Caveolin as a Universal Target in Dermatology
Abstract
:1. Introduction
2. Caveolin-1 (Cav-1) in the Hippo Pathway
3. Role of Cholesterol in Caveolae Stability and Cav-1 Expression
4. Some Reasons for Cav-1 Deficiency
4.1. Prevalence of Immature Cells in the Tissue
4.2. Processes of De- and Re-Differentiation in Dermal White Adipose Tissue (dWAT)
4.3. Modification of Cholesterol in Plasma Membrane
4.4. Non-Physiological Autophagy
5. Cav-1 as a Target in a Variety of Pathological Cutaneous Conditions
6. Approaches to Regulate Cav-1 Expression Levels
7. Role of Cav-1 in Drug Resistance
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Navarro, A.; Anand-Apte, B.; Parat, M.O. A role for caveolae in cell migration. FASEB J. 2004, 18, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.L.; Scherer, P.E. Caveolin-1 as a pathophysiological factor and target in psoriasis. NPJ Aging Mech. Dis. 2019, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.L.; Scherer, P.E. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen. Med. 2019, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.L.; Scherer, P.E. Caveolin-1 expression as an etiopathogenic factor in acne. Exp. Dermatol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kruglikov, I.L.; Zhang, Z.; Scherer, P.E. Caveolin-1 in skin aging—From innocent bystander to major contributor. Ageing Res. Rev. 2019, 55, 100959. [Google Scholar] [CrossRef] [PubMed]
- Crewe, C.; Joffin, N.; Rutkowski, J.M.; Kim, M.; Zhang, F.; Towler, D.A.; Gordillo, R.; Scherer, P.E. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 2018, 175, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Grande-García, A.; Echarri, A.; de Rooij, J.; Alderson, N.B.; Waterman-Storer, C.M.; Valdivielso, J.M.; del Pozo, M.A. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell Biol. 2007, 177, 683–694. [Google Scholar] [CrossRef] [Green Version]
- Rhim, J.H.; Kim, J.H.; Yeo, E.J.; Kim, J.C.; Park, S.C. Caveolin-1 as a novel indicator of wound-healing capacity in aged human corneal epithelium. Mol. Med. 2010, 16, 527–534. [Google Scholar] [CrossRef]
- Yang, R.; Wang, J.; Zhou, Z.; Qi, S.; Ruan, S.; Lin, Z.; Xin, Q.; Lin, Y.; Chen, X.; Xie, J. Role of caveolin-1 in epidermal stem cells during burn wound healing in rats. Dev. Biol. 2019, 445, 271–279. [Google Scholar] [CrossRef]
- Bitar, M.S.; Abdel-Halim, S.M.; Al-Mulla, F. Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: Implications for evidence-based therapy of delayed wound healing in diabetes. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E951–E963. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.X.; Zhao, B.; Guan, K.L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015, 163, 811–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Li, C.; Yang, J.; Wang, X.; Li, R.; Luo, S.; Li, Z.; Liu, J.; Liu, Z.; Zheng, Y. Yes-associated protein promotes the abnormal proliferation of psoriatic keratinocytes via an amphiregulin dependent pathway. Sci. Rep. 2018, 8, 14513. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Byun, M.R.; Furutani-Seiki, M.; Hong, J.H.; Jung, H.S. YAP and TAZ regulate skin wound healing. J. Investig. Dermatol. 2014, 134, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Zheng, Y.; Zhang, J.; Li, Z.; Zhou, J.; Ying, Z. Expression of YAP in the skin lesions of lichen planus. Clin. Res. Dermatol. 2016, 3, 1–4. [Google Scholar]
- Meng, Z.; Moroishi, T.; Guan, K.L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016, 30, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rausch, V.; Bostrom, J.R.; Park, J.; Bravo, I.R.; Feng, Y.; Hay, D.C.; Link, B.A.; Hansen, C.G. The Hippo pathway regulates caveolae expression and mediates flow response via caveolae. Curr. Biol. 2019, 29, 242–255. [Google Scholar] [CrossRef]
