Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Nanoparticles
2.2. Loading of DQ into MSN-SO3 Nanoparticles
2.3. Controlled Release of DQ
2.4. Bioassay of DQ@MSN-SO3 nanoparticles.
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Nanoparticles
3.2.1. Synthesis of Pristine Mesoporous Silica Nanoparticles (P-MSN)
3.2.2. Synthesis of Sulfonate-Functionalized MSN (MSN- SO3)
3.3. Sample Characterization
3.4. Loading of DQ into MSN-SO3
3.5. In Vitro Release of DQ
3.6. Bioactivity Studies of DQ@MSN-SO3
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Junior, S.M.D.; Nunes, E.S.; Marques, R.P.; Rossino, L.S.; Quites, F.J.; Siqueira, J.R., Jr.; Moreto, J.A. Controlled release behavior of sulfentrazone herbicide encapsulated in Ca-ALG microparticles: Preparation, characterization, mathematical modeling and release tests in field trial weed control. J. Mater. Sci. 2017, 52, 9491–9507. [Google Scholar] [CrossRef]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef] [PubMed]
- Darvas, B.; Zdarek, J.; Timar, T.; El-Din, M.H.T. Effects of the bipyridylium herbicides diquat dibromide and paraquat dichloride on growth and development of neobellieria bullata (diptera: Sarcophagidae) larvae. J. Econ. Entomol. 1990, 83, 2175–2180. [Google Scholar] [CrossRef]
- Cocks, P.S. Diquat dibromide as a chemical aid to pasture establishment in the lower south-east of South Australia. Aust. J. Exp. Agric. 1965, 5, 203–207. [Google Scholar] [CrossRef]
- Ritter, A.M.; Shaw, J.L.; Williams, W.M.; Travis, K.Z. Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. I. probabilistic exposure estimates. Environ. Toxicol. Chem. 2010, 19, 749–759. [Google Scholar] [CrossRef]
- Tunc, S.; Duman, O.; Soylu, I.; Bozoglan, B.K. Study on the bindings of dichlorprop and diquat dibromide herbicides to human serum albumin by spectroscopic methods. J. Hazard. Mater. 2014, 273, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mogul, M.G.; Akin, H.; Hasirci, N.; Trantolo, D.J.; Gresser, J.D.; Wise, D.L. Controlled release of biologically active agents for purposes of agricultural crop management. Resour. Conserv. Recycl. 1996, 16, 289–320. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Oliveira, J.L.; Fraceto, L.F. Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: A review. Adv. Sci. 2014, 6, 373–387. [Google Scholar] [CrossRef]
- Li, B.X.; Wang, W.; Zhang, X.; Zhang, D.; Ren, Y.; Gao, W.; Liu, F. Using coordination assembly as the microencapsulation strategy to promote the effcacy and environmental safety of pyraclostrobin. Adv. Funct. Mater. 2017, 27, 1701841. [Google Scholar] [CrossRef]
- Li, B.; Ren, Y.; Zhang, D.X.; Xu, S.; Mu, W.; Liu, F. Modifying the formulation of abamectin to promote its efficacy on Southern Root-Knot Nematode (Meloidogyne incognita) under blending-of-soil and root-irrigation conditions. J. Agric. Food Chem. 2018, 66, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, S.N.M.; Kamari, A.; Aljafree, N.F.A. A review of materials used as carrier agents in pesticide formulations. Int. J. Environ. Sci. Technol. 2016, 13, 1–18. [Google Scholar] [CrossRef]
- Khandelwal, N.; Barbole, R.S.; Banerjee, S.S.; Chate, G.P.; Biradar, A.V.; Khandare, J.J.; Giri, A.P. Budding trends in integrated pest management using advanced micro-and nano-materials: Challenges and perspectives. J. Environ. Manag. 2016, 184, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Wenlong, L.; Aixin, Y.; Guodong, W.; Feng, Z.; Pengtong, H.; Jinliang, J. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L.) growth. Carbohydr. Polym. 2018, 199, 437–444. [Google Scholar]
- Campos, E.V.R.; De Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 2015, 35, 47–66. [Google Scholar] [CrossRef]
- Barouti, G.; Jaffredo, C.G.; Guillaume, S.M. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog. Polym. Sci. 2017, 73, 1–31. [Google Scholar] [CrossRef]
