Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress
Abstract
:1. Introduction
2. SS Injury
2.1. Inhibition of Poplar Growth by Salinity Stress
2.2. Salt-Induced Physiological and Cellular Changes
2.3. Salt-Induced Damage to the Photosynthetic System
3. Primary Mechanism of Salt Tolerance in Populus
3.1. Maintaining an Optimal K+/Na+ Ratio
3.2. Accumulation of Osmotic-Adjustment Substances
3.3. ROS and Reactive Nitrogen Species (RNS)
3.4. Poplar Salt Stress (SS) Signaling Pathways
4. Candidate Genes Used for the Genetic Improvement of Salt Tolerance
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SOS | salt overly sensitive |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
POD | peroxidase |
MDA | malondialdehyde |
GSH-Px | glutathione peroxidases |
GST | glutathione S-transferases |
GR | glutathione reductase |
GPX | glutathione peroxidases |
GPD | glucose phosphate dehydrogenase |
G6PD | glucose-6-phosphate dehydrogenase |
APX | ascorbate peroxidase |
IDH | Isocitrate dehydrogenase |
GA | gibberellic acid |
ABA | abscisic acid |
REC | relative electrical conductivity |
RWC | relative water content |
TFs | transcription factors |
Chl | chlorophyll |
Pn | net photosynthetic rate |
Gs | stomatal conductance |
Ci | internal CO2 |
CE | carboxylation efficiency concentration; |
Car | carotenoid |
PSII | actual quantum yield of PSII |
qP | photochemical quenching coefficient |
NPQ | non photochemical quenching |
Fv/Fm | maximum photochemical efficiency |
eATP | extracellular ATP |
iATP | intracellular ATP |
DAB | 3,3′-diaminobenzidine |
PM | plasma membrane |
D A | depolarization activated |
KORCs | K+ outward rectifying channels |
NSCCs | non-selective cation channels |
SS | salt stress |
References
- Wu, Z.Y.; Raven, P.H. (Eds.) Flora of China; Beijing: Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; Volume 4, pp. 139–162. [Google Scholar]
- Sixto, H. Response to sodium chloride in different species and clones of genus Populus L. Forestry 2005, 78, 93–104. [Google Scholar] [CrossRef]
- Jansson, S.; Douglas, C.J. Populus: A model system for plant biology. Annu. Rev. Plant Biol. 2007, 58, 435–458. [Google Scholar] [CrossRef]
- Bradshaw, H.D.; Ceulemans, R.; Davis, J.; Stettler, R. Emerging Model Systems in Plant Biology: Poplar (Populus) as A Model Forest Tree. J. Plant Growth Regul. 2000, 19, 306–313. [Google Scholar] [CrossRef]
- Polle, A.; Douglas, C. The molecular physiology of poplars: Paving the way for knowledge-based biomass production. Plant Biol. 2010, 12, 239–241. [Google Scholar] [CrossRef]
- Taylor, G. Populus: Arabidopsis for Forestry. Do We Need a Model Tree? Ann. Bot. 2002, 90, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.G.; Chen, S.L.; Deng, L.; Fritz, E.; Hüttermann, A.; Polle, A. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 2007, 21, 581–591. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Hirayama, T.; Shinozaki, K. Research on plant abiotic stress responses in the post-genome era: Past, present and future. Plant J. 2010, 61, 1041–1052. [Google Scholar] [CrossRef]
- Chen, S.L.; Hawighorst, P.; Sun, J.; Polle, A. Salt tolerance in Populus: Significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ. Exp. Bot. 2014, 107, 113–124. [Google Scholar] [CrossRef]
- Gu, R.S.; Fonseca, S.; PuskÁs, L.G.; Hackler, L.J.; Zvara, Á.; Dudits, D.; Pais, M.S. Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol. 2004, 24, 275–276. [Google Scholar] [CrossRef]
- Wang, S.; Chen, B.; Li, H. Euphrates Poplar Forest; China Environmental Science Press: Beijing, China, 1996; pp. 43–52. [Google Scholar]
- Fu, A.H.; Li, W.H.; Chen, Y.N. The threshold of soil moisture and salinity influencing the growth of Populus euphratica and Tamarix ramosissima in the extremely arid region. Environ. Earth Sci. 2012, 66, 2519–2529. [Google Scholar] [CrossRef]