- Schlegelmilch, K.; Mohseni, M.; Kirak, O.; Pruszak, J.; Rodriguez, J.R.; Zhou, D.; Kreger, B.T.; Vasioukhin, V.; Avruch, J.; Brummelkamp, T.R.; et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 2011, 144, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Vicente, R.; Pavón, D.M.; Martín-Padura, I.; Català-Montoro, M.; Díez-Sánchez, A.; Quílez-Álvarez, A.; López, J.A.; Sánchez-Álvarez, M.; Vázquez, J.; Strippoli, R.; et al. Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP. Cell Rep. 2018, 25, 1622–1635. [Google Scholar] [CrossRef] [Green Version]
- Hayer, A.; Stoeber, M.; Ritz, D.; Engel, S.; Meyer, H.H.; Helenius, A. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J. Cell Biol. 2010, 191, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Subczynski, W.K.; Pasenkiewicz-Gierula, M.; Widomska, J.; Mainali, L.; Raguz, M. High cholesterol/low cholesterol: Effects in biological membranes: A review. Cell Biochem. Biophys. 2017, 75, 369–385. [Google Scholar] [CrossRef]
- Busija, A.R.; Patel, H.H.; Insel, P.A. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: Implications for cell physiology. American Journal of Physiology. Cell Physiol. 2017, 312, C459–C477. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Choi, D.I.; Choi, J.Y.; Kim, S.O.; Cho, K.A.; Lee, J.B.; Yun, S.J.; Lee, S.C. Methyl-β-cyclodextrin up-regulates collagen I expression in chronologically-aged skin via its anti-caveolin-1 activity. Oncotarget 2015, 6, 1942–1953. [Google Scholar] [CrossRef] [PubMed]
- Von Erlach, T.C.; Bertazzo, S.; Wozniak, M.A.; Horejs, C.M.; Maynard, S.A.; Attwood, S.; Robinson, B.K.; Autefage, H.; Kallepitis, C.; del Río Hernández, A.; et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat. Mater. 2018, 17, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Roelandt, T.; Giddelo, C.; Heughebaert, C.; Denecker, G.; Hupe, M.; Crumrine, D.; Kusuma, A.; Haftek, M.; Roseeuw, D.; Declercq, W.; et al. The “caveolae brake hypothesis” and the epidermal barrier. J. Investig. Dermatol. 2009, 129, 927–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, J.; Lin, H.; Fritch, M.R.; Tuan, R.S. Influence of cholesterol/caveolin-1/caveolae homeostasis on membrane properties and substrate adhesion characteristics of adult human mesenchymal stem cells. Stem Cell Res. Ther. 2018, 9, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean-Louis, S.; Akare, S.; Ali, M.A.; Mash, E.A.; Meuillet, E.; Martinez, J.D. Deoxycholic acid induces intracellular signaling through membrane perturbations. J. Biol. Chem. 2006, 281, 14948–14960. [Google Scholar] [CrossRef] [Green Version]
- Scherer, P.E.; Lisanti, M.P.; Baldini, G.; Sargiacomo, M.; Mastick, C.C.; Lodish, H.F. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol. 1994, 127, 1233–1243. [Google Scholar] [CrossRef]
- Palacios-Ortega, S.; Varela-Guruceaga, M.; Milagro, F.I.; Martínez, J.A.; de Miguel, C. Expression of Caveolin 1 is enhanced by DNA demethylation during adipocyte differentiation. Status of insulin signaling. PLoS ONE 2014, 9, e95100. [Google Scholar] [CrossRef]
- Sotgia, F.; Williams, T.M.; Cohen, A.W.; Minetti, C.; Pestell, R.G.; Lisanti, M.P. Caveolin-1-deficient mice have an increased mammary stem cell population with upregulation of Wnt/β-catenin signaling. Cell Cycle 2005, 4, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.; Tuan, R.S. The less-often-traveled surface of stem cells: Caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Res. Ther. 2013, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Tseng, C.; Zhang, Y.; Sirin, O.; Corn, P.G.; Li-Ning-Tapia, E.M.; Troncoso, P.; Davis, J.; Pettaway, C.; Ward, J.; et al. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat. Commun. 2016, 7, 11674. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.H.; Lin, H.K.; Lin, I.H.; Chiou, Y.W.; Chen, H.W.; Liu, C.Y.; Harn, H.I.C.; Chiu, W.T.; Wang, Y.K.; Shen, M.R.; et al. Mechanical phenotype of cancer cells: Cell softening and loss of stiffness sensing. Oncotarget 2015, 6, 20946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, Y.; Hu, L.; Nguyen, T.; Fong, C.; Zhang, J.; Guo, P.; Bikle, D.D. Vitamin D receptor is required for proliferation, migration, and differentiation of epidermal stem cells and progeny during cutaneous wound repair. J. Investig. Dermatol. 2018, 138, 2423–2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekoninck, S.; Blanpain, C. Stem cell dynamics, migration and plasticity during wound healing. Nat. Cell Biol. 2019, 21, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragona, M.; Dekoninck, S.; Rulands, S.; Lenglez, S.; Mascré, G.; Simons, B.D.; Blanpain, C. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 2017, 8, 14684. [Google Scholar] [CrossRef] [Green Version]
- Volonte, D.; Liu, Y.; Galbiati, F. The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. FASEB J. 2005, 19, 237–239. [Google Scholar] [CrossRef]
- Guerrero-Juarez, C.F.; Plikus, M.V. Emerging nonmetabolic functions of skin fat. Nat. Rev. Endocrinol. 2018, 14, 163–173. [Google Scholar] [CrossRef]
- Kruglikov, I.L.; Zhang, Z.; Scherer, P.E. The role of immature and mature adipocytes in hair cycling. Trends Endocrinol. Metab. 2018, 30, 93–105. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, M.; Hepler, C.; Zi, Z.; Zhao, S.; An, Y.A.; Zhu, Y.; Ghaben, A.L.; Wang, M.Y.; Li, N.; et al. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J. Clin. Investig. 2019, 129, 5327–5342. [Google Scholar] [CrossRef]
- Pohl, J.; Ring, A.; Ehehalt, R.; Schulze-Bergkamen, H.; Schad, A.; Verkade, P.; Stremmel, W. Long-chain fatty acid uptake into adipocytes depends on lipid raft function. Biochemistry 2004, 43, 4179–4187. [Google Scholar] [CrossRef] [PubMed]
- Pilch, P.F.; Liu, L. Fat caves: Caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol. Metab. 2011, 22, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Scott, E.J.; MacCardle, R.C. Keratinization of the duct of the sebaceous gland and growth cycle of the hair follicle in the histogenesis of acne in human skin. J. Investig. Dermatol. 1956, 27, 405–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoorl, W.J.; van Baar, H.J.; Kerkhof, P.C. The hair root pattern in psoriasis of the scalp. Acta Derm. Venereol. 1992, 72, 141–142. [Google Scholar]
- Kasumagić-Halilović, E.; Prohić, A.; Begović, B. TrichoScan as a method to determine hair root pattern in patients with scalp psoriasis. Acta Dermatovenerol. Croat. 2010, 18, 146–150. [Google Scholar]
- Self-Medlin, Y.; Byun, J.; Jacob, R.F.; Mizuno, Y.; Mason, R.P. Glucose promotes membrane cholesterol crystalline domain formation by lipid peroxidation. Biochim. Biophys. Acta 2009, 1788, 1398–1403. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Juliet, P.A.; Miyazaki, A.; Ignarro, L.J.; Iguchi, A. High glucose downregulates the number of caveolae in monocytes through oxidative stress from NADPH oxidase: Implications for atherosclerosis. Biochim. Biophys. Acta 2007, 1772, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Tekin, S.N.; Tekin, I.O.; Barut, F.; Sipahi, Y.E. Accumulation of oxidized low-density lipoprotein in psoriatic skin and changes of plasma lipid levels in psoriatic patients. Mediat. Inflamm. 2007, 2007, 78454. [Google Scholar]
- Shih, C.M.; Huang, C.Y.; Wang, K.H.; Huang, C.Y.; Wei, P.L.; Chang, Y.J.; Hsieh, C.K.; Liu, K.T.; Lee, A.W. Oxidized low-density lipoprotein-deteriorated psoriasis is associated with the upregulation of Lox-1 receptor and Il-23 expression in vivo and in vitro. Int. J. Mol. Sci. 2018, 19, 2610. [Google Scholar] [CrossRef] [Green Version]
