The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs
Abstract
:1. Introduction
2. Results
2.1. TMP195 Reverses Multidrug Resistance Mediated by ABCB1 and ABCG2
2.2. TMP195 Sensitizes Cancer Cells Overexpressing ABCB1 or ABCG2 to Drug-Induced Apoptosis
2.3. TMP195 Attenuates the Drug Transport Function of ABCB1 and ABCG2
2.4. TMP195 Stimulates the ATPase Activity of ABCB1 and ABCG2
2.5. In Silico Docking Analyses Reveals that TMP195 Binds in the Drug-Binding Pocket of ABCB1 and ABCG2
2.6. The Overexpression of ABCB1 or ABCG2 Does not Affect the Chemosensitivity of Cancer Cells to TMP195
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Culture Conditions
4.3. Cell Viability Assay
4.4. Apoptosis Assay
4.5. Fluorescent Drug Accumulation Assay
4.6. Immunoblotting
4.7. ATPase Assays
4.8. Docking of TMP195 in the Drug-Binding Pocket of ABCB1 and ABCG2
4.9. Quantification and Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | ATP-binding cassette |
ALL | Acute lymphocytic leukemia |
AML | Acute myelogenous leukemia |
BCRP | Breast cancer resistance protein |
CCK-8 | Cell Counting Kit-8 |
CLL | Chronic lymphocytic leukemia |
CML | Chronic myeloid leukemia |
ECL | Enhanced chemiluminescence |
FR | Fold-reversal |
HDAC | Histone deacetylase |
MDR | Multidrug resistance |
MM | Multiple myeloma |
P-gp | P-glycoprotein |
RF | Resistance factor |
SD | Standard deviation |
Vi | Sodium orthovanadate |
References
- Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 2002, 53, 615–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szakacs, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. 2006, 5, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.P.; Hsieh, C.H.; Wu, Y.S. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm. 2011, 8, 1996–2011. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef]
- Hegedus, C.; Ozvegy-Laczka, C.; Szakacs, G.; Sarkadi, B. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: Substrates and/or inhibitors? Curr. Cancer Drug Targets 2009, 9, 252–272. [Google Scholar]
- Noguchi, K.; Katayama, K.; Sugimoto, Y. Human ABC transporter ABCG2/BCRP expression in chemoresistance: Basic and clinical perspectives for molecular cancer therapeutics. Pharm. Pers. Med. 2014, 7, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Gillet, J.P.; Gottesman, M.M. Mechanisms of multidrug resistance in cancer. Methods Mol. Biol. 2010, 596, 47–76. [Google Scholar]
- Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updat. 2011, 14, 150–163. [Google Scholar] [CrossRef]
- Pluchino, K.M.; Hall, M.D.; Goldsborough, A.S.; Callaghan, R.; Gottesman, M.M. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist. Updat. 2012, 15, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Nobili, S.; Landini, I.; Mazzei, T.; Mini, E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med. Res. Rev. 2012, 32, 1220–1262. [Google Scholar] [CrossRef]
- Wu, S.; Fu, L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol. Cancer 2018, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, Y.; Takada, T.; Suzuki, H. Inhibitors of Human ABCG2: From Technical Background to Recent Updates With Clinical Implications. Front. Pharmacol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopoldo, M.; Nardulli, P.; Contino, M.; Leonetti, F.; Luurtsema, G.; Colabufo, N.A. An updated patent review on P-glycoprotein inhibitors (2011–2018). Expert Opin. Ther. Pat. 2019, 29, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Wu, C.P.; Ambudkar, S.V. Development of inhibitors of ATP-binding cassette drug transporters: Present status and challenges. Expert Opin. Drug Metab. Toxicol. 2008, 4, 205–223. [Google Scholar] [CrossRef]