- Qiu, Q.; Ma, T.; Hu, Q.J.; Liu, B.B.; Wu, Y.X.; Zhou, H.H.; Wang, Q.; Wang, J.; Liu, J.Q. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol. 2011, 31, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.F.; Zuo, L.H.; Yu, X.Y.; Dong, Y.; Zhang, S.; Yang, M.S. Response mechanism in Populus × euramericana cv. ‘74/76’ revealed by RNA-seq under salt stress. Acta Physiol. Plant 2018, 40. [Google Scholar] [CrossRef]
- Brinker, M.; Brosche, M.; Vinocur, B.; Abo-Ogiala, A.; Fayyaz, P.; Janz, D.; Ottow, E.A.; Cullmann, A.D.; Saborowski, J.; Kangasjarvi, J.; et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation. Plant Physiol. 2010, 154, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Yer, E.N.; Baloglu, M.C.; Ayan, S. Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene 2018, 678, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, S.X.; Yao, W.J.; Zhou, B.R.; Li, R.H.; Jiang, T.B. Characterization of the basic helix-loop-helix gene family and its tissue-differential expression in response to salt stress in poplar. PeerJ 2018, 6, e4502. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhang, X.M.; Cheng, Z.H.; Yao, W.J.; Li, R.H.; Jiang, T.B.; Zhou, B.R. Comprehensive analysis of the three-amino-acid-loop-extension gene family and its tissue-differential expression in response to salt stress in poplar. Plant Physiol. Biochem. 2019, 136, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wang, Y.; Sa, G.; Zhang, Y.H.; Deng, J.Y.; Deng, S.R.; Wang, M.J.; Zhang, H.L.; Yao, J.; Ma, X.Y.; et al. Populus euphratica J3 mediates root K+/Na+ homeostasis by activating plasma membrane H+-ATPase in transgenic Arabidopsis under NaCl salinity. Plant Cell Tiss Organ Cult. 2017, 131, 75–88. [Google Scholar] [CrossRef]
- Liu, J.P.; Li, Z.J.; He, L.R.; Zhou, Z.L.; Xu, Y.L. Salt-tolerance of Populus euphratica and P. pruinosa seed during germination. Sci. Silvae Sin. 2004, 40, 165–169. [Google Scholar] [CrossRef]
- Abassi, M.; Mguis, K.; Béjaoui, Z.; Albouchi, A. Morphogenetic responses of Populus alba L. under salt stress. J. For. Res.-JPN 2014, 25, 155–161. [Google Scholar] [CrossRef]
- Meilan, R.; Sabatti, M.; Ma, C.P.; Elena, K. An Early-Flowering Genotype of Populus. J. Plant Biol. 2004, 47, 52–56. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Si, J.H.; Feng, Q.; Deo, R.C.; Yu, T.F.; Li, P.D. Physiological response to salinity stress and tolerance mechanics of Populus euphratica. Environ. Monit. Assess. 2017, 189, 533. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, G.; Beritognolo, L.; Muleo, R.; Piazzai, M.; Sabatti, M.; Mugnozza, G.S.; Kuzminsky, E. Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ. Exp. Bot. 2009, 66, 381–388. [Google Scholar] [CrossRef]
- Rajput, V.D.; Chen, Y.; Ayup, M. Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth. Russ. J. Plant Physiol. 2015, 62, 229–236. [Google Scholar] [CrossRef]
- Rajput, V.D.; Chen, Y.N.; Ayup, M.; Minkina, T.; Sushkova, S.; Mandzhieva, S. Physiological and hydrological changes in Populus euphratica seedlings under salinity stress. Acta Ecol. Sin. 2017, 37, 229–235. [Google Scholar] [CrossRef]
- Awad, H.; Barigah, T.; Badel, E.; Cochard, H.; Herbette, S. Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiol. Plant. 2010, 139, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Junghans, U.; Polle, A.; Duchting, P.; Weiler, E.; Kuhlman, B.; Gruber, F.; Teichmann, T. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ. 2006, 29, 1519–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strassert, R.J.; Srivastava, A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 1995, 61, 32–42. [Google Scholar] [CrossRef]
- Sixto, H.; Aranda, I.; Grau, J.M. Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence. Photosynthetica 2006, 44, 169–173. [Google Scholar] [CrossRef]
