The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management
Abstract
:1. Introduction
2. Large Intestine Innervation as a Physiological NP Source
3. Alterations in Large Intestine Innervation during CRC
3.1. Morphological Changes in Innervation and Neuropeptide Panel in CRC
3.2. The Perineural Invasion (PNI) in CRC
3.3. Functional Innervation Disorders in CRC
4. NPs and Their Mechanisms of Action in Pre-Cancerous Alterations and Colonic Inflammation
5. Basic Steps of Colorectal Cancer Metastasis—Role of Neurotransmitters, Neuropeptides, and Neurotrophins
5.1. Proliferation, Migration, and Invasion of CRC cells
5.1.1. Neurotransmitters (Nts)
5.1.2. Neuropeptides
Angiotensin II (ANG II)
Endothelins (ETs)
Galanin (Gal)
Gastrin/Progastrin
Neuromedins, Neuropeptide Y (NPY) and Substance P (SP)
Vasoactive Intestinal Polypeptide (VIP)/Pituitary Adenylate Cyclase-Activating Peptide (PACAP)
Corticotropin-Releasing Hormone/Factor (CRH/CRF)
Glucagon (GCG) and Glucagon-Like Peptide 1 (GLP1) and GLP2
Somatostatin (SM)
5.1.3. Neurotrophins (Ntt)
5.2. Colorectal Cancer Cell–Cell and Cell–Extracellular Matrix Loss of Adhesion
5.3. Epithelial to Mesenchymal Transition (EMT) in CRC
5.4. Angiogenesis in CRC
6. Role of Circulating Tumor Cells (CTC) in Liver Metastasis
7. Tissue Expression of NP System Components in CRC and Liver Metastasis
8. Serum Levels of NP System Components in CRC and Liver Metastasis
9. Genetic and Epigenetic Changes of Selected NPs and CRC Liver Metastasis
10. Targeting NP/NP-R System in CRC Liver Metastasis Molecular Therapy
11. The Main Headlines of the Review
12. Conclusions
- Studies on the role of NP/NP-Rs in the promotion of the invasion-metastasis cascade in CRC, show the complexity of brain–large intestine–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). More research is needed to understand the exact mechanisms of neuronal-tumor cells communication.
- Many steps of CRC promotion, progression and liver metastasis are connected to the activity of pro-inflammatory (CRHR1, NPY, NT), anti-inflammatory (CGRP, CRHR2, VIP) or dual role (SP) NPs, regulation of the local immunological profile (CRH/CRHRs), dysfunctions of the protective/enterotrophic role of NPs on epithelial cells (NT/NTSR system), structural-functional changes in ENS innervation of the large intestine in CRC (including PNI), or other tumor-promoting factors (bacterial GIT infections, such as H. pylori).
- The knowledge on the mechanisms regulating tumor growth and different steps of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. For obtaining the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well as the development of broad-spectrum antagonists.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
aa | amino acids |
APUD | Amine Precursor Uptake and Decarboxylation |
CI | Confidence Interval |
ACE | Angiotensin I Converting Enzyme |
AKT | Serine-threonine Protein Kinase (now called AKT1) |
AT1R/2R | Angiotensin 1/2 receptors |
BBS | Bombesin |
CCK-BR (CCK2R) | Cholecystokinin-B/gastrin Receptor |
c-Met | Tyrosine-protein Kinase Met or Hepatocyte Growth Factor Receptor |
CN | Cranial Nerve |
CRC | Colorectal Carcinoma |
CRHR1/CRHR2 | Corticotropin-releasing Hormone (Factor) Receptors |
CSS | Cancer-Specific Survival |
DFS | Disease-free Survival |
ECs | Endothelial Cells |
ECM | Extracellular Matrix |
EECs | Enteroendocrine cells |
EGF/R | Epidermal Growth Factor/Receptor |
EMT | Epithelial-mesenchymal Transition |
ERK1/2 | Extracellular Signal-regulated Kinase 1/2 |
ET/AR/BR | Endothelin/Receptor A/B |
FAK | Focal Adhesion Kinase |
GC | Gastric Cancer |
GCG | Glucagon |
GLP1/2/R | Glucagon-Like Peptides/Receptor |
GPCR | G Protein-coupled Receptors |
GPR56 | G Protein-coupled Receptor 56 |
GRP/R | Gastrin-Releasing Peptide/Receptor |
HB-EGF | Heparin-binding EGF-like Growth Factor |
HR | Hazard Ratio |
HSCs | Hepatic Stellate Cells |
5HT3/4 –5HT | Serotonin Receptors |
IL | Interleukin |
LM | Liver Metastasis |
MAPK | Mitogen-activated Protein Kinase (originally called ERK) |
MMP2, -7, -9 | Matrix mmetalloproteinase 2, -7, -9 |
NET | Neuroendocrine Tumor |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NK-1R | Neurokinin1 Receptor |
NmB/R | Neuromedin B/Receptor |
NT/NTSR1 | Neurotensin/NT Receptor 1 |
OR | Odds Ratio |
OS | Overall Survival |
PFS | Progression-free Survival |
PI3 | Phosphatidylinositol 3-kinase |
PKA, B (AKT), C | Protein Kinase A, B (AKT), C |
PG | Progastrin |
PP | Pancreatic Peptide |
PYY | Peptide YY |
RFS | Recurrence-free Survival |
SM | Somatostatin |
SP | Substance P |
Sst | Somatostatin Receptors |
TAC1 | Tachykinin-1 |
TAMs | Tumor-Associated Macrophages |
TECs | Tumor Endothelial Cells |
TGF-α, β | Transforming Growth Factor α, β |
TNF-α | Tumor Necrosis Factor α |
TNM | T—primary tumor, N—regional lymph nodes, M—distant metastasis |
TrK | Tropomyosin-related Kinase |
VEGF | Vascular Endothelial Growth Factor |
VIP | Vasoactive Intestinal Peptide |
VPAC1 | VIP Receptor 1 |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef]
- Engstrand, J.; Nilsson, H.; Strömberg, C.; Jonas, E.; Freedman, J. Colorectal cancer liver metastases—A population-based study on incidence, management and survival. BMC Cancer 2018, 18, 78. [Google Scholar] [CrossRef]
- Engstrand, J.; Strömberg, C.; Nilsson, H.; Freedman, J.; Jonas, E. Synchronous and metachronous liver metastases in patients with colorectal cancer-towards a clinically relevant definition. World J. Surg. Oncol. 2019, 17, 228. [Google Scholar] [CrossRef]
- Xu, F.; Tang, B.; Jin, T.Q.; Dai, C.L. Current status of surgical treatment of colorectal liver metastases. World J. Clin. Cases 2018, 6, 716–734. [Google Scholar] [CrossRef]
- De Ridder, J.; de Wilt, J.H.; Simmer, F.; Overbeek, L.; Lemmens, V.; Nagtegaal, I. Incidence and origin of histologically confirmed liver metastases: An explorative case-study of 23,154 patients. Oncotarget 2016, 7, 55368–55376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milette, S.; Sicklick, J.K.; Lowy, A.M.; Brodt, P. Molecular pathways: Targeting the microenvironment of liver metastases. Clin. Cancer Res. 2017, 23, 6390–6399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valderrama-Treviño, A.; Barrera-Mera, B.; Ceballos-Villalva, J.C.; Montalvo-Javé, E.E. Hepatic Metastasis from colorectal cancer. Euroasian J. Hepatogastroenterol. 2017, 7, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Liu, Y.; Zhang, C.; Li, H.; Lai, B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population-based analysis. Cancer Med. 2020, 9, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.; Gao, W.; Lu, Y.; Lan, H.; Teng, L.; Cao, F. Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol. Lett. 2012, 3, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Davis, C.; Ryan, J.; Janney, C.; Peña, M.M. Development and characterization of a reliable mouse model of colorectal cancer metastasis to the liver. Clin. Exp. Metastasis 2013, 30, 903–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadahiro, S.; Suzuki, T.; Tanaka, A.; Okada, K.; Kamata, H. Hematogenous metastatic patterns of curatively resected colon cancer were different from those of stage IV and autopsy Cases. Jpn. J. Clin. Oncol. 2013, 43, 444–447. [Google Scholar] [CrossRef]
- De Greef, K.; Rolfo, C.; Russo, A.; Chapelle, T.; Bronte, G.; Passiglia, F.; Coelho, A.; Papadimitriou, K.; Peeters, M. Multisciplinary management of patients with liver metastasis from colorectal cancer. World J. Gastroenterol. 2016, 22, 7215–7225. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Feng, Y.; Sun, Y.; Ji, D.; Qian, W.; Zhang, Z.; Wang, Q.; Zhang, Y.; Zhang, C.; Sun, Y. GPR56 promotes proliferation of colorectal cancer cells and enhances metastasis via epithelial-mesenchymal transition through PI3K/AKT signaling activation. Oncol. Rep. 2018, 40, 1885–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dörr, N.M.; Bartels, M.; Morgul, M.H. Current treatment of colorectal liver metastasis as a chronic disease. Anticancer Res. 2020, 40, 1–7. [Google Scholar] [CrossRef]