- Wu, C.P.; Calcagno, A.M.; Ambudkar, S.V. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: Evaluation of current strategies. Curr. Mol. Pharmacol. 2008, 1, 93–105. [Google Scholar] [CrossRef]
- Shi, Z.; Tiwari, A.K.; Shukla, S.; Robey, R.W.; Singh, S.; Kim, I.W.; Bates, S.E.; Peng, X.; Abraham, I.; Ambudkar, S.V.; et al. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res. 2011, 71, 3029–3041. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Chen, Z.S.; Ambudkar, S.V. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist. Updat. 2012, 15, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Sodani, K.; Dai, C.L.; Abuznait, A.H.; Singh, S.; Xiao, Z.J.; Patel, A.; Talele, T.T.; Fu, L.; Kaddoumi, A.; et al. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett. 2013, 328, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Q.; Liu, S.T.; Zhao, B.X.; Yang, F.H.; Wang, Y.T.; Liang, Q.Y.; Sun, Y.B.; Liu, Y.; Song, Z.H.; Cai, Y.; et al. Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1. Oncotarget 2015, 6, 26142–26160. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Lu, Y.J.; Li, Y.Q.; Huang, Y.H.; Hsieh, C.H.; Wu, C.P. Osimertinib (AZD9291) Attenuates the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCB1 in Vitro. Mol Pharm 2016. [Google Scholar] [CrossRef]
- Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 2013, 9, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, J.L.; Sotayo, A.; Ponichtera, H.E.; Castrillon, J.A.; Pourzia, A.L.; Schad, S.; Johnson, S.F.; Carrasco, R.D.; Lazo, S.; Bronson, R.T.; et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 2017, 543, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Kartner, N.; Riordan, J.R.; Ling, V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983, 221, 1285–1288. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.R.; Ling, V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J. Biol. Chem. 1979, 254, 12701–12705. [Google Scholar]
- Miyake, K.; Mickley, L.; Litman, T.; Zhan, Z.; Robey, R.; Cristensen, B.; Brangi, M.; Greenberger, L.; Dean, M.; Fojo, T.; et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Res. 1999, 59, 8–13. [Google Scholar]
- Dai, C.L.; Tiwari, A.K.; Wu, C.P.; Su, X.D.; Wang, S.R.; Liu, D.G.; Ashby, C.R., Jr.; Huang, Y.; Robey, R.W.; Liang, Y.J.; et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008, 68, 7905–7914. [Google Scholar] [CrossRef] [Green Version]
- Tsuruo, T.; Iida, H.; Naganuma, K.; Tsukagoshi, S.; Sakurai, Y. Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug. Cancer Res. 1983, 43, 808–813. [Google Scholar]
- Tsuruo, T.; Iida, H.; Yamashiro, M.; Tsukagoshi, S.; Sakurai, Y. Enhancement of vincristine- and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochem. Pharm. 1982, 31, 3138–3140. [Google Scholar] [CrossRef]
- Scheffer, G.L.; Maliepaard, M.; Pijnenborg, A.C.; van Gastelen, M.A.; de Jong, M.C.; Schroeijers, A.B.; van der Kolk, D.M.; Allen, J.D.; Ross, D.D.; van der Valk, P.; et al. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res. 2000, 60, 2589–2593. [Google Scholar]
- Wu, C.P.; Hsiao, S.H.; Su, C.Y.; Luo, S.Y.; Li, Y.Q.; Huang, Y.H.; Hsieh, C.H.; Huang, C.W. Human ATP-Binding Cassette transporters ABCB1 and ABCG2 confer resistance to CUDC-101, a multi-acting inhibitor of histone deacetylase, epidermal growth factor receptor and human epidermal growth factor receptor 2. Biochem. Pharm. 2014, 92, 567–576. [Google Scholar] [CrossRef]