- Wu, H.H. Plant salt tolerance and Na+ sensing and transport. Crop J. 2018, 6, 215–225. [Google Scholar] [CrossRef]
- Ward, J.M.; Hirschi, K.D.; Sze, H. Plants pass the salt. Trends Plant Sci. 2003, 8, 200–201. [Google Scholar] [CrossRef]
- Olias, R.; Eljakaoui, Z.; Li, J.; de Morales, P.A.; Marin-Manzano, M.C.; Pardo, J.M.; Belver, A. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ. 2009, 32, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.Z.; Quintero, F.J.; Pardo, J.M.; Zhu, J.K. The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. Plant Cell Online 2002, 14, 465–477. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, S.J.; Ma, X.J.; Zhu, H.P.; Sa, G.; Sun, J.; Li, N.F.; Zhao, C.J.; Zhao, R.; Chen, S.L. Extracellular ATP mediates cellular K+/Na+ homeostasis in two contrasting poplar species under NaCl stress. Trees 2015, 30, 825–837. [Google Scholar] [CrossRef]
- Ma, X.Y.; Deng, L.; Li, J.K.; Zhou, X.Y.; Li, N.Y.; Zhang, D.C.; Lu, Y.J.; Wang, R.G.; Sun, J.; Lu, C.F.; et al. Effect of NaCl on leaf H+-ATPase and the relevance to salt tolerance in two contrasting poplar species. Trees 2010, 24, 597–607. [Google Scholar] [CrossRef]
- Li, J.; Bao, S.Q.; Zhang, Y.H.; Ma, X.J.; Mishra-Knyrim, M.; Sun, J.; Sa, G.; Shen, X.; Polle, A.; Chen, S.L. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus × canescens under sodium chloride stress. Plant Physiol. 2012, 159, 1771–1786. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.L.; Li, J.K.; Wang, S.S.; Fritz, E.; Hüttermann, A.; Altman, A. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can. J. For. Res. 2003, 33, 967–975. [Google Scholar] [CrossRef]
- Sun, J.; Dai, S.X.; Wang, R.G.; Chen, S.L.; Li, N.Y.; Zhou, X.Y.; Lu, C.F.; Shen, X.; Zheng, X.J.; Hu, Z.M.; et al. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol. 2009, 29, 1175–1186. [Google Scholar] [CrossRef]
- Mansour, M.M.F.; Salama, K.H.A.; Al Mutawa, M.M. Transport proteins and salt tolerance in plants. Plant Sci. 2003, 164, 891–900. [Google Scholar] [CrossRef]
- Silva, P.; Façanha, A.R.; Tavares, R.M.; Gerós, H. Role of Tonoplast Proton Pumps and Na+/H+ Antiport System in Salt Tolerance of Populus euphratica Oliv. J. Plant Growth Regul. 2010, 29, 23–34. [Google Scholar] [CrossRef]
- Jiang, C.Q.; Zheng, Q.S.; Liu, Z.P.; Liu, L.; Zhao, G.M.; Long, X.H.; Li, H.Y. Seawater-irrigation effects on growth, ion concentration, and photosynthesis of transgenic poplar overexpressing the Na+/H+ antiporter AtNHX1. J. Plant Nutr. Soil Sci. 2011, 174, 301–310. [Google Scholar] [CrossRef]
- Jiang, C.Q.; Zheng, Q.S.; Liu, Z.P.; Xu, W.J.; Liu, L.; Zhao, G.M.; Long, X.H. Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (Populus × euramericana ‘Neva’). Trees 2012, 26, 685–694. [Google Scholar] [CrossRef]
- Qiao, G.R.; Zhuo, R.Y.; Liu, M.Y.; Jiang, J.; Li, H.Y.; Qiu, W.M.; Pan, L.Y.; lin, S.; Zhang, X.G.; Sun, Z.X. Over-expression of the Arabidopsis Na+/H+ antiporter gene in Populus deltoides CL × P. euramericana CL “NL895” enhances its salt tolerance. Acta Physiol. Plant 2011, 33, 691–696. [Google Scholar] [CrossRef]
- Liu, H.; Tang, R.J.; Zhang, Y.; Wang, C.T.; Lv, Q.D.; Gao, X.S.; Li, W.B.; Zhang, H.X. AtNHX3 is a vacuolar K+/H+ antiporter required for low-potassium tolerance in Arabidopsis thaliana. Plant Cell Environ. 2010, 33, 1989–1999. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.; Fu, S.M.; Ge, H.M.; Tang, R.J.; Yang, Y.; Wang, H.H.; Zhang, H.X. Na+/H+ and K+/H+ antiporters AtNHX1 and AtNHX3 from Arabidopsis improve salt and drought tolerance in transgenic poplar. Biol. Plant. 2017. [Google Scholar] [CrossRef]