- Xu, X.T.; Xu, B.; Song, Q.B.; Zeng, H. The role of neural-related factors in the metastasis of the gastrointestinal cancer. J. Cancer Res. Ther. 2013, 9, S123–S128. [Google Scholar] [CrossRef]
- Kuol, N.; Stojanovska, L.; Apostolopoulos, V.; Nurgali, K. Role of the nervous system in cancer metastasis. J. Exp. Clin. Cancer Res. 2018, 37, 5. [Google Scholar] [CrossRef] [Green Version]
- Brodt, P. Role of the microenvironment in liver metastasis: From Pre- to Prometastatic Niches. Clin. Cancer Res. 2016, 22, 5971–5982. [Google Scholar] [CrossRef] [Green Version]
- Williamson, T.; Sultanpuram, N.; Sendi, H. The role of liver microenvironment in hepatic metastasis. Clin. Transl. Med. 2019, 8, 21. [Google Scholar] [CrossRef]
- Pretzsch, E.; Bösch, F.; Neumann, J.; Ganschow, P.; Bazhin, A.; Guba, M.; Werner, J.; Angele, M. Mechanisms of metastasis in colorectal cancer and metastatic organotropism: Hematogenous versus peritoneal spread. J. Oncol. 2019, 2019, 7407190. [Google Scholar] [CrossRef] [PubMed]
- Teeuwssen, M.; Fodde, R. Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer. Cancers 2019, 11, 1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugen, N.; van de Velde, C.J.; de Wilt, J.H.; Nagtegaal, I.D. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann. Oncol. 2014, 25, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Shimomoto, T.; Ohmori, H.; Luo, Y.; Chihara, Y.; Denda, A.; Sasahira, T.; Tatsumoto, N.; Fujii, K.; Kuniyasu, H. Diabetes-associated angiotensin activation enhances liver metastasis of colon cancer. Clin. Exp. Metastasis. 2012, 29, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, P.; Xuan, J.; Zhu, C.; Liu, J.; Shan, L.; Du, Q.; Ren, Y.; Ye, J. Cholesterol enhances colorectal cancer progression via ROS elevation and MAPK signaling pathway activation. Cell Physiol. Biochem. 2017, 42, 729–742. [Google Scholar] [CrossRef]
- Mohr, A.M.; Gould, J.J.; Kubik, J.L.; Talmon, G.A.; Casey, C.A.; Thomas, P.; Tuma, D.J.; McVicker, B.L. Enhanced colorectal cancer metastases in the alcohol-injured liver. Clin. Exp. Metastasis 2017, 34, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Pandanaboyana, S.; Daniels, I.; Smart, N.; Prasad, K.R. Obesity and colorectal liver metastases: Mechanisms and management. Surg. Oncol. 2016, 25, 246–251. [Google Scholar] [CrossRef]
- Albo, D.; Akay, C.L.; Marshall, C.L.; Wilks, J.A.; Verstovsek, G.; Liu, H.; Agarwal, N.; Berger, D.H.; Ayala, G.E. Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 2011, 117, 4834–4845. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, X.; Sun, J.; Gao, P.; Song, Y.; Chen, X.; Zhao, J.; Wang, Z. Prognostic value of perineural invasion in colorectal cancer: A meta-analysis. J. Gastrointest. Surg. 2015, 19, 1113–1122. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Zhou, H.; Qian, Y.; Han, N.; Tian, X.; Pan, L.; Li, Y. The long noncoding RNA, LINC01555, promotes invasion and metastasis of colorectal cancer by activating the neuropeptide, Neuromedin U. Med. Sci. Monit. 2019, 25, 4014–4024. [Google Scholar] [CrossRef]
- De Wied, D. Peptide hormones and neuropeptides: Birds of a feather. Trends Neurosci. 2000, 23, 113. [Google Scholar] [CrossRef]
- Hillebrand, J.J.; de Wied, D.; Adan, R.A. Neuropeptides, food intake and body weight regulation: A hypothalamic focus. Peptides 2002, 23, 2283–2306. [Google Scholar] [CrossRef]
- Burbach, J.P. Neuropeptides from concept to online database www.neuropeptides.nl. Eur. J. Pharmacol. 2010, 626, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Burbach, J.P. What are neuropeptides? Methods Mol. Biol. 2011, 789, 1–36. [Google Scholar] [CrossRef]
- Hallberg, M. Neuropeptides: Metabolism to bioactive fragments and the pharmacology of their receptors. Med. Res. Rev. 2015, 3, 464–519. [Google Scholar] [CrossRef]
- Hökfelt, T.; Bartfai, T.; Bloom, F. Neuropeptides: Opportunities for drug discovery. Lancet Neurol. 2003, 8, 463–472. [Google Scholar] [CrossRef]
- Kastin, A.J. What is a neuropeptide? Trends Neurosci. 2000, 23, 113–114. [Google Scholar] [CrossRef]
- Heasley, L.E. Autocrine and paracrine signaling through neuropeptide receptors in human Cancer. Oncogene 2001, 20, 1563–1569. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, D.; Bartfai, T. Neuropeptides and neuropeptide receptors: Drug targets, and peptide and non-peptide ligands: A tribute to Prof. Dieter Seebach. Chem. Biodivers 2012, 9, 2367–2387. [Google Scholar] [CrossRef]
- Moody, T.W.; Ramos-Alvarez, I.; Jensen, R.T. Neuropeptide G protein-coupled receptors as oncotargets. Front. Endocrinol. 2018, 9, 345. [Google Scholar] [CrossRef] [Green Version]
- Nässel, D.R.; Zandawala, M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog. Neurobiol. 2019, 179, 101607. [Google Scholar] [CrossRef] [PubMed]
- Neuropeptides Family. Available online: https://www.neuropeptides.nl (accessed on 1 April 2020).
- Romanova, E.V.; Sweedler, J.V. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol. Sci. 2015, 36, 579–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, K.J.; Pothoulakis, C. Role of neuropeptides in inflammatory bowel disease. Inflamm. Bowel Dis. 2007, 13, 918–932. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Yong, X.; Xie, R.; Li, Q.W.; Yang, S.M. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (review). Int. J. Oncol. 2014, 44, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Moody, T.W.; Nuche-Berenguer, B.; Jensen, R.T. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and Cancer. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Westwood, D.A.; Patel, O.; Christophi, C.; Shulkes, A.; Baldwin, G.S. Progastrin: A potential predictive marker of liver metastasis in colorectal Cancer. Int. J. Colorectal Dis. 2017, 32, 1061–1064. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, K.S.; Kim, K.J.; Park, I.J.; Lee, J.L.; Myung, S.J.; Park, Y.; Park, Y.S.; Yu, C.S.; Kim, J.C.; et al. Non-L-cell immunophenotype and large tumor size in rectal neuroendocrine tumors are associated with aggressive clinical behavior and worse prognosis. Am. J. Surg. Pathol. 2015, 39, 632–643. [Google Scholar] [CrossRef]
- Kontovounisios, C.; Qiu, S.; Rasheed, S.; Darzi, A.; Tekkis, P. The role of neurotensin as a novel biomarker in the endoscopic screening of high-risk population for developing colorectal neoplasia. Updates Surg. 2017, 69, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol. 2014, 817, 39–71. [Google Scholar] [CrossRef]
- Fornai, M.; van den Wijngaard, R.M.; Antonioli, L.; Pellegrini, C.; Blandizzi, C.; de Jonge, W.J. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol. Motil. 2018, 30, e13406. [Google Scholar] [CrossRef]
- Brinkman, D.J.; Ten Hove, A.S.; Vervoordeldonk, M.J.; Luyer, M.D.; de Jonge, W.J. Neuroimmune interactions in the gut and their significance for intestinal immunity. Cells 2019, 8, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grider, J.R. Gastrin-releasing peptide is a modulatory neurotransmitter of the descending phase of the peristaltic reflex. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G1109–G1115. [Google Scholar] [CrossRef] [PubMed]
- Monstein, H.J.; Grahn, N.; Truedsson, M.; Ohlsson, B. Progastrin-releasing peptide and gastrin-releasing peptide receptor mRNA expression in non-tumor tissues of the human gastrointestinal tract. World J. Gastroenterol. 2006, 12, 2574–2578. [Google Scholar] [CrossRef] [PubMed]
- Bulut, K.; Felderbauer, P.; Deters, S.; Hoeck, K.; Schmidt-Choudhury, A.; Schmidt, W.E.; Hoffmann, P. Sensory neuropeptides and epithelial cell restitution: The relevance of SP- and CGRP-stimulated mast cells. Int. J. Colorectal Dis. 2008, 23, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Gonkowski, S.; Rytel, L. Somatostatin as an Active Substance in the Mammalian Enteric Nervous System. Int. J. Mol. Sci. 2019, 20, 4461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azriel, Y.; Liu, L.; Burcher, E. Complex actions of neurotensin in ascending and sigmoid colonic muscle: Involvement of enteric mediators. Eur. J. Pharmacol. 2010, 644, 195–202. [Google Scholar] [CrossRef]