- Hollo, Z.; Homolya, L.; Davis, C.W.; Sarkadi, B. Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim. Et. Biophys. Acta 1994, 1191, 384–388. [Google Scholar] [CrossRef]
- Robey, R.W.; Steadman, K.; Polgar, O.; Morisaki, K.; Blayney, M.; Mistry, P.; Bates, S.E. Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res. 2004, 64, 1242–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuestas, M.L.; Castillo, A.I.; Sosnik, A.; Mathet, V.L. Downregulation of mdr1 and abcg2 genes is a mechanism of inhibition of efflux pumps mediated by polymeric amphiphiles. Bioorg. Med. Chem. Lett. 2012, 22, 6577–6579. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K.; Bhullar, J.; Shukla, S.; Burcu, M.; Chen, Z.S.; Ambudkar, S.V.; Baer, M.R. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem. Pharm. 2013, 85, 514–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 361–398. [Google Scholar] [CrossRef] [Green Version]
- Ambudkar, S.V.; Kimchi-Sarfaty, C.; Sauna, Z.E.; Gottesman, M.M. P-glycoprotein: From genomics to mechanism. Oncogene 2003, 22, 7468–7485. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Kowal, J.; Broude, E.; Roninson, I.; Locher, K.P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 2019, 363, 753–756. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N.M.I.; Manolaridis, I.; Jackson, S.M.; Kowal, J.; Stahlberg, H.; Locher, K.P. Structure of the human multidrug transporter ABCG2. Nature 2017, 546, 504–509. [Google Scholar] [CrossRef]
- Wu, C.P.; Hsieh, Y.J.; Hsiao, S.H.; Su, C.Y.; Li, Y.Q.; Huang, Y.H.; Huang, C.W.; Hsieh, C.H.; Yu, J.S.; Wu, Y.S. Human ATP-Binding Cassette Transporter ABCG2 Confers Resistance to CUDC-907, a Dual Inhibitor of Histone Deacetylase and Phosphatidylinositol 3-Kinase. Mol. Pharm. 2016, 13, 784–794. [Google Scholar] [CrossRef]
- Wu, C.P.; Hsieh, Y.J.; Murakami, M.; Vahedi, S.; Hsiao, S.H.; Yeh, N.; Chou, A.W.; Li, Y.Q.; Wu, Y.S.; Yu, J.S.; et al. Human ATP-binding cassette transporters ABCB1 and ABCG2 confer resistance to histone deacetylase 6 inhibitor ricolinostat (ACY-1215) in cancer cell lines. Biochem. Pharm. 2018, 155, 316–325. [Google Scholar] [CrossRef]
- Gillet, J.P.; Calcagno, A.M.; Varma, S.; Marino, M.; Green, L.J.; Vora, M.I.; Patel, C.; Orina, J.N.; Eliseeva, T.A.; Singal, V.; et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl. Acad. Sci. USA 2011, 108, 18708–18713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoh, K.; Ishii, G.; Yokose, T.; Minegishi, Y.; Tsuta, K.; Goto, K.; Nishiwaki, Y.; Kodama, T.; Suga, M.; Ochiai, A. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin. Cancer Res. 2004, 10, 1691–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalev, A.A.; Tsvetaeva, D.A.; Grudinskaja, T.V. Role of ABC-cassette transporters (MDR1, MRP1, BCRP) in the development of primary and acquired multiple drug resistance in patients with early and metastatic breast cancer. Exp. Oncol. 2013, 35, 287–290. [Google Scholar] [PubMed]
- Ross, D.D.; Karp, J.E.; Chen, T.T.; Doyle, L.A. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood 2000, 96, 365–368. [Google Scholar] [CrossRef]
- Steinbach, D.; Sell, W.; Voigt, A.; Hermann, J.; Zintl, F.; Sauerbrey, A. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 2002, 16, 1443–1447. [Google Scholar] [CrossRef]
- Uggla, B.; Stahl, E.; Wagsater, D.; Paul, C.; Karlsson, M.G.; Sirsjo, A.; Tidefelt, U. BCRP mRNA expression v. clinical outcome in 40 adult AML patients. Leuk. Res. 2005, 29, 141–146. [Google Scholar] [CrossRef]
- Maia, R.C.; Vasconcelos, F.C.; Souza, P.S.; Rumjanek, V.M. Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia. Molecules 2018, 119. [Google Scholar] [CrossRef] [Green Version]