- Jaime-Perez, N.; Pineda, B.; Garcia-Sogo, B.; Atares, A.; Athman, A.; Byrt, C.S.; Olias, R.; Asins, M.J.; Gilliham, M.; Moreno, V.; et al. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant Cell Environ. 2017, 40, 658–671. [Google Scholar] [CrossRef]
- Kobayashi, N.I.; Yamaji, N.; Yamamoto, H.; Okubo, K.; Ueno, H.; Costa, A.; Tanoi, K.; Matsumura, H.; Fujii-Kashino, M.; Horiuchi, T.; et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J. 2017, 91, 657–670. [Google Scholar] [CrossRef]
- Xu, M.; Sun, Z.M.; Liu, S.A.; Chen, C.H.; Xu, L.A.; Huang, M.R. Cloning and Expression Analysis of Salinity Stress Related Peu HKT1 Gene from Populus euphratica. MPB 2016, in press. [Google Scholar]
- Britto, D.T.; Kronzucker, H.J. Cellular mechanisms of potassium transport in plants. Physiol. Plant. 2008, 133, 637–650. [Google Scholar] [CrossRef]
- Shabala, L.; Zhang, J.; Pottosin, I.; Bose, J.; Zhu, M.; Fuglsang, A.T.; Velarde-Buendia, A.; Massart, A.; Hill, C.B.; Roessner, U.; et al. Cell-Type-Specific H+-ATPase Activity in Root Tissues Enables K+ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress. Plant Physiol. 2016, 172, 2445–2458. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.S.; Liu, M.Q.; Wang, M.J.; Ding, M.Q.; Deng, S.R.; Lu, C.F.; Zhou, X.Y.; Shen, X.; Zheng, X.J.; et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tiss Organ Cult. 2010, 103, 205–215. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M.J.; Ding, M.Q.; Deng, S.R.; Liu, M.Q.; Lu, C.F.; Zhou, X.Y.; Shen, X.; Zheng, X.J.; Zhang, Z.K.; et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ. 2010, 33, 943–958. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.Q.; Hou, P.C.; Shen, X.; Wang, M.J.; Deng, S.R.; Sun, J.; Xiao, F.; Wang, R.G.; Zhou, X.Y.; Lu, C.F.; et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol. Biol. 2010, 73, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Polle, A.; Chen, S. On the salty side of life: Molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant Cell Environ. 2015, 38, 1794–1816. [Google Scholar] [CrossRef] [PubMed]
- Beritognolo, I.; Piazzai, M.; Benucci, S.; Kuzminsky, E.; Sabatti, M.; Mugnozza, G.S.; Muleo, R. Functional characterisation of three Italian Populus alba L. genotypes under salinity stress. Trees 2007, 21, 465–477. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.Y.; Zhou, G.K.; Yue, Z.; Hu, Q.J.; Chen, Y.; Liu, B.B.; Qiu, Q.; Wang, Z.; Zhang, J.; et al. Genomic insights into salt adaptation in a desert poplar. Nat. Commun. 2013, 4, 2797. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.J.; Yan, H.L.; Arndt, S.K. Leaf and whole tree adaptations to mild salinity in field grown Populus euphratica. Tree Physiol. 2009, 29, 1237–1246. [Google Scholar] [CrossRef]
- Chen, S.L.; Li, J.K.; Fritzb, E.; Wang, S.S.; Huttermann, A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For. Ecol. Manag. 2002, 168, 217–230. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Ottow, E.A.; Brinker, M.; Teichmann, T.; Fritz, E.; Kaiser, W.; Brosche, M.; Kangasjarvi, J.; Jiang, X.N.; Polle, A. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol. 2005, 139, 1762–1772. [Google Scholar] [CrossRef]
- Liang, W.J.; Ma, X.L.; Wan, P.; Liu, L.Y. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Alam, M.M.; Rahman, A.; Hasanuzzaman, M.; Nahar, K.; Fujita, M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed. Res. Int. 2014, 2014, 757219. [Google Scholar] [CrossRef]
- Watanabe, S.; Kojima, K.; Ide, Y.; Sasaki, S. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tiss Organ Cult. 2000, 63, 199–206. [Google Scholar] [CrossRef]
- Janz, D.; Polle, A. Harnessing salt for woody biomass production. Tree Physiol. 2012, 32, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Miller, G.; Suzuki, N.; Ciftci-Yilmaz, S.; Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015, 66, 2827–2837. [Google Scholar] [CrossRef]
