothelial angiogenesis. Biochem. Biophys. Res. Commun. 2010, 391, 1762–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wu, W.K.; Liu, X.; To, K.F.; Chen, G.G.; Yu, J.; Ng, E.K. Increased serum chemerin level promotes cellular invasiveness in gastric cancer: A clinical and experimental study. Peptides 2014, 51, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.P.; Wang, B.W.; Lo, H.M.; Shyu, K.G. Mechanical Stretch Induces Apoptosis Regulator TRB3 in Cultured Cardiomyocytes and Volume-Overloaded Heart. PLoS ONE 2015, 10, e0123235. [Google Scholar] [CrossRef] [PubMed]
- Cittadini, A.; Monti, M.G.; Iaccarino, G.; Castiello, M.C.; Baldi, A.; Bossone, E.; Longobardi, S.; Marra, A.M.; Petrillo, V.; Saldamarco, L.; et al. SOCS1 gene transfer accelerates the transition to heart failure through the inhibition of the gp130/JAK/STAT pathway. Cardiovasc. Res. 2012, 96, 381–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Penas, D.; Feijoo-Bandin, S.; Garcia-Rua, V.; Mosquera-Leal, A.; Duran, D.; Varela, A.; Portoles, M.; Rosello-Lleti, E.; Rivera, M.; Dieguez, C.; et al. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes. Cell. Physiol. Biochem. 2015, 37, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Helfer, G.; Wu, Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Okimura, Y.; Iguchi, G.; Nishizawa, H.; Yamamoto, M.; Suda, K.; Kitazawa, R.; Fujimoto, W.; Takahashi, K.; Zolotaryov, F.N.; et al. Chemerin regulates beta-cell function in mice. Sci. Rep. 2011, 1, 123. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Greenland, P.; Rossouw, J.E.; Manson, J.E.; Cochrane, B.B.; Lasser, N.L.; Limacher, M.C.; Lloyd-Jones, D.M.; Margolis, K.L.; Robinson, J.G. Multimarker prediction of coronary heart disease risk: The Women’s Health Initiative. J. Am. Coll. Cardiol. 2010, 55, 2080–2091. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Morrow, D.A.; de Lemos, J.A.; Omland, T.; Sloan, S.; Jarolim, P.; Solomon, S.D.; Pfeffer, M.A.; Braunwald, E. Evaluation of multiple biomarkers of cardiovascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease. Circulation 2012, 125, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Wollert, K.C.; Larson, M.G.; Coglianese, E.; McCabe, E.L.; Cheng, S.; Ho, J.E.; Fradley, M.G.; Ghorbani, A.; Xanthakis, V.; et al. Prognostic utility of novel biomarkers of cardiovascular stress: The Framingham Heart Study. Circulation 2012, 126, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation 2011, 123, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.A.; Wu, S.; Juang, J.J.; Chiang, F.T.; Teng, M.S.; Lin, J.F.; Huang, H.L.; Ko, Y.L. Growth Differentiation Factor 15 May Predict Mortality of Peripheral and Coronary Artery Diseases and Correlate with Their Risk Factors. Mediat. Inflamm. 2017, 2017, 9398401. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.F.; Wu, S.; Juang, J.J.; Chiang, F.T.; Hsu, L.A.; Teng, M.S.; Cheng, S.T.; Huang, H.L.; Sun, Y.C.; Liu, P.Y.; et al. IL1RL1 single nucleotide polymorphism predicts sST2 level and mortality in coronary and peripheral artery disease. Atherosclerosis 2017, 257, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Okada, Y.; Kanai, M.; Takahashi, A.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 2017, 49, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
TWB (2197) | CAD | |||
---|---|---|---|---|
Survival (454) | Mortality (27) | p value a | ||
Baseline characteristics | ||||
Sex (male/female) | 984/1213 | 370/84 | 18/9 | 0.65 |
Age (years) | 48.4 ± 10.9 | 64.9 ± 11.0 | 77.1 ± 9.3 | <0.0001 |
Body mass index (kg/m2) | 24.2 ± 3.5 | 26.0 ± 4.0 | 25.2 ± 4.2 | 0.56 |
Hypertension (%) | 15.6 | 77.8 | 85.2 | 0.58 |
Diabetes mellitus (%) | 5.9 | 43.2 | 63.0 | 0.02 |
Dyslipidemia (%) | 48.5 | 61.7 | 48.1 | 0.90 |
Current smoker (%) | 18.0 | 24.7 | 18.5 | 0.80 |
Initial presentation | ||||
Stable angina pectoris (%) | 87.4 | 29.6 | <0.0001 | |
ACS/MI (%) | 5.7 | 40.7 | ||
CHF/lung edema (%) | 3.5 | 22.2 | ||
Others (%) | 3.3 | 7.4 | ||
CAD (S vs. D vs. T) (%) | 29.3:28.6:42.1 | 3.7:18.5:77.8 | 0.004 | |
Biochemistry | ||||
Serum creatinine (mg/dL) | 0.7 (0.6–0.9) | 1.1 (0.9–1.3) | 1.4 (1.1–2.2) | 0.007 |