- Matthews, C.; Catherwood, M.A.; Larkin, A.M.; Clynes, M.; Morris, T.C.; Alexander, H.D. MDR-1, but not MDR-3 gene expression, is associated with unmutated IgVH genes and poor prognosis chromosomal aberrations in chronic lymphocytic leukemia. Leuk. Lymphoma 2006, 47, 2308–2313. [Google Scholar] [CrossRef]
- Pilarski, L.M.; Belch, A.R. Intrinsic expression of the multidrug transporter, P-glycoprotein 170, in multiple myeloma: Implications for treatment. Leuk. Lymphoma 1995, 17, 367–374. [Google Scholar] [CrossRef]
- Pilarski, L.M.; Szczepek, A.J.; Belch, A.R. Deficient drug transporter function of bone marrow-localized and leukemic plasma cells in multiple myeloma. Blood 1997, 90, 3751–3759. [Google Scholar] [CrossRef]
- Schwarzenbach, H. Expression of MDR1/P-glycoprotein, the multidrug resistance protein MRP, and the lung-resistance protein LRP in multiple myeloma. Med. Oncol. 2002, 19, 87–104. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Abe, S.; Kurata, M.; Hasegawa, M.; Yamamoto, K.; Inoue, M.; Takemura, T.; Suzuki, K.; Kitagawa, M. IAP family protein expression correlates with poor outcome of multiple myeloma patients in association with chemotherapy-induced overexpression of multidrug resistance genes. Am. J. Hematol. 2006, 81, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki, M.; Satou, T.; Itoh, T.; Imano, M.; Komai, M.; Nishinobo, M.; Yamashita, M.; Yanae, M.; Yamazoe, Y.; Nishida, S. Overexpression of MDR1 and survivin, and decreased Bim expression mediate multidrug-resistance in multiple myeloma cells. Leuk. Res. 2012, 36, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.G.; Gump, J.L.; Zhang, C.; Cook, J.M.; Marchion, D.; Hazlehurst, L.; Munster, P.; Schell, M.J.; Dalton, W.S.; Sullivan, D.M. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 2006, 108, 3881–3889. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, C.C.; Yang, X.; Pichiorri, F.; Chen, P.; Rozewski, D.M.; Johnson, A.J.; Lee, S.; Liu, Z.; Garr, C.L.; Hade, E.M.; et al. Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: Evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. J. Clin. Oncol. 2011, 29, 3427–3434. [Google Scholar] [CrossRef] [Green Version]
- Brozik, A.; Hegedus, C.; Erdei, Z.; Hegedus, T.; Ozvegy-Laczka, C.; Szakacs, G.; Sarkadi, B. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: Substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin. Drug Metab. Toxicol. 2011, 7, 623–642. [Google Scholar] [CrossRef]
- Kuang, Y.H.; Patel, J.P.; Sodani, K.; Wu, C.P.; Liao, L.Q.; Patel, A.; Tiwari, A.K.; Dai, C.L.; Chen, X.; Fu, L.W.; et al. OSI-930 analogues as novel reversal agents for ABCG2-mediated multidrug resistance. Biochem. Pharm. 2012, 84, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Sen, R.; Natarajan, K.; Bhullar, J.; Shukla, S.; Fang, H.B.; Cai, L.; Chen, Z.S.; Ambudkar, S.V.; Baer, M.R. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol. Cancer 2012, 11, 2033–2044. [Google Scholar] [CrossRef] [Green Version]
- To, K.K.; Poon, D.C.; Wei, Y.; Wang, F.; Lin, G.; Fu, L.W. Vatalanib sensitizes ABCB1 and ABCG2-overexpressing multidrug resistant colon cancer cells to chemotherapy under hypoxia. Biochem. Pharm. 2015, 97, 27–37. [Google Scholar] [CrossRef]