- Sies, H. Role of metabolic H2O2 generation: Redox signaling and oxidative stress. J. Biol. Chem. 2014, 289, 8735–8741. [Google Scholar] [CrossRef]
- Wang, Y.C.; Qu, G.Z.; Li, H.Y.; Wu, Y.J.; Wang, C.; Liu, G.F.; Yang, C.P. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol. Biol. Rep. 2010, 37, 1119–1124. [Google Scholar] [CrossRef]
- Zheng, L.Y.; Meng, Y.; Ma, J.; Zhao, X.L.; Cheng, T.L.; Ji, J.; Chang, E.M.; Meng, C.; Deng, N.; Chen, L.Z.; et al. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa. Front Plant Sci. 2015, 6, 678. [Google Scholar] [CrossRef]
- Gruszecki, W.I.; Strzalka, K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta 2005, 1740, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Bible, A.N.; Fletcher, S.J.; Pelletier, D.A.; Schadt, C.W.; Jawdy, S.S.; Weston, D.J.; Engle, N.L.; Tschaplinski, T.; Masyuko, R.; Polisetti, S.; et al. A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Front. Microbiol. 2016, 7, 491. [Google Scholar] [CrossRef]
- Shen, Z.D.; Ding, M.Q.; Sun, J.; Deng, S.R.; Zhao, R.; Wang, M.J.; Ma, X.J.; Wang, F.F.; Zhang, H.L.; Qian, Z.Y.; et al. Overexpression of PeHSF mediates leaf ROS homeostasis in transgenic tobacco lines grown under salt stress conditions. Plant Cell Tiss Organ Cult. 2013, 115, 299–308. [Google Scholar] [CrossRef]
- Li, J.B.; Zhang, J.; Jia, H.X.; Li, Y.; Xu, X.D.; Wang, L.J.; Lu, M.Z. The Populus trichocarpa PtHSP17.8 involved in heat and salt stress tolerances. Plant Cell Rep. 2016, 35, 1587–1599. [Google Scholar] [CrossRef]
- Poor, P.; Kovacs, J.; Borbely, P.; Takacs, Z.; Szepesi, A.; Tari, I. Salt stress-induced production of reactive oxygen-and nitrogen species and cell death in the ethylene receptor mutant Never ripe and wild type tomato roots. Plant Physiol. Biochem. 2015, 97, 313–322. [Google Scholar] [CrossRef]
- Corpas, F.J.; Palma, J.M.; Del Rio, L.A.; Barroso, J.B. Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci. 2013, 4, 29. [Google Scholar] [CrossRef]
- Ji, H.T.; Pardo, J.M.; Batelli, G.; Van Oosten, M.J.; Bressan, R.A.; Li, X. The Salt Overly Sensitive (SOS) pathway: Established and emerging roles. Mol. Plant 2013, 6, 275–286. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, R.J.; Jiang, C.M.; Li, B.; Kang, T.; Liu, H.; Zhao, N.; Ma, X.J.; Yang, L.; Chen, S.L.; et al. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnol. J. 2015, 13, 962–973. [Google Scholar] [CrossRef]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef]
- Tang, R.J.; Liu, H.; Bao, Y.; Lv, Q.D.; Yang, L.; Zhang, H.X. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 2010, 74, 367–380. [Google Scholar] [CrossRef]
- Wu, Y.X.; Ding, N.; Zhao, X.; Zhao, M.G.; Chang, Z.Q.; Liu, J.Q.; Zhang, L.X. Molecular characterization of PeSOS1: The putative Na+/H+ antiporter of Populus euphratica. Plant Mol. Biol. 2007, 65, 1–11. [Google Scholar] [CrossRef]
- Tang, R.J.; Yang, Y.; Yang, L.; Liu, H.; Wang, C.T.; Yu, M.M.; Gao, X.S.; Zhang, H.X. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane. Plant Cell Environ. 2014, 37, 573–588. [Google Scholar] [CrossRef]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Yang, Y.; Wu, H.; Wang, D.; Liu, J. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ. 2007, 30, 775–785. [Google Scholar] [CrossRef]
- Choi, J.; Tanaka, K.; Cao, Y.R.; Qi, Y.; Qiu, J.; Liang, Y.; Lee, S.Y.; Stacey, G. Identification of a Plant Receptor for Extracellular ATP. Science 2014, 343. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Deng, S.R.; Zhang, C.L.; Wang, M.J.; Ding, M.Q.; Zhao, R.; Shen, X.; Zhou, X.Y.; Lu, C.F.; et al. Extracellular ATP signaling is mediated by H2O2and cytosolic Ca2+ in the salt response of Populus euphratica cells. PLoS ONE 2012, 7, e53136. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhou, B.R.; Yao, W.J.; Jiang, T.B. PsnERF75 Transcription Factor from Populus simonii × P. nigra Confers Salt Tolerance in Transgenic Arabidopsis. J. Plant Biol. 2018, 61, 61–71. [Google Scholar] [CrossRef]