- Mustain, W.C.; Rychahou, P.G.; Evers, B.M. The role of neurotensin in physiologic and pathologic processes. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 75–82. [Google Scholar] [CrossRef]
- Furness, J.B. Integrated neural and endocrine control of gastrointestinal function. Adv. Exp. Med. Biol. 2016, 891, 159–173. [Google Scholar] [CrossRef]
- Gunawardene, A.R.; Corfe, B.M.; Staton, C.A. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int. J. Exp. Pathol. 2011, 92, 219–231. [Google Scholar] [CrossRef]
- Billing, L.J.; Larraufie, P.; Lewis, J.; Leiter, A.; Li, J.; Lam, B.; Yeo, G.S.; Goldspink, D.A.; Kay, R.G.; Gribble, F.M.; et al. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice—Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol. Metab. 2019, 29, 158–169. [Google Scholar] [CrossRef]
- Li, S.; Sun, Y.; Gao, D. Role of the nervous system in cancer metastasis. Oncol. Lett. 2013, 5, 1101–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saloman, J.L.; Albers, K.M.; Rhim, A.D.; Davis, B.M. Can stopping nerves, stop cancer? Trends Neurosci. 2016, 39, 880–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, S.; Crowe, R.; Loizidou, M.C.; Turmaine, M.; Taylor, I.; Burnstock, G. The absence of autonomic perivascular nerves in human colorectal liver metastases. Br. J. Cancer 1996, 73, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godlewski, J.; Kaleczyc, J. Somatostatin, substance P and calcitonin gene-related peptide-positive intramural nerve structures of the human large intestine affected by carcinoma. Folia Histochem. Cytobiol. 2010, 48, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godlewski, J.; Łakomy, I.M. Changes in vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide and neuropeptide Y-ergic structures of the enteric nervous system in the carcinoma of the human large intestine. Folia Histochem. Cytobiol. 2010, 48, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, P.; Godlewski, J.; Kieżun, J.; Kraziński, B.E.; Kmieć, Z. Colorectal cancer patients exhibit increased levels of galanin in serum and colon tissues. Oncol. Lett. 2016, 12, 3323–3329. [Google Scholar] [CrossRef] [Green Version]
- Godlewski, J.; Pidsudko, Z. Characteristic of galaninergic components of the enteric nervous system in the cancer invasion of human large intestine. Ann. Anat. 2012, 194, 368–372. [Google Scholar] [CrossRef]
- Zauszkiewicz-Pawlak, A.; Godlewski, J.; Kwiatkowski, P.; Kmiec, Z. Ultrastructural characteristics of myenteric plexus in patients with colorectal Cancer. Folia Histochem. Cytobiol. 2017, 55, 6–10. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhang, B.Y.; Zhou, B.; Zhu, C.Z.; Sun, L.Q.; Feng, Y.J. Perineural invasion of cancer: A complex crosstalk between cells and molecules in the perineural niche. Am. J. Cancer Res. 2019, 9, 1–21. [Google Scholar]
- Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural invasion in cancer: A review of the literature. Cancer 2009, 115, 3379–3391. [Google Scholar] [CrossRef]
- Liebig, C.; Ayala, G.; Wilks, J.; Verstovsek, G.; Liu, H.; Agarwal, N.; Berger, D.H.; Albo, D. Perineural invasion is an independent predictor of outcome in colorectal cancer. J. Clin. Oncol. 2009, 27, 5131–5137. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, H.; Hata, K.; Ushiku, T.; Kawai, K.; Tanaka, T.; Shuno, Y.; Nishikawa, T.; Sasaki, K.; Emoto, S.; Kaneko, M.; et al. Accelerated perineural invasion in colitis-associated cancer: A retrospective cohort study. Medicine 2019, 98, e17570. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, H.; Gong, H.; Cao, M.; Zhang, G.; Wang, Y. Clinical significance of perineural invasion in stages II and III colorectal Cancer. Pathol. Res. Pract. 2015, 211, 839–844. [Google Scholar] [CrossRef]
- Fujii, T.; Mashimo, M.; Moriwaki, Y.; Misawa, H.; Ono, S.; Horiguchi, K.; Kawashima, K. Expression and function of the cholinergic system in immune cells. Front. Immunol. 2017, 8, 1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, E.A.; Dailey, M.J. A direct effect of the autonomic nervous system on somatic stem cell proliferation? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R1–R5. [Google Scholar] [CrossRef] [PubMed]
- Merlos-Suárez, A.; Barriga, F.M.; Jung, P.; Iglesias, M.; Céspedes, M.V.; Rossell, D.; Sevillano, M.; Hernando-Momblona, X.; da Silva-Diz, V.; Muñoz, P.; et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011, 8, 511–524. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.R.; Chang, D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol. 2014, 20, 9872–9881. [Google Scholar] [CrossRef]
- Larauche, M.; Kiank, C.; Tache, Y. Corticotropin releasing factor signaling in colon and ileum: Regulation by stress and pathophysiological implications. J. Physiol. Pharmacol. 2009, 60 (Suppl. 7), 33–46. [Google Scholar]
- Konturek, P.C.; Brzozowski, T.; Konturek, S.J. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol. 2011, 62, 591–599. [Google Scholar]
- Margolis, K.G.; Gershon, M.D. Neuropeptides and inflammatory bowel disease. Curr. Opin. Gastroenterol. 2009, 25, 503–511. [Google Scholar] [CrossRef]
- Buckinx, R.; Adriaensen, D.; Nassauw, L.V.; Timmermans, J.P. Corticotrophin-releasing factor, related peptides, and receptors in the normal and inflamed gastrointestinal tract. Front. Neurosci. 2011, 5, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sideri, A.; Bakirtzi, K.; Shih, D.Q.; Koon, H.W.; Fleshner, P.; Arsenescu, R.; Arsenescu, V.; Turner, J.R.; Karagiannides, I.; Pothoulakis, C. Substance P mediates pro-inflammatory cytokine release form mesenteric adipocytes in Inflammatory Bowel Disease patients. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baritaki, S.; de Bree, E.; Chatzaki, E.; Pothoulakis, C. Chronic Stress, Inflammation, and colon cancer: A CRH system-driven molecular crosstalk. J. Clin. Med. 2019, 8, 1669. [Google Scholar] [CrossRef] [Green Version]
- Castagliuolo, I.; Wang, C.C.; Valenick, L.; Pasha, A.; Nikulasson, S.; Carraway, R.E.; Pothoulakis, C. Neurotensin is a proinflammatory neuropeptide in colonic inflammation. J. Clin. Investig. 1999, 103, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Koon, H.W.; Zhao, D.; Zhan, Y.; Simeonidis, S.; Moyer, M.P.; Pothoulakis, C. Substance P-stimulated interleukin-8 expression in human colonic epithelial cells involves protein kinase Cdelta activation. J. Pharmacol. Exp. Ther. 2005, 314, 1393–1400. [Google Scholar] [CrossRef]
- Zhao, D.; Zhan, Y.; Zeng, H.; Koon, H.W.; Moyer, M.P.; Pothoulakis, C. Neurotensin stimulates interleukin-8 expression through modulation of I kappa B alpha phosphorylation and p65 transcriptional activity: Involvement of protein kinase C alpha. Mol. Pharmacol. 2005, 67, 2025–2031. [Google Scholar] [CrossRef]
- Zhao, D.; Pothoulakis, C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 2006, 27, 2434–2444. [Google Scholar] [CrossRef]
- Kalafatakis, K.; Triantafyllou, K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. Regul. Pept. 2011, 170, 7–17. [Google Scholar] [CrossRef]
- Zhao, D.; Zhan, Y.; Koon, H.W.; Zeng, H.; Keates, S.; Moyer, M.P.; Pothoulakis, C. Metalloproteinase-dependent transforming growth factor-alpha release mediates neurotensin-stimulated MAP kinase activation in human colonic epithelial cells. J. Biol. Chem. 2004, 279, 43547–43554. [Google Scholar] [CrossRef] [Green Version]
- Bugni, J.M.; Rabadi, L.A.; Jubbal, K.; Karagiannides, I.; Lawson, G.; Pothoulakis, C. The neurotensin receptor-1 promotes tumor development in a sporadic but not an inflammation-associated mouse model of colon Cancer. Int. J. Cancer 2012, 130, 1798–1805. [Google Scholar] [CrossRef] [Green Version]