- Wu, C.P.; Hsiao, S.H.; Murakami, M.; Lu, M.J.; Li, Y.Q.; Hsieh, C.H.; Ambudkar, S.V.; Wu, Y.S. Tyrphostin RG14620 selectively reverses ABCG2-mediated multidrug resistance in cancer cell lines. Cancer Lett. 2017, 409, 56–65. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Lusvarghi, S.; Huang, Y.H.; Ambudkar, S.V.; Hsu, S.C.; Wu, C.P. The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Lett. 2019, 445, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Schreiter, F.C.; Bagchi, R.A.; Tatman, P.D.; Hannink, M.; McKinsey, T.A. HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression. J. Biol. Chem. 2019, 294, 8640–8652. [Google Scholar] [CrossRef] [PubMed]
- Groselj, B.; Ruan, J.L.; Scott, H.; Gorrill, J.; Nicholson, J.; Kelly, J.; Anbalagan, S.; Thompson, J.; Stratford, M.R.L.; Jevons, S.J.; et al. Radiosensitization In Vivo by Histone Deacetylase Inhibition with No Increase in Early Normal Tissue Radiation Toxicity. Mol. Cancer 2018, 17, 381–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K.; Kim, N.H.; Hwang, J.W.; Song, Y.J.; Park, Y.S.; Seo, D.W.; Lee, H.Y.; Choi, W.S.; Han, J.W.; Kim, S.N. Histone deacetylase inhibitor apicidin-mediated drug resistance: Involvement of P-glycoprotein. Biochem. Biophys. Res. Commun. 2008, 368, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Hauswald, S.; Duque-Afonso, J.; Wagner, M.M.; Schertl, F.M.; Lubbert, M.; Peschel, C.; Keller, U.; Licht, T. Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin. Cancer Res. 2009, 15, 3705–3715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatouji, S.; El-Khoury, V.; Trentesaux, C.; Trussardi-Regnier, A.; Benabid, R.; Bontems, F.; Dufer, J. Differential modulation of nuclear texture, histone acetylation, and MDR1 gene expression in human drug-sensitive and -resistant OV1 cell lines. Int. J. Oncol. 2007, 30, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyal, S.; Lamb, J.G.; Smith-Yockman, M.; Yagen, B.; Fibach, E.; Altschuler, Y.; White, H.S.; Bialer, M. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br. J. Pharm. 2006, 149, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.J.; Foraker, A.B.; Swaan, P.W.; Liu, S.; Huang, Y.; Dai, Z.; Chen, J.; Sadee, W.; Byrd, J.; Marcucci, G.; et al. Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by P-glycoprotein and multidrug resistance-associated protein 1. J. Pharm. Exp. 2005, 313, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Faussat, A.M.; Majdak, P.; Perrot, J.Y.; Chaoui, D.; Legrand, O.; Marie, J.P. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia 2004, 18, 1246–1251. [Google Scholar] [CrossRef]
- To, K.K.; Polgar, O.; Huff, L.M.; Morisaki, K.; Bates, S.E. Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol. Cancer Res. Mcr. 2008, 6, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.J.; Huang, Y.; Dai, Z.; Sadee, W.; Chen, J.; Liu, S.; Marcucci, G.; Byrd, J.; Covey, J.M.; Wright, J.; et al. Chemoresistance to depsipeptide FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,2 0,23-tetraazabicyclo[8,7,6-tricos-16-ene-3,6,9,22-pentanone] is mediated by reversible MDR1 induction in human cancer cell lines. J. Pharm. Exp. 2005, 314, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, H.; Arakawa, Y.; Saito, S.; Agawa, M.; Kano, Y.; Horiguchi-Yamada, J. Depsipeptide-resistant KU812 cells show reversible P-glycoprotein expression, hyper-acetylated histones, and modulated gene expression profile. Leuk. Res. 2006, 30, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Glaser, K.B. Defining the role of gene regulation in resistance to HDAC inhibitors--mechanisms beyond P-glycoprotein. Leuk. Res. 2006, 30, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Zhan, Z.; Piekarz, R.L.; Kayastha, G.L.; Fojo, T.; Bates, S.E. Increased MDR1 expression in normal and malignant peripheral blood mononuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clin. Cancer Res. 2006, 12, 1547–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.P.; Shukla, S.; Calcagno, A.M.; Hall, M.D.; Gottesman, M.M.; Ambudkar, S.V. Evidence for dual mode of action of a thiosemicarbazone, NSC73306: a potent substrate of the multidrug resistance linked ABCG2 transporter. Mol. Cancer 2007, 6, 3287–3296. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.W.; Fojo, A.; Chin, J.E.; Roninson, I.B.; Richert, N.; Pastan, I.; Gottesman, M.M. Human multidrug-resistant cell lines: Increased mdr1 expression can precede gene amplification. Science 1986, 232, 643–645. [Google Scholar] [CrossRef]
- Henrich, C.J.; Bokesch, H.R.; Dean, M.; Bates, S.E.; Robey, R.W.; Goncharova, E.I.; Wilson, J.A.; McMahon, J.B. A high-throughput cell-based assay for inhibitors of ABCG2 activity. J. Biomol. Screen. 2006, 11, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Honjo, Y.; Hrycyna, C.A.; Yan, Q.W.; Medina-Perez, W.Y.; Robey, R.W.; van de Laar, A.; Litman, T.; Dean, M.; Bates, S.E. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res. 2001, 61, 6635–6639. [Google Scholar]
- Ishiyama, M.; Tominaga, H.; Shiga, M.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 1996, 19, 1518–1520. [Google Scholar] [CrossRef] [Green Version]
- Anderson, H.A.; Maylock, C.A.; Williams, J.A.; Paweletz, C.P.; Shu, H.; Shacter, E. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat. Immunol. 2003, 4, 87–91. [Google Scholar] [CrossRef]
- Wu, C.P.; Hsiao, S.H.; Sim, H.M.; Luo, S.Y.; Tuo, W.C.; Cheng, H.W.; Li, Y.Q.; Huang, Y.H.; Ambudkar, S.V. Human ABCB1 (P-glycoprotein) and ABCG2 mediate resistance to BI 2536, a potent and selective inhibitor of Polo-like kinase 1. Biochem Pharm. 2013, 86, 904–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gribar, J.J.; Ramachandra, M.; Hrycyna, C.A.; Dey, S.; Ambudkar, S.V. Functional characterization of glycosylation-deficient human P-glycoprotein using a vaccinia virus expression system. J Membr. Biol. 2000, 173, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Ambudkar, S.V. Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzym. 1998, 292, 504–514. [Google Scholar]
- Ramachandra, M.; Ambudkar, S.V.; Chen, D.; Hrycyna, C.A.; Dey, S.; Gottesman, M.M.; Pastan, I. Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state. Biochemistry 1998, 37, 5010–5019. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.M.; Sauna, Z.E.; Ambudkar, S.V. Correlation between steady-state ATP hydrolysis and vanadate-induced ADP trapping in Human P-glycoprotein. Evidence for ADP release as the rate-limiting step in the catalytic cycle and its modulation by substrates. J Biol. Chem. 2001, 276, 8657–8664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandigama, K.; Lusvarghi, S.; Shukla, S.; Ambudkar, S.V. Large-scale purification of functional human P-glycoprotein (ABCB1). Protein Expr. Purif. 2019, 159, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Sanner, M.F.; Olson, A.J.; Spehner, J.C. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers 1996, 38, 305–320. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
Treatment | Concentration (μM) | Mean IC50 † ± SD and (FR ‡) | |
---|---|---|---|
pcDNA-HEK293 (Parental) (nM) | MDR19-HEK293 (Resistant) (nM) | ||
Paclitaxel | - | 2.45 ± 0.47 (1.0) | 1020.80 ± 176.45 (1.0) |
+TMP195 | 1 | 2.01 ± 0.24 (1.2) | 462.33 ± 84.71 ** (2.2) |
+TMP195 | 2 | 1.87 ± 0.32 (1.3) | 222.28 ± 26.22 ** (4.6) |
+TMP195 | 3 | 2.19 ± 0.38 (1.1) | 160.98 ± 35.26 ** (6.3) |
+TMP195 | 5 | 1.91 ± 0.27 (1.3) | 62.69 ± 6.33 *** (16.3) |
+Verapamil | 5 | 1.81 ± 0.41 (1.4) | 10.03 ± 1.53 *** (101.8) |