- Yao, W.J.; Wang, S.J.; Zhou, B.R.; Jiang, T.B. Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance. Tree Physiol. 2016, 36, 896–908. [Google Scholar] [CrossRef]
- Wang, Z.L.; Liu, J.; Guo, H.Y.; He, X.; Wu, W.B.; Du, J.C.; Zhang, Z.Y.; An, X.M. Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis. Plant Physiol. Biochem. 2014, 83, 107–116. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, X.Y.; Li, M.Y.; Jiang, Y.; Xu, J.Q.; Jin, J.J.; Li, K.L. Ectopic expression of Limonium bicolor (Bag.) Kuntze DREB (LbDREB) results in enhanced salt stress tolerance of transgenic Populus ussuriensis Kom. Plant Cell Tiss Organ Cult. 2017, 132, 123–136. [Google Scholar] [CrossRef]
- Zhou, M.L.; Ma, J.T.; Zhao, Y.M.; Wei, Y.H.; Tang, Y.X.; Wu, Y.M. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 2012, 506, 10–17. [Google Scholar] [CrossRef]
- Speth, E.B.; Imboden, L.; Hauck, P.; He, S.Y. Subcellular Localization and Functional Analysis of the Arabidopsis GTPase RabE. Plant Physiol. 2009, 149, 1824–1837. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Liu, B.L.; Wang, L.J.; Zhang, L.; Hu, J.J.; Chen, J.; Zheng, H.Q.; Lu, M.Z. Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance. BMC Plant Biol. 2018, 18, 124. [Google Scholar] [CrossRef]
- Perez-Salamo, I.; Papdi, C.; Rigo, G.; Zsigmond, L.; Vilela, B.; Lumbreras, V.; Nagy, I.; Horvath, B.; Domoki, M.; Darula, Z.; et al. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol. 2014, 165, 319–334. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.; Zhao, H.; Gao, T.; Song, A.; Jiang, J.; Chen, F.; Chen, S. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnol. J. 2018, 16, 1311–1321. [Google Scholar] [CrossRef]
- Yoon, S.K.; Bae, E.K.; Lee, H.; Choi, Y.L.; Han, M.; Choi, H.; Kang, K.S.; Park, E.J. Downregulation of stress-associated protein 1 (PagSAP1) increases salt stress tolerance in poplar (Populus alba × P. glandulosa). Trees 2018, 32, 823–833. [Google Scholar] [CrossRef]
- Xue, S.W.; Yao, X.; Luo, W.; Jha, D.; Tester, M.; Horie, T.; Schroeder, J.I. AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS ONE 2011, 6, e24725. [Google Scholar] [CrossRef]
- Cheng, N.H.; Pittman, J.K.; Zhu, J.K.; Hirschi, K.D. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J. Biol. Chem. 2004, 279, 2922–2926. [Google Scholar] [CrossRef]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef]
- Huertas, R.; Olias, R.; Eljakaoui, Z.; Galvez, F.J.; Li, J.; De Morales, P.A.; Belver, A.; Rodriguez-Rosales, M.P. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 2012, 35, 1467–1482. [Google Scholar] [CrossRef]
- Qiu, Q.S.; Guo, Y.; Quintero, F.J.; Pardo, J.M.; Schumaker, K.S.; Zhu, J.K. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J. Biol. Chem. 2004, 279, 207–215. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.J.; Bi, Y.F.; Wang, L.K.; Tang, L.Z.; Yu, X.; Ohtani, M.; Demura, T.; Zhu Ge, Q. Overexpression of PtSOS2 Enhances Salt Tolerance in Transgenic Poplars. Plant Mol. Biol. Rep. 2014, 32, 185–197. [Google Scholar] [CrossRef]
- Li, D.D.; Song, S.Y.; Xia, X.L.; Yin, W.L. Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tiss Organ Cult. 2012, 109, 477–489. [Google Scholar] [CrossRef]
- Gao, W.; Bai, S.; Li, Q.; Gao, C.; Liu, G.; Li, G.; Tan, F. Overexpression of TaLEA Gene from Tamarix androssowii improves salt and drought tolerance in transgenic Poplar (Populus simonii × P. nigra). PLoS ONE 2013, 8, e67462. [Google Scholar] [CrossRef]
- Sun, Y.S.; Chen, S.; Huang, H.J.; Jiang, J.; Bai, S.; Liu, G.F. Improved salt tolerance of Populus davidiana × P. bolleana overexpressed LEA from Tamarix androssowii. J. For. Res.-JPN 2014, 25, 813–818. [Google Scholar] [CrossRef]