- Blair, A.; Shaul, P.W.; Yuhanna, I.S.; Conrad, P.A.; Smart, E.J. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J. Biol. Chem. 1999, 274, 32512–32519. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bai, Y.; Zhao, X.; Ru, J.; Kang, N.; Tian, T.; Tang, L.; An, Y.; Li, P. oxLDL-mediated cellular senescence is associated with increased NADPH oxidase p47phox recruitment to caveolae. Biosci. Rep. 2018, 38, BSR20180283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lijnen, P.; Echevaria-Vazquez, D.; Petrov, V. Influence of cholesterol-lowering on plasma membrane lipids and function. Methods Find. Exp. Clin. Pharmacol. 1996, 18, 123–136. [Google Scholar] [PubMed]
- Salna, M.P.; Singer, H.M.; Dana, A.N. Pravastatin-induced eczematous eruption mimicking psoriasis. Case Rep. Dermatol. Med. 2017, 2017, 3418204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelat, M.; Dessy, C.; Massion, P.; Desager, J.P.; Feron, O.; Balligand, J.L. Rosuvastatin decreases caveolin-1 and improves nitric oxide–dependent heart rate and blood pressure variability in apolipoprotein E−/− mice in vivo. Circulation 2003, 107, 2480–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longster, A.L.; MacDougall, D.A.; Porter, K.E.; Calaghan, S. In vivo simvastatin treatment differentially affects caveolin-1 and caveolin-3 expression in the adult rat myocardium. Biophys. J. 2012, 102, 138a. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Neumayer, C.; Bolliger, M.; Domenig, C.; Piastowska-Ciesielska, A.W.; Huk, I.; Piechota-Polańczyk, A. Lower levels of Caveolin-1 and higher levels of endothelial nitric oxide synthase are observed in abdominal aortic aneurysm patients treated with simvastatin. Acta Biochim. Pol. 2018, 65, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Robenek, M.J.; Schlattmann, K.; Zimmer, K.P.; Plenz, G.; Troyer, D.; Robenek, H. Cholesterol transporter caveolin-1 transits the lipid bilayer during intracellular cycling. FASEB J. 2003, 17, 1940–1942. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Watanabe, Y.; Watanabe, T.; Komitsu, N.; Aihara, M. Decreased expression of caveolin-1 contributes to the pathogenesis of psoriasiform dermatitis in mice. J. Investig. Dermatol. 2015, 135, 2764–2774. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Wang, W.; Ni, J.; Mao, X.; Song, D.; Liu, T.; Wei, J.; Zhou, H. Role of autophagy in tumor necrosis factor-α-induced apoptosis of osteoblast cells. J. Investig. Med. 2017, 65, 1014–1020. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Ding, J.; Yin, W.; He, Y.; Yu, F.; Ye, C.; Hu, S.; Yu, Y. Increased autophagy enhances the resistance to tumor necrosis factor-alpha treatment in rheumatoid arthritis human fibroblast-like synovial cell. BioMed Res. Int. 2018, 2018, 4941027. [Google Scholar] [CrossRef]
- Pott, J.; Kabat, A.M.; Maloy, K.J. Intestinal epithelial cell autophagy is required to protect against TNF-induced apoptosis during chronic colitis in mice. Cell Host Microbe 2018, 23, 191–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshney, P.; Narasimhan, A.; Mittal, S.; Malik, G.; Sardana, K.; Saini, N. Transcriptome profiling unveils the role of cholesterol in IL-17A signaling in psoriasis. Sci. Rep. 2016, 6, 19295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshney, P.; Saini, N. PI3K/AKT/mTOR activation and autophagy inhibition plays a key role in increased cholesterol during IL-17A mediated inflammatory response in psoriasis. Biochim. Biophys. Acta 2018, 1864, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Shiroto, T.; Romero, N.; Sugiyama, T.; Sartoretto, J.L.; Kalwa, H.; Yan, Z.; Shimokawa, H.; Michel, T. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS ONE 2014, 9, e87871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Outschoorn, U.E.; Trimmer, C.; Lin, Z.; Whitaker-Menezes, D.; Chiavarina, B.; Zhou, J.; Wang, C.; Pavlides, S.; Martinez-Cantarin, M.P.; Capozza, F.; et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 2010, 9, 3515–3533. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Outschoorn, U.E.; Pavlides, S.; Whitaker-Menezes, D.; Daumer, K.M.; Milliman, J.N.; Chiavarina, B.; Migneco, G.; Witkiewicz, A.K.; Martinez-Cantarin, M.P.; Flomenberg, N.; et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 2010, 9, 2423–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Henson, E.S.; Xiao, W.; Huang, D.; McMillan-Ward, E.M.; Israels, S.J.; Gibson, S.B. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy 2016, 12, 1029–1046. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Nie, S.D.; Qu, M.L.; Zhou, D.; Wu, L.Y.; Shi, X.J.; Ma, L.R.; Li, X.; Zhou, S.L.; Wang, S.; et al. The autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astrocytes. Cell Death Dis. 2018, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Ezure, T.; Amano, S. Negative regulation of dermal fibroblasts by enlarged adipocytes through release of free fatty acids. J. Investig. Dermatol. 2011, 131, 2004–2009. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, J.; Taguchi, R.; Yamamoto, A.; Murakami, K. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis 2010, 209, 118–124. [Google Scholar] [CrossRef]
- Shi, Y.; Tan, S.H.; Ng, S.; Zhou, J.; Yang, N.D.; Koo, G.B.; McMahon, K.A.; Parton, R.G.; Hill, M.M.; del Pozo, M.A.; et al. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy 2015, 11, 769–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, N.; Liu, P.; Peng, F.; Tang, H.; Chen, Q.; Xu, R.; Dai, Y.; Lin, Y.; Xie, X.; et al. Caveolin-1, a stress-related oncotarget, in drug resistance. Oncotarget 2015, 6, 37135–37150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Wang, J.; Zhou, Z.; Qi, S.; Ruan, S.; Lin, Z.; Xin, Q.; Lin, Y.; Chen, X.; Xie, J. Curcumin promotes burn wound healing in mice by upregulating caveolin-1 in epidermal stem cells. Phytother. Res. 2018, 33, 422–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, H.; Stoppani, E.; Volonte, D.; Galbiati, F. Caveolin-1, cellular senescence and age-related diseases. Mech. Ageing Dev. 2011, 132, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Domingues, L.; Hurbain, I.; Gilles-Marsens, F.; Andre, N.; Dewulf, M.; Romao, M.; de Lesegno, C.V.; Blouin, C.; Guere, C.; Vie, K.; et al. Caveolae coupling of melanocytes signaling and mechanics is required for human skin pigmentation. bioRxiv 2019, 666388. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.A.; Ryu, S.J.; Park, J.S.; Jang, I.S.; Ahn, J.S.; Kim, K.T.; Park, S.C. Senescent phenotype can be reversed by reduction of caveolin status. J. Biol. Chem. 2003, 278, 27789–27795. [Google Scholar] [CrossRef] [Green Version]
- Sinha, B.; Köster, D.; Ruez, R.; Gonnord, P.; Bastiani, M.; Abankwa, D.; Stan, R.V.; Butler-Browne, G.; Vedie, B.; Johannes, L.; et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011, 144, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Schulze, C.; Wetzel, F.; Kueper, T.; Malsen, A.; Muhr, G.; Jaspers, S.; Blatt, T.; Wittern, K.P.; Wenck, H.; Käs, J.A. Stiffening of human skin fibroblasts with age. Biophys. J. 2010, 99, 2434–2442. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, N.; Zhou, E.H.; Lenormand, G.; Krishnan, R.; Weihs, D.; Butler, J.P.; Weitz, D.A.; Fredberg, J.J.; Kimmel, E. Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter 2012, 8, 2438–2443. [Google Scholar] [CrossRef] [Green Version]
- Samandari, M.; Abrinia, K.; Mokhtari-Dizaji, M.; Tamayol, A. Ultrasound induced strain cytoskeleton rearrangement: An experimental and simulation study. J. Biomech. 2017, 60, 39–47. [Google Scholar] [CrossRef]