pcDNA-HEK293 (parental) (nM) | R482-HEK293 (resistant) (nM) | ||
Mitoxantrone | - | 2.24 ± 0.38 (1.0) | 65.08 ± 6.00 (1.0) |
+TMP195 | 1 | 1.87 ± 0.34 (1.2) | 20.53 ± 4.07 *** (3.2) |
+TMP195 | 2 | 1.71 ± 0.36 (1.3) | 11.86 ± 1.61 *** (5.5) |
+TMP195 | 3 | 1.62 ± 0.24 (1.4) | 12.42 ± 2.33 *** (5.3) |
+TMP195 | 5 | 1.56 ± 0.29 (1.4) | 6.70 ± 1.33 *** (9.7) |
+Ko143 | 3 | 1.81 ± 0.32 (1.2) | 3.60 ± 0.38 *** (18.1) |
pcDNA-HEK293 (parental) (nM) | MRP1-HEK293 (resistant) (μM) | ||
Etoposide | - | 175.37 ± 35.99 (1.0) | 86.22 ± 11.07 (1.0) |
+TMP195 | 1 | 185.10 ± 30.36 (0.9) | 110.60 ± 18.86 (0.8) |
+TMP195 | 2 | 236.17 ± 52.11 (0.7) | 104.62 ± 16.93 (0.8) |
+TMP195 | 3 | 258.68 ± 38.05 (0.7) | 96.09 ± 29.32 (0.9) |
+TMP195 | 5 | 172.29 ± 30.28 (1.0) | 72.24 ± 9.20 (1.2) |
+MK-571 | 25 | 160.23 ± 27.21 (1.1) | 19.20 ± 1.47 *** (4.5) |
Treatment | Concentration (μM) | Mean IC50 † ± SD and (FR ‡) | |
---|---|---|---|
KB-3-1 (Parental) (nM) | KB-V-1 (Resistant) (nM) | ||
Paclitaxel | - | 2.21 ± 0.64 (1.0) | 3204.25 ± 481.06 (1.0) |
+TMP195 | 1 | 1.93 ± 0.41 (1.1) | 1571.27 ± 217.65 ** (2.0) |
+TMP195 | 2 | 1.90 ± 0.45 (1.2) | 1082.46 ± 160.30 ** (3.0) |
+TMP195 | 3 | 1.74 ± 0.34 (1.3) | 656.68 ± 64.71 *** (4.9) |
+TMP195 | 5 | 1.73 ± 0.39 (1.3) | 306.75 ± 26.08 *** (10.4) |
+Verapamil | 5 | 1.83 ±0.43 (1.2) | 65.68 ± 3.26 *** (48.8) |
Colchicine | 9.25 ± 4.23 (1.0) | 2251.10 ± 372.67 (1.0) | |
+TMP195 | 1 | 9.46 ± 4.45 (1.0) | 1021.63 ± 103.07 ** (2.2) |
+TMP195 | 2 | 8.35 ± 3.31 (1.1) | 588.27 ± 87.86 ** (3.8) |
+TMP195 | 3 | 7.35 ± 3.18 (1.3) | 326.59 ± 70.84 *** (6.9) |
+TMP195 | 5 | 7.86 ± 3.82 (1.2) | 206.80 ± 32.01 *** (10.9) |
+Verapamil | 5 | 6.61 ± 3.20 (1.4) | 204.97 ± 35.01 *** (11.0) |
Vincristine | - | 0.53 ± 0.11 (1.0) | 897.11 ± 108.89 (1.0) |
+TMP195 | 1 | 0.58 ± 0.15 (0.7) | 450.57 ± 39.31 ** (2.0) |
+TMP195 | 2 | 0.54 ± 0.13 (0.9) | 318.47 ± 35.40 *** (2.8) |
+TMP195 | 3 | 0.52 ± 0.13 (1.0) | 185.27 ± 10.62 *** (4.8) |
+TMP195 | 5 | 0.45 ± 0.13 (1.2) | 67.85 ± 3.91 *** (13.2) |
+Verapamil | 5 | 0.19 ± 0.05 ** (2.8) | 8.23 ± 1.13 *** (109.0) |
Treatment | Concentration (μM) | OVCAR-8 (parental) (nM) | NCI-ADR-RES (resistant) (μM) |
Paclitaxel | - | 5.42 ± 1.07 (1.0) | 8.52 ± 1.83 (1.0) |
+TMP195 | 1 | 5.11 ± 0.92 (1.1) | 6.24 ± 1.00 (1.4) |
+TMP195 | 2 | 4.93 ± 1.02 (1.1) | 3.18 ± 0.58 ** (2.7) |
+TMP195 | 3 | 4.50 ± 0.78 (1.2) | 1.88 ± 0.22 ** (4.5) |
+TMP195 | 5 | 4.36 ± 0.82 (1.2) | 0.92 ± 0.21 ** (9.3) |
+Verapamil | 5 | 3.75 ± 0.85 (1.4) | 0.34 ± 0.04 ** (25.1) |
Colchicine | - | 19.66 ± 6.36 (1.0) | 2.98 ± 0.60 (1.0) |
+TMP195 | 1 | 21.53 ± 7.24 (0.9) | 2.97 ± 0.81 (1.0) |
+TMP195 | 2 | 21.11 ± 6.95 (0.9) | 2.16 ± 0.49 (1.4) |
+TMP195 | 3 | 20.58 ± 6.90 (1.0) | 1.63 ± 0.37 * (1.8) |
+TMP195 | 5 | 19.67 ± 6.36 (1.0) | 1.02 ± 0.31 ** (2.9) |
+Verapamil | 5 | 15.76 ± 5.91 (1.2) | 0.63 ± 0.15 ** (4.7) |
Vincristine | - | 2.84 ± 0.43 (1.0) | 4.64 ± 0.99 (1.0) |
+TMP195 | 1 | 2.78 ± 0.32 (1.0) | 3.18 ± 0.65 (1.5) |
+TMP195 | 2 | 2.46 ± 0.33 (1.2) | 1.95 ± 0.39 * (2.4) |
+TMP195 | 3 | 2.29 ± 0.37 (1.2) | 1.48 ± 0.40 ** (3.1) |
+TMP195 | 5 | 2.28 ± 0.28 (1.2) | 0.77 ± 0.25 ** (6.0) |
+Verapamil | 5 | 0.85 ± 0.10 ** (3.3) | 0.15 ± 0.03 ** (30.1) |
Treatment | Concentration (μM) | S1 (Parental) (nM) | S1-M1-80 (Resistant) (μM) |
---|---|---|---|
Mitoxantrone | - | 12.76 ± 3.59 (1.0) | 83.89 ± 8.40 (1.0) |
+TMP195 | 1 | 10.64 ± 1.81 (1.2) | 29.44 ± 7.48 ** (2.8) |
+TMP195 | 2 | 11.11 ± 1.65 (1.1) | 14.60 ± 4.86 *** (5.7) |
+TMP195 | 3 | 9.40 ± 1.63 (1.4) | 5.64 ± 2.09 *** (14.9) |
+TMP195 | 5 | 8.15 ± 1.44 (1.6) | 3.10 ± 1.04 *** (27.1) |