- Li, Y.L.; Su, X.H.; Zhang, B.Y.; Huang, Q.J.; Zhang, X.H.; Huang, R.F. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiol. 2009, 29, 273–279. [Google Scholar] [CrossRef]
- Du, N.X.; Liu, X.; Li, Y.; Chen, S.Y.; Zhang, J.S.; Ha, D.; Deng, W.G.; Sun, C.K.; Zhang, Y.Z.; Pijut, P.M. Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tiss Organ Cult. 2011, 108, 181–189. [Google Scholar] [CrossRef]
- Lawson, S.S.; Michler, C.H. Overexpression of AtSTO1 leads to improved salt tolerance in Populus tremula × P. alba. Transgenic Res. 2014, 23, 817–826. [Google Scholar] [CrossRef]
- Zhang, T.T.; Song, Y.Z.; Liu, Y.D.; Guo, X.Q.; Zhu, C.X.; Wen, F.J. Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa. Chin. Sci. Bull. 2008, 53, 3656–3665. [Google Scholar] [CrossRef]
- Yu, X.; Ohtani, M.; Kusano, M.; Nishikubo, N.; Uenoyama, M.; Umezawa, T.; Saito, K.; Shinozaki, K.; Demura, T. Enhancement of abiotic stress tolerance in poplar by overexpression of key Arabidopsis stress response genes, AtSRK2C and AtGolS2. Mol. Breed. 2017, 37. [Google Scholar] [CrossRef]
- Chen, S.; Polle, A. Salinity tolerance of Populus. Plant Biol. 2010, 12, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Janz, D.; Behnke, K.; Schnitzler, J.P.; Kanawati, B.; Schmitt Kopplin, P.; Polle, A. Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol. 2010, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Podda, A.; Pisuttu, C.; Hoshika, Y.; Pellegrini, E.; Carrari, E.; Lorenzini, G.; Nali, C.; Cotrozzi, L.; Zhang, L.; Baraldi, R.; et al. Can nutrient fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone? Sci. Total Environ. 2019, 657, 340–350. [Google Scholar] [CrossRef] [PubMed]
Candidate Genes and Source | Transgenic Species | Effect of SS in Transgenic Species Compared with WT | Reference |
---|---|---|---|
AtNHX1/3 (Vacuolar Na+/H+ antiporter from Arabidopsis thaliana) | Populus davidiana × Populus bolleana | 1 Normal growth and morphology; 2 Promoted vacuolar Na+ (K+)/H+ exchange activity; 3 Increased Na+ and K+ accumulation in the vacuoles; 4 Elevated the eaccumulation of proline. | [47] |
AtNHX1 (See above) | Populus × euramericana ‘Neva’ | 1 Enhanced plant growth and photosynthetic capacity; 2 Lowerd MDA and REC; 3 Increased Na+ (K+) accumulation in roots and leaves. | [44] |
Populus × euramericana ‘Neva’ | 1 Reduced decrease in Chl, Car, PSII, Fv/Fm, and qP; 2 Smaller reduction of Pn, Gs, Ci, CE; 3 Greater increase of stem and leaf, smaller increase in root. | [43] | |
Populus deltoides × P. euramericana CL ‘NL895′ | 1 Higher content of sodium ions; 2 Decreased MDA content. | [45] | |
PtSOS2TD (Salt overly sensitive 2 from Populus trichocarpa) | P. davidiana × P. bolleana hybrid poplar clone Shanxin | 1 More vigorous growth; 2 Greater biomass produced; 3 Less Na+ in the leaves; 4 Higher Na+/H+ exchange activity and Na+ efflux; 5 More scavenging of ROS. | [80] |
PtSOS2 (See above) | Populus tremula × Populus tremuloides Michx clone T89 | 1 Improved PM Na+/H+ exchange activity, Na+ efflux; 2 Higher proline activity; 3 Higher RWC and sustained decrease of water loss; 4 Increased SOD, POD, CAT activity; 5 Decreased MDA concentration. | [105] |
PtCBL10A and PtCBL10B (Calcineurin B-like from P. trichocarpa) | P. davidiana × P. bolleana hybrid poplar clone Shanxin | 1 Less impairment by SS with higher stature and greater shoot biomass; 2 Lower Na+ in the leaves, more Na+ in the stem. | [84] |
PeCBL6, PeCBL10 (Calcineurin B-like from P. euphratica) | triploid white poplar | 1 Higher height growth rate; 2 Less wilted leaves; 3 Lower MDA content; 4 Higher chl content. | [106] |