- Lionetti, V.; Fittipaldi, A.; Agostini, S.; Giacca, M.; Recchia, F.A.; Picano, E. Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med. Biol. 2009, 35, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roper, J.A.; Williamson, R.C.; Bally, B.; Cowell, C.A.; Brooks, R.; Stephens, P.; Harrison, A.J.; Bass, M.D. Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1. J. Investig. Dermatol. 2015, 135, 2842–2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nethe, M.; Anthony, E.C.; Fernandez-Borja, M.; Dee, R.; Geerts, D.; Hensbergen, P.J.; Deelder, A.M.; Schmidt, G.; Hordijk, P.L. Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J. Cell Sci. 2010, 123, 1948–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Nanayakkara, G.K.; Drummer, C.; Sun, Y.; Johnson, C.; Cueto, R.; Fu, H.; Shao, Y.; Wang, L.; Yang, W.Y.; et al. Low-intensity ultrasound-induced anti-inflammatory effects are mediated by several new mechanisms including gene induction, immunosuppressor cell promotion, and enhancement of exosome biogenesis and docking. Front. Physiol. 2017, 8, 818. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Meng, C.; Shen, Y.; Ji, J.; Wang, X.; Zhou, S.; Jia, L.; Wang, Y. Caveolin-1 mediates low-intensity ultrasound-induced apoptosis via downregulation of signal transducer and activator of transcription 3 phosphorylation in laryngeal carcinoma cells. Ultrasound Med. Biol. 2016, 42, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Shindo, T.; Ito, K.; Ogata, T.; Hatanaka, K.; Kurosawa, R.; Eguchi, K.; Kagaya, Y.; Hanawa, K.; Aizawa, K.; Shiroto, T.; et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1220–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, B.K.; Lee, Y.K.; Hong, J.; Ghandehari, H.; Yun, C.O. Mild hyperthermia induced by gold nanorod-mediated plasmonic photothermal therapy enhances transduction and replication of oncolytic adenoviral gene delivery. ACS Nano 2016, 10, 10533–10543. [Google Scholar] [CrossRef]
- De Andrade Mello, P.; Bian, S.; Savio, L.E.B.; Zhang, H.; Zhang, J.; Junger, W.; Wink, M.R.; Lenz, G.; Buffon, A.; Wu, Y.; et al. Hyperthermia and associated changes in membrane fluidity potentiate P2X7 activation to promote tumor cell death. Oncotarget 2017, 8, 67254. [Google Scholar]
- Kang, Y.S.; Ko, Y.G.; Seo, J.S. Caveolin internalization by heat shock or hyperosmotic shock. Exp. Cell Res. 2000, 255, 221–228. [Google Scholar] [CrossRef]
- Kruglikov, I.L. Modeling of the spatiotemporal distribution of temperature fields in skin and subcutaneous adipose tissue after exposure to ultrasound waves of different frequencies. AIP Adv. 2017, 7, 105317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Shi, R.; Chen, S.; Wei, X.; Zhou, Q.; Wang, Y. All-trans retinoic acid inhibits the proliferation of SGC7901 cells by regulating caveolin-1 localization via the ERK/MAPK signaling pathway. Oncol. Lett. 2018, 15, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, X.; Zhou, Q.; Wang, Y.; Zhou, J.; Jiang, Q.; Wang, Y.; Zhu, H. ATRA improves endothelial dysfunction in atherosclerotic rabbits by decreasing CAV-1 expression and enhancing eNOS activity. Mol. Med. Rep. 2018, 17, 6796–6802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnik, B.C. FoxO1–the key for the pathogenesis and therapy of acne? JDDG J. Deutsch. Dermatol. Ges. 2010, 8, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, A.P.J.; Schulze, A.; Burgering, B.M. Direct control of caveolin-1 expression by FOXO transcription factors. Biochem. J. 2005, 385, 795–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, J.; Hashimoto, T.; Shoji, K.; Yoneda, K.; Tsukamoto, I.; Moriue, T.; Kubota, Y.; Kosaka, H. Dexamethasone induces caveolin-1 in vascular endothelial cells: Implications for attenuated responses to VEGF. Am. J. Physiol. Cell Physiol. 2013, 304, C790–C800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barar, J.; Campbell, L.; Hollins, A.J.; Thomas, N.P.; Smith, M.W.; Morris, C.J.; Gumbleton, M. Cell selective glucocorticoid induction of caveolin-1 and caveolae in differentiating pulmonary alveolar epithelial cell cultures. Biochem. Biophys. Res. Commun. 2007, 359, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.Y.; Kuang, S.Y.; Zheng, X.; Ling, H.Y.; Yang, Y.B.; Yan, P.K.; Li, K.; Liao, D.F. Curcumin inhibits cellular cholesterol accumulation by regulating SREBP-1/caveolin-1 signaling pathway in vascular smooth muscle cells. Acta Pharmacol. Sin. 2008, 29, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Koslowski, R.; Barth, K.; Augstein, A.; Tschernig, T.; Bargsten, G.; Aufderheide, M.; Kasper, M. A new rat type I-like alveolar epithelial cell line R3/1: Bleomycin effects on caveolin expression. Histochem. Cell Biol. 2004, 121, 509–519. [Google Scholar] [CrossRef]