+Ko143 | 3 | 12.14 ± 2.97 (1.1) | 0.84 ± 0.13 *** (99.9) |
SN-38 | - | 2.45 ± 0.35 (1.0) | 5.14 ± 1.19 (1.0) |
+TMP195 | 1 | 2.02 ± 0.29 (1.2) | 1.32 ± 0.28 ** (3.9) |
+TMP195 | 2 | 1.96 ± 0.27 (1.3) | 0.63 ± 0.10 ** (8.2) |
+TMP195 | 3 | 1.90 ± 0.23 (1.3) | 0.43 ± 0.08 ** (11.8) |
+TMP195 | 5 | 1.83 ± 0.23 (1.3) | 0.27 ± 0.05 ** (18.9) |
+Ko143 | 3 | 2.14 ± 0.30 (1.1) | 0.06 ± 0.01 ** (85.7) |
Topotecan | - | 117.54 ± 40.80 (1.0) | 9.90 ± 2.35 (1.0) |
+TMP195 | 1 | 100.80 ± 38.21 (1.2) | 3.17 ± 0.79 ** (3.1) |
+TMP195 | 2 | 71.82 ± 28.62 (1.6) | 2.01 ± 0.49 ** (4.9) |
+TMP195 | 3 | 71.51 ± 27.76 (1.6) | 1.13 ± 0.31 ** (8.8) |
+TMP195 | 5 | 58.92 ±24.87 (2.0) | 0.98 ± 0.28 ** (10.1) |
+Ko143 | 3 | 86.75 ± 33.89 (1.4) | 0.39 ± 0.06 ** (25.4) |
Treatment | Concentration (μM) | H460 (parental) (nM) | H460-MX20 (resistant) (nM) |
Mitoxantrone | - | 12.75 ± 1.38 (1.0) | 1385.40 ± 109.51 (1.0) |
+TMP195 | 1 | 14.85 ± 4.35 (0.9) | 474.17 ± 62.44 *** (2.9) |
+TMP195 | 2 | 9.37 ± 2.18 (1.4) | 477.63 ± 129.56 *** (2.9) |
+TMP195 | 3 | 16.00 ± 3.72 (0.8) | 417.30 ± 83.81 *** (3.3) |
+TMP195 | 5 | 12.31 ± 2.79 (1.0) | 332.69 ± 87.33 *** (4.2) |
+Ko143 | 3 | 15.31 ± 3.38 (0.8) | 168.99 ± 50.81 *** (8.2) |
SN-38 | - | 6.60 ± 1.22 (1.0) | 598.64 ± 198.78 (1.0) |
+TMP195 | 1 | 5.80 ± 1.20 (1.1) | 108.83 ± 37.21 * (5.5) |
+TMP195 | 2 | 4.45 ± 0.93 (1.5) | 76.26 ± 29.92 * (7.8) |
+TMP195 | 3 | 5.33 ± 1.44 (1.2) | 80.39 ± 25.85 * (7.4) |
+TMP195 | 5 | 5.09 ± 1.61 (1.3) | 67.97 ± 24.63 * (8.8) |
+Ko143 | 3 | 4.36 ± 1.05 (1.5) | 5.23 ± 1.48 ** (114.46) |
Topotecan | - | 39.40 ± 6.12 (1.0) | 1329.94 ± 238.00 (1.0) |
+TMP195 | 1 | 26.95 ± 5.01 (1.5) | 685.75 ± 187.43 * (1.9) |
+TMP195 | 2 | 21.26 ± 4.06 * (1.9) | 386.7 ± 124.95 ** (3.4) |
+TMP195 | 3 | 23.92 ± 4.39 * (1.6) | 270.72 ± 76.57 ** (4.9) |
+TMP195 | 5 | 23.35 ± 5.17 * (1.7) | 164.61 ± 55.23 ** (8.1) |
+Ko143 | 3 | 17.98 ± 3.21 ** (2.2) | 99.41 ± 28.67 *** (13.4) |
Cell Line | Type | Transporter Expressed | IC50 (μM) † | RF ‡ |
---|---|---|---|---|
KB-3-1 | epidermal | - | 10.53 ± 3.23 | 1.0 |
KB-V1 | epidermal | ABCB1 | 13.74 ± 2.91 | 1.3 |
OVCAR-8 | ovarian | - | >35 | 1.0 |
NCI-ADR-RES | ovarian | ABCB1 | >35 | 1.0 |
S1 | colon | - | 12.18 ± 2.90 | 1.0 |
S1-M1-80 | colon | ABCG2 | 11.98 ± 1.22 | 1.0 |
H460 | lung | - | 14.09 ± 2.45 | 1.0 |
H460-MX20 | lung | ABCG2 | 12.17 ± 1.95 | 0.9 |
pcDNA-HEK293 | - | - | 29.52 ± 7.63 | 1.0 |
MDR19-HEK293 | - | ABCB1 | 30.98 ± 7.76 | 1.0 |
R482-HEK293 | - | ABCG2 | 28.64 ± 5.07 | 1.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-P.; Lusvarghi, S.; Wang, J.-C.; Hsiao, S.-H.; Huang, Y.-H.; Hung, T.-H.; Ambudkar, S.V. The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int. J. Mol. Sci. 2020, 21, 238. https://doi.org/10.3390/ijms21010238
Wu C-P, Lusvarghi S, Wang J-C, Hsiao S-H, Huang Y-H, Hung T-H, Ambudkar SV. The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. International Journal of Molecular Sciences. 2020; 21(1):238. https://doi.org/10.3390/ijms21010238
Chicago/Turabian StyleWu, Chung-Pu, Sabrina Lusvarghi, Jyun-Cheng Wang, Sung-Han Hsiao, Yang-Hui Huang, Tai-Ho Hung, and Suresh V. Ambudkar. 2020. "The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs" International Journal of Molecular Sciences 21, no. 1: 238. https://doi.org/10.3390/ijms21010238
APA StyleWu, C. -P., Lusvarghi, S., Wang, J. -C., Hsiao, S. -H., Huang, Y. -H., Hung, T. -H., & Ambudkar, S. V. (2020). The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. International Journal of Molecular Sciences, 21(1), 238. https://doi.org/10.3390/ijms21010238