PtSOS3 (Salt overly sensitive 3 from P. trichocarpa) | P. davidiana × P. bolleana hybrid poplar clone Shanxin | 1 Lower Na+ in the root; 2 Higher K+ content in the root; 3 More Na+ in the stem. | [84] |
TaMnSOD (Mn-superoxide dismutases from Tamarix Androssowii) | P. davidiana × P. bolleana hybrid poplar clone Shanxin | 1 Higher SOD activity; 2 Lower MDA contents; 3 Lower REC; 4 More weight gains. | [71] |
TaLEA (Late embryogenesis abundant from T. androssowii) | Populus simonii × Populus nigra Xiaohei poplar | 1 Decrease in MDA content; 2 Decrease in relative electrolyte leakage; 3 Improved salt and drought resistance. | [107] |
P. davidiana × P. bolleana | 1 Higher Survival percentages; 2 Higher Seedling height and photosynthetic capabilities; 3 Lower Na+ in young leaves but higher in yellow and withered leaves. | [108] | |
ERF76 (Ethylene response factor from di-haploid P. simonii × P. nigra) | P. simonii × P. nigra di-haploid | 1 Higher plant height, root length, fresh weight; 2 Higher in ABA and GA concentration. | [91] |
JERFs (Jasmonic ethylene responsive factor from the tomato) | Populus alba × Populus berolinensis | 1 Lower reductions of height, basal diameter, and biomass; 2 Lower reduction in leaf water content and increase in root/crown ratio; 3 Greater increase of foliar proline concentration; 4 Higher foliar Na+ concentration. | [109] |
LbDREB (dehydration responsive element binding TF from Limonium bicolor) | Populus ussuriensis Kom. Chinese Daqing poplar | 1 Higher SOD, POD activity; 2 Less MDA accumulation in the leaves; 3 More proline accumulation; 4 Increased root/shoot ratio; 5 Reduced decrease of RWC; 6 Lower increase of relative electrolytic leakage. | [93] |
AhDREB1 (dehydration responsive element binding-like TF from the halophyte Atriplex hortensis) | Populus tomentosa | 1 Higher survival rate; 2 High proline content. | [110] |
AtSTO1 (Salt tolerant1 from Arabidopsis thaliana) | P. tremula × P. alba Poplar 717-1B4 | 1 Higher aboveground biomass; 2 Higher root biomass; 3 Higher shoot height; 4 Higher chl content. | [111] |
AtPLDα (Phospholipase Dα from A. thaliana) | P. tomentosa | 1 Higher root rate and root length; 2 Reduced decrease of total chl content; 3 Lower REC and MDA content 4 Higher SOD, POD, and CAT activities. | [112] |
AtSRK2C, AtGolS2 (Stress responses, SNF1-related protein kinase 2C, galactinol synthase 2 from A. thaliana) | P. tremula × tremuloides | 1 Reduced decrease of dry weight; 2 Reduced decrease of total adventitious root length. | [113] |
PtRabE1b(Q74L) (Rab GTPase from P. trichocarpa) | P. alba × P. glandulosa clone 84 K | 1 More adventitious roots; 2 Greater root growth status in seedlings. | [96] |
PagSAP1 (stress-associated proteins from P. alba × P. glandulosa) | P. alba × P. glandulosa | RNAi plants accumulate more Ca2+, and K+ and less Na+. | [99] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, L.; Chen, B.; Qin, Z.; Xiao, Y.; Zhang, Y.; Yao, R.; Liu, H.; Yang, H. Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress. Int. J. Mol. Sci. 2019, 20, 1312. https://doi.org/10.3390/ijms20061312
Zhang X, Liu L, Chen B, Qin Z, Xiao Y, Zhang Y, Yao R, Liu H, Yang H. Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress. International Journal of Molecular Sciences. 2019; 20(6):1312. https://doi.org/10.3390/ijms20061312
Chicago/Turabian StyleZhang, Xiaoning, Lijun Liu, Bowen Chen, Zihai Qin, Yufei Xiao, Ye Zhang, Ruiling Yao, Hailong Liu, and Hong Yang. 2019. "Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress" International Journal of Molecular Sciences 20, no. 6: 1312. https://doi.org/10.3390/ijms20061312
APA StyleZhang, X., Liu, L., Chen, B., Qin, Z., Xiao, Y., Zhang, Y., Yao, R., Liu, H., & Yang, H. (2019). Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress. International Journal of Molecular Sciences, 20(6), 1312. https://doi.org/10.3390/ijms20061312