- Bakirtzi, K.; Law, I.K.; Xue, X.; Iliopoulos, D.; Shah, Y.M.; Pothoulakis, C. Neurotensin promotes the development of colitis and intestinal angiogenesis via Hif-1α-miR-210 signaling. J. Immunol. 2016, 196, 4311–4321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagiannides, I.; Pothoulakis, C. Neuropeptides, mesenteric fat, and intestinal inflammation. Ann. N. Y. Acad. Sci. 2008, 1144, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Bakirtzi, K.; Zhan, Y.; Zeng, H.; Koon, H.W.; Pothoulakis, C. Insulin-like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells. J. Biol. Chem. 2011, 286, 6092–6099. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zeng, Y.; Li, Y.; Guo, W.; Liu, J.; Ouyang, N. VPAC1 overexpression is associated with poor differentiation in colon Cancer. Tumour Biol. 2014, 35, 6397–6404. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Huerta-Yepez, S.; Law, I.K.; Baay-Guzman, G.J.; Tirado-Rodriguez, B.; Hoffman, J.M.; Iliopoulos, D.; Hommes, D.W.; Verspaget, H.W.; Chang, L.; et al. Diminished expression of CRHR2 in human colon cancer promotes tumor growth and EMT via persistent IL-6/Stat3 signaling. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 610–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Hong, Y.; Dai, L.; Qian, Y.; Zhu, C.; Wu, B.; Li, S. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis. Mol. Carcinog. 2017, 56, 2434–2445. [Google Scholar] [CrossRef]
- Pothoulakis, C.; Torre-Rojas, M.; Duran-Padilla, M.A.; Gevorkian, J.; Zoras, O.; Chrysos, E.; Chalkiadakis, G.; Baritaki, S. CRHR2/Ucn2 signaling is a novel regulator of miR-7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fas-mediated apoptosis. Int. J. Cancer 2018, 142, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Belo, A.; Cheng, K.; Chahdi, A.; Shant, J.; Xie, G.; Khurana, S.; Raufman, J.P. Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G749–G760. [Google Scholar] [CrossRef]
- Masur, K.; Niggemann, B.; Zanker, K.S.; Entschladen, F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res. 2001, 61, 2866–2869. [Google Scholar]
- Xie, G.; Cheng, K.; Shant, J.; Raufman, J.P. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G755–G763. [Google Scholar] [CrossRef] [Green Version]
- Raufman, J.P.; Cheng, K.; Saxena, N.; Chahdi, A.; Belo, A.; Khurana, S.; Xie, G. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells. Biochem. Biophys. Res. Commun. 2011, 415, 319–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, A.H.; Hu, S.; Abutaleb, A.; Watkins, T.; Cheng, K.; Chahdi, A.; Kuppusamy, P.; Saxena, N.; Xie, G.; Raufman, J.P. Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem. J. 2017, 474, 647–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocito, A.; Dahm, F.; Jochum, W.; Jang, J.H.; Georgiev, P.; Bader, M.; Graf, R.; Clavien, P.A. Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 2008, 68, 5152–5158. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Wang, Z.; Liu, J.; Zhou, C.; Chen, J. Downregulation of 5-hydroxytryptamine receptor 3A expression exerts an anticancer activity against cell growth in colorectal carcinoma cells in vitro. Oncol. Lett. 2018, 16, 6100–6108. [Google Scholar] [CrossRef] [Green Version]
- Ataee, R.; Ajdary, S.; Rezayat, M.; Shokrgozar, M.A.; Shahriari, S.; Zarrindast, M.R. Study of 5HT3 and HT4 receptor expression in HT-29 cell line and human colon adenocarcinoma tissues. Arch. Iran. Med. 2010, 13, 120–125. [Google Scholar]
- Ataee, R.; Ajdary, S.; Zarrindast, M.; Rezayat, M.; Hayatbakhsh, M.R. Anti-mitogenic and apoptotic effects of 5-HT1B receptor antagonist on HT-29 colorectal cancer cell line. J. Cancer Res. Clin. Oncol. 2010, 136, 1461–1469. [Google Scholar] [CrossRef]
- Sui, H.; Xu, H.; Ji, Q.; Liu, X.; Zhou, L.; Song, H.; Zhou, X.; Xu, Y.; Chen, Z.; Cai, J.; et al. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway. Oncotarget 2015, 6, 25975–25987. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Ager, E.I.; Neo, J.; Christophi, C. Regulation of colorectal cancer cell epithelial to mesenchymal transition by the renin angiotensin system. J. Gastroenterol. Hepatol. 2016, 31, 1773–1782. [Google Scholar] [CrossRef]
- Wang, R.; Löhr, C.V.; Fischer, K.; Dashwood, W.M.; Greenwood, J.A.; Ho, E.; Williams, D.E.; Ashktorab, H.; Dashwood, M.R.; Dashwood, R.H. Epigenetic inactivation of endothelin-2 and endothelin-3 in colon cancer. Int. J. Cancer 2013, 132, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, H.; Bishop, A.E.; Eimoto, T.; Polak, J.M. Autoradiographic localization of endothelin-1 binding sites in human colonic cancer tissue. J. Pathol. 1992, 168, 263–267. [Google Scholar] [CrossRef]
- Bagnato, A.; Rosanò, L. The endothelin axis in cancer. Int. J. Biochem. Cell Biol. 2008, 40, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.; Yanagisawa, M. Endothelin: 20 years from discovery to therapy. Can. J. Physiol. Pharmacol. 2008, 86, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Sørby, L.A.; Kleiveland, C.R.; Andersen, S.N.; Bukholm, I.R.; Jacobsen, M.B. The endothelin axis in the metastatic process of colon carcinoma. Anticancer Res. 2011, 31, 861–869. [Google Scholar] [PubMed]
- Nie, S.; Zhou, J.; Bai, F.; Jiang, B.; Chen, J.; Zhou, J. Role of endothelin A receptor in colon cancer metastasis: In vitro and in vivo evidence. Mol. Carcinog. 2014, 53 (Suppl. 1), E85–E91. [Google Scholar] [CrossRef]
- Kusuhara, M.; Yamaguchi, K.; Nagasaki, K.; Hayashi, C.; Suzaki, A.; Hori, S.; Handa, S.; Nakamura, Y.; Abe, K. Production of endothelin in human cancer cell lines. Cancer Res. 1990, 50, 3257–3261. [Google Scholar]
- Asham, E.; Shankar, A.; Loizidou, M.; Fredericks, S.; Miller, K.; Boulos, P.B.; Burnstock, G.; Taylor, I. Increased endothelin-1 in colorectal cancer and reduction of tumour growth by ET(A) receptor antagonism. Br. J. Cancer 2001, 85, 1759–1763. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, P.; Zhou, X.; Wang, T.; Feng, X.; Sun, Y.P.; Xiong, Y.; Yuan, H.X.; Guan, K.L. Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res. 2017, 77, 2413–2423. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, S.; Uchide, T.; Adur, J.; Kozakai, T.; Kotake-Nara, E.; Quan, J.; Saida, K. Differential expression of endothelin-2 along the mouse intestinal tract. J. Mol. Endocrinol. 2005, 35, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, L.; Allen, W.L.; Turkington, R.; Jithesh, P.V.; Proutski, I.; Stewart, G.; Lenz, H.J.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Identification of galanin and its receptor GalR1 as novel determinants of resistance to chemotherapy and potential biomarkers in colorectal cancer. Clin. Cancer Res. 2012, 18, 5412–5426. [Google Scholar] [CrossRef] [Green Version]
- Nagayoshi, K.; Ueki, T.; Tashiro, K.; Mizuuchi, Y.; Manabe, T.; Araki, H.; Oda, Y.; Kuhara, S.; Tanaka, M. Galanin plays an important role in cancer invasiveness and is associated with poor prognosis in stage II colorectal cancer. Oncol. Rep. 2015, 33, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.G.; Schrader, H.; Otte, J.M.; Schmidt, W.E.; Schmitz, F. Rapid tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130Cas by gastrin in human colon cancer cells. Biochem. Pharmacol. 2004, 67, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.G.; Tong, S.L.; Ding, Y.M.; Ding, J.; Fang, X.M.; Zhang, X.F.; Liu, Z.J.; Zhou, Y.H.; Liu, Q.S.; Luo, H.S.; et al. Enhanced expression of cholecystokinin-2 receptor promotes the progression of colon cancer through activation of focal adhesion kinase. Int. J. Cancer 2006, 119, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, C.A.; Clyde, D.; Worthley, D.L.; Wang, T.C.; Varro, A.; Pritchard, D.M. Progastrin-induced secretion of insulin-like growth factor 2 from colonic myofibroblasts stimulates colonic epithelial proliferation in mice. Gastroenterology 2013, 145, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kermorgant, S.; Lehy, T. Glycine-extended gastrin promotes the invasiveness of human colon cancer cells. Biochem. Biophys. Res. Commun. 2001, 285, 136–141. [Google Scholar] [CrossRef]