- Lü, J.; Li, J.; Li, Y.; Chen, Y.L.B.; Bao, Z. Use of rice straw biochar simultaneously as the sustained release carrier of herbicides and soil amendment for their reduced leaching. J. Agric. Food Chem. 2012, 60, 6463–36470. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.Z.B.; Yahaya, A.H.; Zainal, Z.; Kian, L.H. Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Sci. Technol. Adv. Mater. 2005, 6, 956–962. [Google Scholar] [CrossRef]
- Park, M.; Lee, C.I.; Seo, Y.J.; Woo, S.R.; Shin, D.; Choi, J. Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide. Environ. Sci. Pollut. Res. 2010, 17, 203–209. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartili, J.C.; Beck, J.S. Ordered menoporous molecular sieves synthesized by a liquidcrystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Tarn, D.; Ashley, C.E.; Xue, M.; Carnes, E.C.; Zink, J.I.; Brinker, C.J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792–801. [Google Scholar] [CrossRef]
- Wen, J.; Yang, K.; Liu, F.; Li, H.; Xu, Y.; Sun, S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev. 2017, 46, 6024–6045. [Google Scholar] [CrossRef] [PubMed]
- Florek, J.; Caillard, R.; Kleitz, F. Evaluation of mesoporous silica nanoparticles for oral drug delivery current status and perspective of MSNs drug carriers. Nanoscale 2017, 9, 15252–15277. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Montserrat, C.; Isabel, I.B.; Miguel, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules 2017, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.A.; Singh, R.K.; Kim, T.H.; Kim, H.W. Silica-based multifunctional nanodelivery systems toward regenerative medicine. Mater. Horiz. 2017, 4, 772–799. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Xu, Y.; Zhang, X. Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J. Agric. Food Chem. 2011, 59, 307–311. [Google Scholar] [CrossRef]
- Popat, A.; Liu, J.; Hu, Q.; Kennedy, M.; Peters, B.; Lu, G.Q. Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 2012, 4, 970–975. [Google Scholar] [CrossRef]
- Prado, A.G.S.; Moura, A.O.; Nunes, A.R. Nanosized silica modified with carboxylic acid as support for controlled release of herbicides. J. Agric. Food Chem. 2011, 59, 8847–8852. [Google Scholar] [CrossRef]
- Wanyika, H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J. Nanopart. Res. 2013, 15, 1–9. [Google Scholar] [CrossRef]
- Wibowo, D.; Zhao, C.X.; Peters, B.C.; Middelberg, A.P.J. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem. 2014, 62, 12504–12511. [Google Scholar] [CrossRef]
- Yi, Z.; Hussain, H.I.; Feng, C.; Sun, D.; She, F.; Rookes, J.E.; Cahill, D.M.; Kong, L. Functionalized mesoporous silica nanoparticles with redox responsive short-chain gatekeepers for agrochemical delivery. ACS Appl. Mater. Interfaces 2015, 7, 9937–9946. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, H.; Cao, C.; Zhang, J.; Li, F.; Huang, Q. Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials 2016, 6, 126. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Cao, L.; Zhao, P.; Zhou, Z.; Cao, C.; Li, F.; Huang, Q. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem. Eng. J. 2018, 348, 244–254. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, H.; Zhou, Z.; Xu, C.; Shan, Y.; Huang, Q. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles. Nanoscale 2018, 10, 20354–20365. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Cao, L.; Ma, D.; Zhou, Z.; Huang, Q.; Pan, C. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale 2018, 10, 1798–1806. [Google Scholar] [CrossRef]
- Zhao, P.; Yuan, W.; Xu, C.; Li, F.; Cao, L.; Huang, Q. Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers. J. Agric. Food Chem. 2018, 66, 11592–11600. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Ng, V.W.L.; Ono, R.J.; Chan, J.M.W.; Krishnamurthy, S.; Wang, Y. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J. Control. Release 2014, 193, 9–26. [Google Scholar] [CrossRef]