- Tourkina, E.; Gooz, P.; Pannu, J.; Bonner, M.; Scholz, D.; Hacker, S.; Silver, R.M.; Trojanowska, M.; Hoffman, S. Opposing effects of protein kinase Cα and protein kinase Cϵ on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J. Biol. Chem. 2005, 280, 13879–13887. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, N.; Li, W.; Liu, P.; Chen, Q.; Situ, H.; Zhong, S.; Guo, L.; Lin, Y.; Shen, J.; et al. Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway. Carcinogenesis 2014, 35, 2346–2356. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Chen, J. Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. Int. J. Cancer 2004, 111, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Selga, E.; Morales, C.; Noé, V.; Peinado, M.A. Role of caveolin 1, E-cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells. BMC Med. Genomics 2008, 1, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, N.; Huang, C.; Bao, Y.; Jiang, Y.; Zhu, G. Downregulation of caveolin-1 increases the sensitivity of drug-resistant colorectal cancer HCT116 cells to 5-fluorouracil. Oncol. Lett. 2017, 13, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, J.; Klein, D. Caveolin-1, cancer and therapy resistance. Int. J. Cancer 2018, 143, 2092–2104. [Google Scholar] [CrossRef]
- Njar, V.C.; Gediya, L.; Purushottamachar, P.; Chopra, P.; Vasaitis, T.S.; Khandelwal, A.; Mehta, J.; Huynh, C.; Belosay, A.; Patel, J. Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases. Bioorg. Med. Chem. 2006, 14, 4323–4340. [Google Scholar] [CrossRef]
No | Drug | Effect on Cav-1 | Reference |
---|---|---|---|
1 | Retinoids | All-trans retinoic acid strongly increased Cav-1 localization in plasma membrane. Retinoic acid significantly reduced Cav-1 in endothelial cells initially having an increased Cav-1 level. Retinoic acid can induce Cav-1 in Cav-1 deficient cells through upregulation of Forkhead Box O1 (FOXO1). | [91,92,93,94] |
2 | Corticosteroids | Dexamethasone induced Cav-1 expression in endothelial cells. Dexamethasone induced Cav-1 expression in alveolar epithelial cells. | [95,96] |
3 | Curcumin | Curcumin significantly upregulated Cav-1 expression in epidermal stem cells. Genetic ablation of Cav-1 abrogated this effect. Curcumin inhibited cholesterol accumulation through stimulation of Cav-1 expression. | [73,97] |
4 | Statins | Rosuvastatin and atorvastatin reduced Cav-1 in apoE−/− mice in vivo. Simvastatin reduced Cav-1 in myocardium by 84%. Lovastatin and pravastatin strongly induced Cav-1 in macrophages. | [54,55,57] |
5 | Bleomycin (BLM) | BLM decreased Cav-1 expression in epithelial cells. Cav-1 is strongly reduced in BLM-induced lung fibrosis | [98,99] |
6 | Fluorouracil (5-FU) | 5-FU strongly upregulated Cav-1 in breast cancer cells both in vitro and in vivo. | [100] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruglikov, I.L.; Scherer, P.E. Caveolin as a Universal Target in Dermatology. Int. J. Mol. Sci. 2020, 21, 80. https://doi.org/10.3390/ijms21010080
Kruglikov IL, Scherer PE. Caveolin as a Universal Target in Dermatology. International Journal of Molecular Sciences. 2020; 21(1):80. https://doi.org/10.3390/ijms21010080
Chicago/Turabian StyleKruglikov, Ilja L., and Philipp E. Scherer. 2020. "Caveolin as a Universal Target in Dermatology" International Journal of Molecular Sciences 21, no. 1: 80. https://doi.org/10.3390/ijms21010080
APA StyleKruglikov, I. L., & Scherer, P. E. (2020). Caveolin as a Universal Target in Dermatology. International Journal of Molecular Sciences, 21(1), 80. https://doi.org/10.3390/ijms21010080