- Hellmich, M.R.; Rui, X.L.; Hellmich, H.L.; Fleming, R.Y.; Evers, B.M.; Townsend, C.M., Jr. Human colorectal cancers express a constitutively active cholecystokinin-B/gastrin receptor that stimulates cell growth. J. Biol. Chem. 2000, 275, 32122–32128. [Google Scholar] [CrossRef] [Green Version]
- Song, D.H.; Kaufman, J.C.; Borodyansky, L.; Albanese, C.; Pestell, R.G.; Wolfe, M.M. Gastrin stabilises beta-catenin protein in mouse colorectal cancer cells. Br. J. Cancer 2005, 92, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Yu, J.P.; Liu, C.H.; Zhou, L.; Yu, H.G. Effects of gastrin 17 on beta-catenin/Tcf-4 pathway in Colo320WT colon cancer cells. World J. Gastroenterol. 2006, 12, 7482–7487. [Google Scholar] [CrossRef]
- Colucci, R.; Blandizzi, C.; Ghisu, N.; Florio, T.; Del Tacca, M. Somatostatin inhibits colon cancer cell growth through cyclooxygenase-2 downregulation. Br. J. Pharmacol. 2008, 155, 198–209. [Google Scholar] [CrossRef]
- Marshall, K.M.; Patel, O.; Bramante, G.; Laval, M.; Yim, M.; Baldwin, G.S.; Shulkes, A. The C-terminal flanking peptide of progastrin induces gastric cell apoptosis and stimulates colonic cell division in vivo. Peptides 2013, 46, 83–93. [Google Scholar] [CrossRef]
- Jin, G.; Sakitani, K.; Wang, H.; Jin, Y.; Dubeykovskiy, A.; Worthley, D.L.; Tailor, Y.; Wang, T.C. The G-protein coupled receptor 56, expressed in colonic stem and cancer cells, binds progastrin to promote proliferation and carcinogenesis. Oncotarget 2017, 8, 40606–40619. [Google Scholar] [CrossRef]
- Goode, T.; O’Connor, T.; Hopkins, A.; Moriarty, D.; O’Sullivan, G.C.; Collins, J.K.; O’Donoghue, D.; Baird, A.W.; O’Connell, J.; Shanahan, F. Neurokinin-1 receptor (NK-1R) expression is induced in human colonic epithelial cells by proinflammatory cytokines and mediates proliferation in response to substance P. J. Cell Physiol. 2003, 197, 30–41. [Google Scholar] [CrossRef]
- Carroll, R.E.; Matkowskyj, K.A.; Tretiakova, M.S.; Battey, J.F.; Benya, R.V. Gastrin-releasing peptide is a mitogen and a morphogen in murine colon cancer. Cell Growth Differ. 2000, 11, 385–393. [Google Scholar] [PubMed]
- Carroll, R.E.; Ostrovskiy, D.; Lee, S.; Danilkovich, A.; Benya, R.V. Characterization of gastrin-releasing peptide and its receptor aberrantly expressed by human colon cancer cell lines. Mol. Pharmacol. 2000, 58, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Chave, H.S.; Gough, A.C.; Palmer, K.; Preston, S.R.; Primrose, J.N. Bombesin family receptor and ligand gene expression in human colorectal cancer and normal mucosa. Br. J. Cancer 2000, 82, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matusiak, D.; Glover, S.; Nathaniel, R.; Matkowskyj, K.; Yang, J.; Benya, R.V. Neuromedin B and its receptor are mitogens in both normal and malignant epithelial cells lining the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G718–G728. [Google Scholar] [CrossRef]
- Jeppsson, S.; Srinivasan, S.; Chandrasekharan, B. Neuropeptide Y (NPY) promotes inflammation-induced tumorigenesis by enhancing epithelial cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G103–G111. [Google Scholar] [CrossRef] [Green Version]
- Garnier, A.; Vykoukal, J.; Hubertus, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M.; Ilmer, M. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. Int. J. Oncol. 2015, 47, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V.G.; O’Driscoll, L. Neuromedin U: A multifunctional neuropeptide with pleiotropic roles. Clin. Chem. 2015, 61, 471–482. [Google Scholar] [CrossRef]
- Ramos-Álvarez, I.; Moreno, P.; Mantey, S.A.; Nakamura, T.; Nuche-Berenguer, B.; Moody, T.W.; Coy, D.H.; Jensen, R.T. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015, 72, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Cassano, G.; Resta, N.; Gasparre, G.; Lippe, C.; Guanti, G. The proliferative response of HT-29 human colon adenocarcinoma cells to bombesin-like peptides. Cancer Lett. 2001, 172, 151–157. [Google Scholar] [CrossRef]
- Rivera, C.A.; Ahlberg, N.C.; Taglia, L.; Kumar, M.; Blunier, A.; Benya, R.V. Expression of GRP and its receptor is associated with improved survival in patients with colon cancer. Clin. Exp. Metastasis 2009, 26, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Tell, R.; Rivera, C.A.; Eskra, J.; Taglia, L.N.; Blunier, A.; Wang, Q.T.; Benya, R.V. Gastrin-releasing peptide signaling alters colon cancer invasiveness via heterochromatin protein 1Hsβ. Am. J. Pathol. 2011, 178, 672–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taglia, L.; Matusiak, D.; Matkowskyj, K.A.; Benya, R.V. Gastrin-releasing peptide mediates its morphogenic properties in human colon cancer by upregulating intracellular adhesion protein-1 (ICAM-1) via focal adhesion kinase. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G182–G190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Kawano, T.; Suzuki, N.; Hamakubo, T.; Karginov, A.V.; Kozasa, T. Gα13/PDZ-RhoGEF/RhoA signaling is essential for gastrin-releasing peptide receptor-mediated colon cancer cell migration. Mol. Pharmacol. 2014, 86, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, O.; Clyde, D.; Chang, M.; Nordlund, M.S.; Steel, R.; Kemp, B.E.; Pritchard, D.M.; Shulkes, A.; Baldwin, G.S. Pro-GRP-derived peptides are expressed in colorectal cancer cells and tumors and are biologically active in vivo. Endocrinology 2012, 153, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Carraway, R.E.; Plona, A.M. Involvement of neurotensin in cancer growth: Evidence, mechanisms and development of diagnostic tools. Peptides 2006, 27, 2445–2460. [Google Scholar] [CrossRef]
- Wu, Z.; Martinez-Fong, D.; Trédaniel, J.; Forgez, P. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy. Front. Endocrinol. 2013, 3, 184. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.R.; Dong, Z.; Yi, L.; He, X.Y.; Zhang, Y.L.; Liu, Y.L.; Cui, H.J. Function and mechanism of neurotensin (NTS) and its receptor 1 (NTSR1) in occurrence and development of tumors. Zhongguo Zhong Yao Za Zhi 2015, 40, 2524–2536. [Google Scholar]
- Ouyang, Q.; Zhou, J.; Yang, W.; Cui, H.; Xu, M.; Yi, L. Oncogenic role of neurotensin and neurotensin receptors in various cancers. Clin. Exp. Pharmacol. Physiol. 2017, 44, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Pellino, G.; Fiorentino, F.; Rasheed, S.; Darzi, A.; Tekkis, P.; Kontovounisios, C. A review of the role of neurotensin and its receptors in colorectal cancer. Gastroenterol. Res. Pract. 2017, 2017, 6456257. [Google Scholar] [CrossRef]
- Maoret, J.J.; Anini, Y.; Rouyer-Fessard, C.; Gully, D.; Laburthe, M. Neurotensin and a non-peptide neurotensin receptor antagonist control human colon cancer cell growth in cell culture and in cells xenografted into nude mice. Int. J. Cancer 1999, 80, 448–454. [Google Scholar] [CrossRef]
- Martin, S.; Navarro, V.; Vincent, J.P.; Mazella, J. Neurotensin receptor-1 and -3 complex modulates the cellular signaling of neurotensin in the HT-29 cell line. Gastroenterology 2002, 123, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Massa, F.; Tormo, A.; Béraud-Dufour, S.; Coppola, T.; Mazella, J. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation. Biochem. Biophys. Res. Commun. 2011, 414, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jackson, L.N.; Johnson, S.M.; Wang, Q.; Evers, B.M. Suppression of neurotensin receptor type 1 expression and function by histone deacetylase inhibitors in human colorectal cancers. Mol. Cancer Ther. 2010, 9, 2389–2398. [Google Scholar] [CrossRef] [Green Version]
- Bakirtzi, K.; Hatziapostolou, M.; Karagiannides, I.; Polytarchou, C.; Jaeger, S.; Iliopoulos, D.; Pothoulakis, C. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 2011, 141, 1749–1761. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.T.; Weiss, H.L.; Evers, B.M. Diverse expression patterns and tumorigenic role of neurotensin signaling components in colorectal cancer cells. Int. J. Oncol. 2017, 50, 2200–2206. [Google Scholar] [CrossRef] [Green Version]