eGFR | 108.0 ± 25.0 | 71.0 ± 23.7 | 46.7 ± 26.0 | 0.0004 |
Blood cell counts | ||||
Leukocyte counts (103/μL) | 6.1 ± 1.6 | 6.5 ± 1.8 | 8.3 ± 4.8 | 0.0007 |
Hematocrit (%) | 43.9 ± 4.6 | 41.1 ± 5.1 | 35.4 ± 7.2 | 0.0008 |
Platelet counts (103/μL) | 240.1 ± 56.4 | 213.5 ± 60.0 | 185.4 ± 70.3 | 0.29 |
Inflammation markers | ||||
C-reactive protein (mg/L) | 2.4 (1.2–4.1) | 4.2 (2.2–24.7) | 0.0002 | |
Chemerin (ng/mL) | 96.6 (80.6–110.3) | 123.3 (93.8–157.1) | 176.2 (108.5–227.6) | 0.001 |
Chemerin | CRP | ||||||
---|---|---|---|---|---|---|---|
r | p value a | Adjusted p value b | r | p value | Adjusted p value | ||
Anthropology | Age (years) | 0.011 | 0.803 | 0.091 | 0.046 | ||
Body mass index (kg/m2) | 0.160 | 0.0004 | 0.003 | 0.054 | 0.242 | ||
Blood cell counts | Leukocyte counts (103/μL) | 0.262 | <0.0001 | <0.0001 | 0.408 | <0.0001 | <0.0001 |
Hematocrit (%) | −0.382 | <0.0001 | <0.0001 | −0.173 | 0.0002 | 0.002 | |
Platelet counts (103/μL) | 0.200 | <0.0001 | 0.0002 | 0.074 | 0.107 | ||
Renal function | Serum creatinine (mg/dL) | 0.470 | <0.0001 | <0.0001 | 0.148 | 0.001 | 0.009 |
eGFR (mL/min/1.86 m2) | −0.553 | <0.0001 | <0.0001 | −0.11 | 0.017 | ||
Inflammatory marker | CRP (mg/L) | 0.378 | <0.0001 | <0.0001 | |||
Chemerin (ng/mL) | 0.378 | <0.0001 | <0.0001 |
Predictors | Model 1 a | Model b | Model c | ||
---|---|---|---|---|---|
Primary end point | Chemerin level subgroups d | Hazard ratio (95% CI) | 5.71 (2.62–12.48) | 4.55 (1.86–11.16) | 3.55 (1.46–8.68) |
p value | <0.0001 | 0.001 | 0.005 | ||
CRP level subgroups e | Hazard ratio (95% CI) | 7.82 (3.66–16.71) | 5.73 (2.39–13.75) | 4.27 (1.72–10.61) | |
p value | <0.0001 | <0.0001 | 0.002 | ||
Combined risk subgroups (intermediate vs. low) | Hazard ratio (95% CI) | 2.61 (0.97–7.00) | 2.72 (0.94–7.93) | 1.85 (0.62–5.53) | |
p value | 0.057 | 0.063 | 0.275 | ||
Combined risk subgroups | Hazard ratio (95% CI) | 17.02 (7.04–41.13) | 11.17 (3.84–32.47) | 8.71 (2.99–25.31) | |
(high vs. low) | p value | <0.0001 | <0.0001 | <0.0001 | |
Secondary end point | Chemerin level subgroups | Hazard ratio (95% CI) | 4.44 (2.59–7.60) | 3.78 (2.11–6.76) | 3.04 (1.69–5.47) |
p value | <0.0001 | <0.0001 | 0.0002 | ||
CRP level subgroups | Hazard ratio (95% CI) | 4.84 (2.72–8.60) | 3.78 (2.02–7.07) | 2.76 (1.45–5.25) | |
p value | <0.0001 | <0.0001 | 0.002 | ||
Combined risk subgroups | Hazard ratio (95% CI) | 3.82 (2.07–7.05) | 4.14 (2.17–7.89) | 3.18 (1.64–6.18) | |
(intermediate vs. low) | p value | <0.0001 | <0.0001 | 0.001 | |
Combined risk subgroups | Hazard ratio (95% CI) | 9.47 (4.70–19.06) | 5.87 (2.67–12.93) | 4.52 (2.04–10.03) | |
(high vs. low) | p value | <0.0001 | <0.0001 | 0.0002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Er, L.K.; Hsu, L.-A.; Juang, J.-M.J.; Chiang, F.-T.; Teng, M.-S.; Tzeng, I.-S.; Wu, S.; Lin, J.-F.; Ko, Y.-L. Circulating Chemerin Levels, but not the RARRES2 Polymorphisms, Predict the Long-Term Outcome of Angiographically Confirmed Coronary Artery Disease. Int. J. Mol. Sci. 2019, 20, 1174. https://doi.org/10.3390/ijms20051174
Er LK, Hsu L-A, Juang J-MJ, Chiang F-T, Teng M-S, Tzeng I-S, Wu S, Lin J-F, Ko Y-L. Circulating Chemerin Levels, but not the RARRES2 Polymorphisms, Predict the Long-Term Outcome of Angiographically Confirmed Coronary Artery Disease. International Journal of Molecular Sciences. 2019; 20(5):1174. https://doi.org/10.3390/ijms20051174
Chicago/Turabian StyleEr, Leay Kiaw, Lung-An Hsu, Jyh-Ming Jimmy Juang, Fu-Tien Chiang, Ming-Sheng Teng, I-Shiang Tzeng, Semon Wu, Jeng-Feng Lin, and Yu-Lin Ko. 2019. "Circulating Chemerin Levels, but not the RARRES2 Polymorphisms, Predict the Long-Term Outcome of Angiographically Confirmed Coronary Artery Disease" International Journal of Molecular Sciences 20, no. 5: 1174. https://doi.org/10.3390/ijms20051174
APA StyleEr, L. K., Hsu, L. -A., Juang, J. -M. J., Chiang, F. -T., Teng, M. -S., Tzeng, I. -S., Wu, S., Lin, J. -F., & Ko, Y. -L. (2019). Circulating Chemerin Levels, but not the RARRES2 Polymorphisms, Predict the Long-Term Outcome of Angiographically Confirmed Coronary Artery Disease. International Journal of Molecular Sciences, 20(5), 1174. https://doi.org/10.3390/ijms20051174