- De Robertis, S.; Bonferoni, M.C.; Elviri, L.; Sandri, G.; Caramella, C.; Bettini, R. Advances in oral controlled drug delivery: The role of drug-polymer and interpolymer non-covalent interactions. Expert Opin. Drug Deliv. 2015, 12, 441–453. [Google Scholar] [CrossRef]
- Cao, L.; Zhou, Z.; Niu, S.; Cao, C.; Li, X.; Shan, Y.; Huang, Q. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. 2018, 66, 6594–6603. [Google Scholar] [CrossRef]
- Gorsd, M.; Sathicq, G.; Romanelli, G.; Pizzio, L.; Blanco, M. Tungstophosphoric acid supported on core-shell polystyrene-silica microspheres or hollow silica spheres catalyzed trisubstituted imidazole synthesis by multicomponent reaction. J. Mol. Catal. A Chem. 2016, 420, 294–302. [Google Scholar] [CrossRef]
- Rosenholm, G.M.; Duchanoy, A.; Lindén, M. Hyperbranching surface polymerization as a tool for preferential functionalization of the outer surface of mesoporous silica. Chem. Mater. 2008, 20, 1126–1133. [Google Scholar] [CrossRef]
- Barrett, P.R.F. Some studies on the use of alginates for the placement and controlled release of diquat on submerged aquatic plants. Pestic. Sci. 1978, 9, 425–433. [Google Scholar] [CrossRef]
- Liu, C.; Wang, P.; Shen, Z.; Liu, X.; Zhou, Z.; Liu, D. pH-controlled quaternary ammonium herbicides capture/release by carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents: Mechanisms and application. Anal. Chim. Acta 2015, 901, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Radu, D.R.; Lai, C.Y.; Jeftinija, K.; Rowe, E.W.; Jeftinija, S.; Lin, S.Y. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 2004, 126, 13216–13217. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh-Mehrizi, M.; Badiei, A.; Shahbazi, A. Sulfonate-functionalized nanoporous silica spheres as adsorbent for methylene blue. Res. Chem. Intermed. 2016, 42, 3537–3551. [Google Scholar] [CrossRef]
- Lee, C.H.; Lo, L.W.; Mou, C.Y.; Yang, C.S. Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug. Adv. Funct. Mater. 2010, 18, 3283–3292. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Vt (cm3/g) | DBJH (nm) | Size (nm) | PDI | Zeta (mV) |
---|---|---|---|---|---|---|
P-MSN | 1767.5 | 1.4 | 3.3 | 415.3 ± 148.08 | 0.56 ± 0.23 | −20.2 ± 0.38 |
MSN-SO3 | 973.1 | 0.5 | 2.1 | 267.5 ± 7.15 | 0.28 ± 0.03 | −37.0 ± 0.40 |
DQ@MSN-SO3 | 623.3 | 0.3 | / | 240.8 ± 5.96 | 0.22 ± 0.04 | −17.9 ± 0.15 |
Entry | Carrier | Solvent | Mass Ratiob | LC (%) | EE (%) |
---|---|---|---|---|---|
1 | P-MSN | H2O | 1.0 | 5.31 ± 0.12 | 5.14 ± 0.09 |
2 | MSN-SO3 | H2O | 1.0 | 12.73 ± 0.02 | 13.48 ± 0.02 |
3 | MSN-SO3 | 80% aqueous EtOH | 1.0 | 14.69 ± 0.10 | 15.99 ± 0.17 |
4 | MSN-SO3 | 80% aqueous MeCN | 1.0 | 13.81 ± 0.04 | 16.01 ± 0.08 |
5 | MSN-SO3 | H2O | 2.0 | 13.98 ± 0.11 | 6.99 ± 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Y.; Cao, L.; Xu, C.; Zhao, P.; Cao, C.; Li, F.; Xu, B.; Huang, Q. Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction. Int. J. Mol. Sci. 2019, 20, 1330. https://doi.org/10.3390/ijms20061330
Shan Y, Cao L, Xu C, Zhao P, Cao C, Li F, Xu B, Huang Q. Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction. International Journal of Molecular Sciences. 2019; 20(6):1330. https://doi.org/10.3390/ijms20061330
Chicago/Turabian StyleShan, Yongpan, Lidong Cao, Chunli Xu, Pengyue Zhao, Chong Cao, Fengmin Li, Bo Xu, and Qiliang Huang. 2019. "Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction" International Journal of Molecular Sciences 20, no. 6: 1330. https://doi.org/10.3390/ijms20061330
APA StyleShan, Y., Cao, L., Xu, C., Zhao, P., Cao, C., Li, F., Xu, B., & Huang, Q. (2019). Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction. International Journal of Molecular Sciences, 20(6), 1330. https://doi.org/10.3390/ijms20061330