- Hejna, M.; Hamilton, G.; Brodowicz, T.; Haberl, I.; Fiebiger, W.C.; Scheithauer, W.; Virgolini, I.; Köstler, W.J.; Oberhuber, G.; Raderer, M. Serum levels of vasoactive intestinal peptide (VIP) in patients with adenocarcinomas of the gastrointestinal tract. Anticancer Res. 2001, 21, 1183–1187. [Google Scholar]
- Le, S.V.; Yamaguchi, D.J.; McArdle, C.A.; Tachiki, K.; Pisegna, J.R.; Germano, P. PAC1 and PACAP expression, signaling, and effect on the growth of HCT8, human colonic tumor cells. Regul. Pept. 2002, 109, 115–125. [Google Scholar] [CrossRef]
- Alleaume, C.; Eychène, A.; Caigneaux, E.; Muller, J.M.; Philippe, M. Vasoactive intestinal peptide stimulates proliferation in HT-29 human colonic adenocarcinoma cells: Concomitant activation of Ras/Rap1-B-Raf-ERK signalling pathway. Neuropeptides 2003, 37, 98–104. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Yuan, J.; Sun, Z.; Li, C.; Li, R.; Li, L.; Zhu, C.; Wan, R.; Guo, R.; et al. The role of corticotropin-releasing hormone receptor 1 in the development of colitis-associated cancer in mouse model. Endocr. Relat. Cancer 2014, 21, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Yagi, T.; Kubota, E.; Koyama, H.; Tanaka, T.; Kataoka, H.; Imaeda, K.; Joh, T. Glucagon promotes colon cancer cell growth via regulating AMPK and MAPK pathways. Oncotarget 2018, 9, 10650–10664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, P.; Rotondo, A.; Mulé, F.; Tack, J. Review article: A comparison of glucagon-like peptides 1 and 2. Aliment. Pharmacol. Ther. 2013, 37, 18–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koehler, J.A.; Kain, T.; Drucker, D.J. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology 2011, 152, 3362–3372. [Google Scholar] [CrossRef] [PubMed]
- Wenjing, H.; Shuang, Y.; Weisong, L.; Haipeng, X. Exendin-4 does not modify growth or apoptosis of human colon cancer cells. Endocr. Res. 2017, 42, 209–218. [Google Scholar] [CrossRef]
- Rowland, K.J.; Trivedi, S.; Lee, D.; Wan, K.; Kulkarni, R.N.; Holzenberger, M.; Brubaker, P.L. Loss of glucagon-like peptide-2-induced proliferation following intestinal epithelial insulin-like growth factor-1-receptor deletion. Gastroenterology 2011, 141, 2166–2175. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, X.; Wang, Y.; Zhang, K.; Zhou, F.; Chan, L.; Li, D.; Guan, X. Glucagon-like peptide-2-stimulated protein synthesis through the PI 3-kinase-dependent Akt-mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E554–E563. [Google Scholar] [CrossRef]
- Kannen, V.; Garcia, S.B.; Stopper, H.; Waaga-Gasser, A.M. Glucagon-like peptide 2 in colon carcinogenesis: Possible target for anti-cancer therapy? Pharmacol. Ther. 2013, 139, 87–94. [Google Scholar] [CrossRef]
- Thulesen, J.; Hartmann, B.; Hare, K.J.; Kissow, H.; Ørskov, C.; Holst, J.J.; Poulsen, S.S. Glucagon-like peptide 2 (GLP-2) accelerates the growth of colonic neoplasms in mice. Gut 2004, 53, 1145–1150. [Google Scholar] [CrossRef] [Green Version]
- Shawe-Taylor, M.; Kumar, J.D.; Holden, W.; Dodd, S.; Varga, A.; Giger, O.; Varro, A.; Dockray, G.J. Glucagon-like petide-2 acts on colon cancer myofibroblasts to stimulate proliferation, migration and invasion of both myofibroblasts and cancer cells via the IGF pathway. Peptides 2017, 91, 49–57. [Google Scholar] [CrossRef]
- Benali, N.; Ferjoux, G.; Puente, E.; Buscail, L.; Susini, C. Somatostatin receptors. Digestion 2000, 62 (Suppl. 1), 27–32. [Google Scholar] [CrossRef]
- Chen, J.S.; Liang, Q.M.; Li, H.S.; Yang, J.; Wang, S.; Long, J.W. Octreotide inhibits growth of colonic cancer SW480 cells by modulating the Wnt/P-catenin pathway. Pharmazie 2009, 64, 126–131. [Google Scholar] [PubMed]
- Wang, S.; Bao, Z.; Liang, Q.M.; Long, J.W.; Xiao, Z.S.; Jiang, Z.J.; Liu, B.; Yang, J.; Long, Z.X. Octreotide stimulates somatostatin receptor-induced apoptosis of SW480 colon cancer cells by activation of glycogen synthase kinase-3β, A Wnt/β-catenin pathway modulator. Hepatogastroenterology 2013, 60, 1639–1646. [Google Scholar] [PubMed]
- Modarai, S.R.; Opdenaker, L.M.; Viswanathan, V.; Fields, J.Z.; Boman, B.M. Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells. BMC Cancer 2016, 16, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaper, S.D. The neurotrophin family of neurotrophic factors: An overview. Methods Mol. Biol. 2012, 846, 1–12. [Google Scholar] [CrossRef]
- Akil, H.; Perraud, A.; Jauberteau, M.O.; Mathonnet, M. Tropomyosin-related kinase B/brain derived-neurotrophic factor signaling pathway as a potential therapeutic target for colorectal cancer. World J. Gastroenterol. 2016, 22, 490–500. [Google Scholar] [CrossRef]
- Blondy, S.; Christou, N.; David, V.; Verdier, M.; Jauberteau, M.O.; Mathonnet, M.; Perraud, A. Neurotrophins and their involvement in digestive cancers. Cell Death Dis. 2019, 10, 123. [Google Scholar] [CrossRef]
- Genevois, A.L.; Ichim, G.; Coissieux, M.M.; Lambert, M.P.; Lavial, F.; Goldschneider, D.; Jarrosson-Wuilleme, L.; Lepinasse, F.; Gouysse, G.; Herceg, Z.; et al. Dependence receptor TrKC is a putative colon cancer tumor suppressor. Proc. Natl. Acad. Sci. USA 2013, 110, 3017–3022. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Kaz, A.M.; Kanngurn, S.; Welsch, P.; Morris, S.M.; Wang, J.; Lutterbaugh, J.D.; Markowitz, S.D.; Grady, W.M. NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet. 2013, 9, e1003552. [Google Scholar] [CrossRef] [Green Version]
- Akil, H.; Perraud, A.; Mélin, C.; Jauberteau, M.O.; Mathonnet, M. Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrKB and sortilin in colorectal cancer cell survival. PLoS ONE 2011, 6, e25097. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Sun, J.; Wang, W.; Fan, J.; Wang, L.; Zhang, X.; Yang, A.; Wang, W.; Zhang, R.; Li, J. Tropomyosin-related kinase B promotes distant metastasis of colorectal cancer through protein kinase B-mediated anoikis suppression and correlates with poor prognosis. Apoptosis 2014, 19, 860–870. [Google Scholar] [CrossRef]
- Sasahira, T.; Ueda, N.; Kurihara, M.; Matsushima, S.; Ohmori, H.; Fujii, K.; Bhawal, U.K.; Yamamoto, K.; Kirita, T.; Kuniyasu, H. Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma. Hum. Pathol. 2013, 44, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Okugawa, Y.; Toiyama, Y.; Inoue, Y.; Saigusa, S.; Kawamura, M.; Araki, T.; Uchida, K.; Mohri, Y.; Kusunoki, M. Brain-derived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (TrK B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS ONE 2014, 9, e96410. [Google Scholar] [CrossRef] [PubMed]
- Mazouffre, C.; Geyl, S.; Perraud, A.; Blondy, S.; Jauberteau, M.O.; Mathonnet, M.; Verdier, M. Dual inhibition of BDNF/TrKB and autophagy: A promising therapeutic approach for colorectal cancer. J. Cell Mol. Med. 2017, 21, 2610–2622. [Google Scholar] [CrossRef] [PubMed]
- Sunami, E.; Tsuno, N.; Osada, T.; Saito, S.; Kitayama, J.; Tomozawa, S.; Tsuruo, T.; Shibata, Y.; Muto, T.; Nagawa, H. MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. Oncologist 2000, 5, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.C.; Chan, S.K.; Schaeffer, D.F.; Sagaert, X.; Lim, H.J.; Kennecke, H.; Owen, D.A.; Suh, K.W.; Kim, Y.B.; Tai, I.T. Absence of MMP2 expression correlates with poor clinical outcomes in rectal cancer, and is distinct from MMP1-related outcomes in colon cancer. Clin. Cancer Res. 2011, 17, 4167–4176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Ren, Y.J.; Liu, K.; Min, X.L.; Yang, L.; Zhou, Y.; Zheng, J.; Yang, C. Correlations of serum VEGF and MMP-2 levels with CLM in CRC patients and effects of TACE on their expressions. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3394–3401. [Google Scholar] [CrossRef]
- Ducarouge, B.; Pelissier-Rota, M.; Lainé, M.; Cristina, N.; Vachez, Y.; Scoazec, J.Y.; Bonaz, B.; Jacquier-Sarlin, M. CRF2 signaling is a novel regulator of cellular adhesion and migration in colorectal cancer cells. PLoS ONE 2013, 8, e79335. [Google Scholar] [CrossRef] [Green Version]
- Béraud-Dufour, S.; Devader, C.; Massa, F.; Roulot, M.; Coppola, T.; Mazella, J. Focal adhesion kinase-dependent role of the soluble form of neurotensin receptor-3/sortilin in colorectal cancer cell dissociation. Int. J. Mol. Sci. 2016, 17, 1860. [Google Scholar] [CrossRef]
- Dal Farra, C.; Sarret, P.; Navarro, V.; Botto, J.M.; Mazella, J.; Vincent, J.P. Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines. Int. J. Cancer 2001, 92, 503–509. [Google Scholar] [CrossRef]
- Massa, F.; Devader, C.; Béraud-Dufour, S.; Brau, F.; Coppola, T.; Mazella, J. Focal adhesion kinase dependent activation of the PI3 kinase pathway by the functional soluble form of neurotensin receptor-3 in HT-29 cells. Int. J. Biochem. Cell Biol. 2013, 45, 952–959. [Google Scholar] [CrossRef]
- Massa, F.; Devader, C.; Lacas-Gervais, S.; Béraud-Dufour, S.; Coppola, T.; Mazella, J. Impairement of HT-29 cancer cells cohesion by the soluble form of neurotensin receptor-3. Genes Cancer 2014, 5, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, H.; Tanaka, K.; Toiyama, Y.; Saigusa, S.; Inoue, Y.; Uchida, K.; Kusunoki, M. High TrKB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J. Gastroenterol. 2012, 47, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Tilan, J.; Kitlinska, J. Sympathetic neurotransmitters and tumor angiogenesis-link between stress and cancer progression. J. Oncol. 2010, 2010, 539706. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.A.; Dickson, J.H.; Harris, J.C.; Grabowska, A.; Watson, S.A. Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin-binding epidermal-like growth factor. Cancer Res. 2006, 66, 3504–3512. [Google Scholar] [CrossRef] [Green Version]
- Najib, S.; Kowalski-Chauvel, A.; Do, C.; Roche, S.; Cohen-Jonathan-Moyal, E.; Seva, C. Progastrin a new pro-angiogenic factor in colorectal cancer. Oncogene 2015, 34, 3120–3130. [Google Scholar] [CrossRef]
- Reubi, J.C.; Mazzucchelli, L.; Hennig, I.; Laissue, J.A. Local up-regulation of neuropeptide receptors in host blood vessels around human colorectal cancers. Gastroenterology 1996, 110, 1719–1726. [Google Scholar] [CrossRef]
- Zhou, L.; Luo, Y.; Sato, S.; Tanabe, E.; Kitayoshi, M.; Fujiwara, R.; Sasaki, T.; Fujii, K.; Ohmori, H.; Kuniyasu, H. Role of two types of angiotensin II receptors in colorectal carcinoma progression. Pathobiology 2014, 81, 169–175. [Google Scholar] [CrossRef]
- Au, S.H.; Storey, B.D.; Moore, J.C.; Tang, Q.; Chen, Y.L.; Javaid, S.; Sarioglu, A.F.; Sullivan, R.; Madden, M.W.; O’Keefe, R.; et al. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc. Natl. Acad. Sci. USA 2016, 113, 4947–4952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanduri, L.K.; Hissa, B.; Weitz, J.; Schölch, S.; Bork, U. The prognostic role of circulating tumor cells in colorectal cancer. Expert Rev. Anticancer Ther. 2019, 19, 1077–1088. [Google Scholar] [CrossRef]
- Christou, N.; Meyer, J.; Popeskou, S.; David, V.; Toso, C.; Buchs, N.; Liot, E.; Robert, J.; Ris, F.; Mathonnet, M. Circulating tumour cells, circulating tumour DNA and circulating tumour miRNA in blood assays in the different steps of colorectal cancer management, a review of the evidence in 2019. Biomed. Res. Int. 2019, 2019, 5953036. [Google Scholar] [CrossRef]
- Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Liu, Q.; Dou, R.; Xiong, B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer 2019, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Ding, K.F.; Yu, J.K.; Zhai, X.H.; Ruan, S.Q.; Wang, S.W.; Zhu, Y.L.; Zheng, S.; Zhang, S.Z. Proteomic analysis of primary colon cancer-associated fibroblasts using the SELDI-ProteinChip platform. J. Zhejiang Univ. Sci. B. 2012, 13, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takatsuna, M.; Morohashi, S.; Yoshizawa, T.; Hirai, H.; Haga, T.; Ota, R.; Wu, Y.; Morohashi, H.; Hakamada, K.; Terai, S.; et al. Myofibroblasts of the muscle layer stimulate the malignant potential of colorectal cancer. Oncol. Rep. 2016, 36, 1251–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Eynde, M.; Mlecnik, B.; Bindea, G.; Fredriksen, T.; Church, S.E.; Lafontaine, L.; Haicheur, N.; Marliot, F.; Angelova, M.; Vasaturo, A.; et al. The link between the multiverse of immune microenvironments in metastases and the survival of colorectal cancer patients. Cancer Cell. 2018, 34, 1012–1026. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Z.; Jiang, J.X.; Yu, X.Y.; Xia, W.J.; Yu, P.X.; Wang, K.; Zhao, Z.Y.; Chen, Z.G. Endothelial cells in colorectal cancer. World J. Gastrointest. Oncol. 2019, 11, 946–956. [Google Scholar] [CrossRef]
- Ong, B.A.; Vega, K.J.; Houchen, C.W. Intestinal stem cells and the colorectal cancer microenvironment. World J. Gastroenterol. 2014, 20, 1898–1909. [Google Scholar] [CrossRef]
- Shankar, A.; Loizidou, M.; Aliev, G.; Fredericks, S.; Holt, D.; Boulos, P.B.; Burnstock, G.; Taylor, I. Raised endothelin 1 levels in patients with colorectal liver metastases. Br. J. Surg. 1998, 85, 502–506. [Google Scholar] [CrossRef]
- Simpson, R.A.; Dickinson, T.; Porter, K.E.; London, N.J.; Hemingway, D.M. Raised levels of plasma big endothelin 1 in patients with colorectal cancer. Br. J. Surg. 2000, 87, 1409–1413. [Google Scholar] [CrossRef]
- Sereti, E.; Gavriil, A.; Agnantis, N.; Golematis, V.C.; Voloudakis-Baltatzis, I.E. Immunoelectron study of somatostatin, gastrin and glucagon in human colorectal adenocarcinomas and liver metastases. Anticancer Res. 2002, 22, 2117–2123. [Google Scholar]
- Chao, C.; Tallman, M.L.; Ives, K.L.; Townsend, C.M., Jr.; Hellmich, M.R. Gastrointestinal hormone receptors in primary human colorectal carcinomas. J. Surg. Res. 2005, 129, 313–321. [Google Scholar] [CrossRef]
- Seretis, E.; Konstantinidou, A.; Arnogiannakis, N.; Xinopoulos, D.; Voloudakis-Baltatzis, I.E. Mucinous colorectal adenocarcinoma with signet-ring cells: Immunohistochemical and ultrastructural study. Ultrastruct. Pathol. 2010, 34, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Fiocca, R.; Rindi, G.; Capella, C.; Grimelius, L.; Polak, J.M.; Schwartz, T.W.; Yanaihara, N.; Solcia, E. Glucagon, glicentin, proglucagon, PYY, PP and proPP-icosapeptide immunoreactivities of rectal carcinoid tumors and related non-tumor cells. Regul. Pept. 1987, 17, 9–29. [Google Scholar] [CrossRef]
- Seretis, E.C.; Agnantis, N.J.; Golematis, V.C.; Voloudakis-Balatzis, I.E. Electron immunocytochemical demonstration of serotonin, vasoactive intestinal polypeptide, bombesin, somatostatin and glucagon in mirror biopsies from primary colorectal adenocarcinoma. J. Exp. Clin. Cancer Res. 2004, 23, 477–484. [Google Scholar] [PubMed]
- Bengı, G.; Kayahan, H.; Akarsu, M.; Aysal, A.; Sağol, O.; Meral, M.; Akpinar, H. Does glucagon like peptide-2 receptor expression have any effect on the development of human colorectal cancer? Turk. J. Gastroenterol. 2011, 22, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Reubi, J.C.; Läderach, U.; Waser, B.; Gebbers, J.O.; Robberecht, P.; Laissue, J.A. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res. 2000, 60, 3105–3112. [Google Scholar]
- Reubi, J.C.; Waser, B.; Vale, W.; Rivier, J. Expression of CRF1 and CRF2 receptors in human cancers. J. Clin. Endocrinol. Metab. 2003, 88, 3312–3320. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Y.; Ru, G.Q.; Ma, Y.Y.; Xie, J.; Chen, W.Y.; Wang, H.J.; Wang, S.B.; Li, L.; Jin, K.T.; He, X.L.; et al. High expression of substance P and its receptor neurokinin-1 receptor in colorectal cancer is associated with tumor progression and prognosis. Onco. Targets Ther. 2016, 9, 3595–3602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chatterjee, T.; Godoy, C.; Wu, L.; Liu, Q.J.; Carmon, K.S. GPR56 drives colorectal tumor growth and promotes drug resistance through upregulation of MDR1 expression via a RhoA-mediated mechanism. Mol. Cancer Res. 2019, 17, 2196–2207. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Flobak, Å.; Chawla, K.; Baudot, A.; Bruland, T.; Thommesen, L.; Kuiper, M.; Lægreid, A. The gastrin and cholecystokinin receptors mediated signaling network: A scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC Syst. Biol. 2015, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Leiszter, K.; Sipos, F.; Galamb, O.; Krenács, T.; Veres, G.; Wichmann, B.; Fűri, I.; Kalmár, A.; Patai, Á.V.; Tóth, K.; et al. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer. PLoS ONE 2015, 10, e0118332. [Google Scholar] [CrossRef] [Green Version]
- Buscail, L.; Saint-Laurent, N.; Chastre, E.; Vaillant, J.C.; Gespach, C.; Capella, G.; Kalthoff, H.; Lluis, F.; Vaysse, N.; Susini, C. Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer. Cancer Res. 1996, 56, 1823–1827. [Google Scholar] [PubMed]
- Evangelou, I.; Petraki, C.; Msaouel, P.; Scorilas, A.; Sdrolia, E.; Padazi, G.; Koborozos, V.; Koutsilieris, M. Immunohistochemical expression of somatostatin receptor subtypes 2 and 5 in colorectal cancer. Eur. J. Clin. Investig. 2012, 42, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Neo, J.H.; Ager, E.I.; Angus, P.W.; Zhu, J.; Herath, C.B.; Christophi, C. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer 2010, 10, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.W.; Ager, E.I.; Neo, J.; Christophi, C. The renin angiotensin system regulates Kupffer cells in colorectal liver metastases. Cancer Biol. Ther. 2013, 14, 720–727. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Amano, H.; Ito, Y.; Betto, T.; Yamane, S.; Inoue, T.; Nishizawa, N.; Matsui, Y.; Kamata, M.; Nakamura, M.; et al. Angiotensin II subtype 1a receptor signaling in resident hepatic macrophages induces liver metastasis formation. Cancer Sci. 2017, 108, 1757–1768. [Google Scholar] [CrossRef] [Green Version]
- Gui, X.; Liu, S.; Yan, Y.; Gao, Z. Neurotensin receptor 1 overexpression in inflammatory bowel diseases and colitis-associated neoplasia. World J. Gastroenterol. 2013, 19, 4504–4510. [Google Scholar] [CrossRef]
- Maoret, J.J.; Pospaï, D.; Rouyer-Fessard, C.; Couvineau, A.; Laboisse, C.; Voisin, T.; Laburthe, M. Neurotensin receptor and its mRNA are expressed in many human colon cancer cell lines but not in normal colonic epithelium: Binding studies and RT-PCR experiments. Biochem. Biophys. Res. Commun. 1994, 203, 465–471. [Google Scholar] [CrossRef]
- Gui, X.; Guzman, G.; Dobner, P.R.; Kadkol, S.S. Increased neurotensin receptor-1 expression during progression of colonic adenocarcinoma. Peptides. 2008, 29, 1609–1615. [Google Scholar] [CrossRef]
- Raggi, C.C.; Cianchi, F.; Valanzano, R.; Smith, M.C.; Serio, M.; Maggi, M.; Orlando, C. Prognostic value of somatostatin receptor subtype 2 expression in colorectal cancer. Regul. Pept. 2005, 132, 23–26. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, D.; Zhang, N.; Wang, Z.; Pang, L. Plasma serotonin level is a predictor for recurrence and poor prognosis in colorectal cancer patients. J. Clin. Lab. Anal. 2018, 32. [Google Scholar] [CrossRef] [Green Version]
- Peeters, C.F.; Thomas, C.M.; Sweep, F.C.; Span, P.N.; Wobbes, T.; Ruers, T.M. Elevated serum endothelin-1 levels in patients with colorectal cancer; relevance for prognosis. Int. J. Biol. Markers 2000, 15, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Arun, C.; London, N.J.; Hemingway, D.M. Prognostic significance of elevated endothelin-1 levels in patients with colorectal Cancer. Int. J. Biol. Markers. 2004, 19, 32–37. [Google Scholar] [CrossRef]
- Strofilas, A.; Lagoudianakis, E.E.; Seretis, C.; Pappas, A.; Koronakis, N.; Keramidaris, D.; Koukoutsis, I.; Chrysikos, I.; Manouras, I.; Manouras, A. Association of helicobacter pylori infection and colon cancer. J. Clin. Med. Res. 2012, 4, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.Y.; Lv, Z.; Sun, L.P.; Dong, N.N.; Xing, C.Z.; Yuan, Y. Clinical significance of serum markers reflecting gastric function and H. pylori infection in colorectal cancer. J. Cancer 2019, 10, 2229–2236. [Google Scholar] [CrossRef] [Green Version]
- Byrne, M.M.; McGregor, G.P.; Barth, P.; Rothmund, M.; Göke, B.; Arnold, R. Intestinal proliferation and delayed intestinal transit in a patient with a GLP-1-, GLP-2- and PYY-producing neuroendocrine carcinoma. Digestion 2001, 63, 61–68. [Google Scholar] [CrossRef]
- Zygulska, A.L.; Furgala, A.; Kaszuba-Zwoińska, J.; Krzemieniecki, K.; Gil, K. Changes in plasma levels of cholecystokinin, neurotensin, VIP and PYY in gastric and colorectal cancer—Preliminary results. Peptides 2019, 122, 170148. [Google Scholar] [CrossRef]
- Qiu, S.; Nikolaou, S.; Fiorentino, F.; Rasheed, S.; Darzi, A.; Cunningham, D.; Tekkis, P.; Kontovounisios, C. Exploratory Analysis of Plasma Neurotensin as a Novel Biomarker for Early Detection of Colorectal Polyp and cancer. Horm. Cancer 2019, 10, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.; Jönsson, M.; Norrgård, O.; Forsgren, S. New aspects concerning ulcerative colitis and colonic carcinoma: Analysis of levels of neuropeptides, neurotrophins, and TNFalpha/TNF receptor in plasma and mucosa in parallel with histological evaluation of the intestine. Inflamm. Bowel Dis. 2008, 14, 1331–1340. [Google Scholar] [CrossRef]
- Lloyd, G.M.; Neal, C.P.; Arun, C.; London, N.J.; Hemingway, D.M. The prognostic value of circulating big endothelin-1 in patients undergoing potentially curative resection for colorectal cancer. Colorectal Dis. 2011, 13, 290–295. [Google Scholar] [CrossRef]
- Selgrad, M.; Bornschein, J.; Kandulski, A.; Hille, C.; Weigt, J.; Roessner, A.; Wex, T.; Malfertheiner, P. Helicobacter pylori but not gastrin is associated with the development of colonic neoplasms. Int. J. Cancer 2014, 135, 1127–1131. [Google Scholar] [CrossRef]
- Robertson, D.J.; Sandler, R.S.; Ahnen, D.J.; Greenberg, E.R.; Mott, L.A.; Cole, B.F.; Baron, J.A. Gastrin, helicobacter pylori, and colorectal adenomas. Clin. Gastroenterol. Hepatol. 2009, 7, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, S.D.; Polymeros, D.; Triantafyllou, K.; Spiliadi, C.; Mentis, A.; Karamanolis, D.G.; Ladas, S.D. Hypergastrinemia is associated with increased risk of distal colon adenomas. Digestion 2006, 74, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Mao, T.; He, Z.; Wu, X.; Peng, Y.; Chen, Y.; Dong, Y.; Ruan, Z.; Wang, Z. Angiotensin I-converting enzyme gene plays a crucial role in the pathology of carcinomas in colorectal cancer. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Koehler, A.; Bataille, F.; Schmid, C.; Ruemmele, P.; Waldeck, A.; Blaszyk, H.; Hartmann, A.; Hofstaedter, F.; Dietmaier, W. Gene expression profiling of colorectal cancer and metastases divides tumours according to their clinicopathological stage. J. Pathol. 2004, 204, 65–74. [Google Scholar] [CrossRef]
- D’Arrigo, A.; Belluco, C.; Ambrosi, A.; Digito, M.; Esposito, G.; Bertola, A.; Fabris, M.; Nofrate, V.; Mammano, E.; Leon, A.; et al. Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int. J. Cancer 2005, 115, 256–262. [Google Scholar] [CrossRef]
- Ki, D.H.; Jeung, H.C.; Park, C.H.; Kang, S.H.; Lee, G.Y.; Lee, W.S.; Kim, N.K.; Chung, H.C.; Rha, S.Y. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int. J. Cancer 2007, 121, 2005–2012. [Google Scholar] [CrossRef]
- Nadal, C.; Maurel, J.; Gascon, P. Is there a genetic signature for liver metastasis in colorectal cancer? World J. Gastroenterol. 2007, 13, 5832–5844. [Google Scholar] [CrossRef]
- Li, M.; Lin, Y.M.; Hasegawa, S.; Shimokawa, T.; Murata, K.; Kameyama, M.; Ishikawa, O.; Katagiri, T.; Tsunoda, T.; Nakamura, Y.; et al. Genes associated with liver metastasis of colon cancer, identified by genome-wide cDNA microarray. Int. J. Oncol. 2004, 24, 305–312. [Google Scholar] [CrossRef]
- Lim, B.; Mun, J.; Kim, J.H.; Kim, C.W.; Roh, S.A.; Cho, D.H.; Kim, Y.S.; Kim, S.Y.; Kim, J.C. Genome-wide mutation profiles of colorectal tumors and associated liver metastases at the exome and transcriptome levels. Oncotarget 2015, 6, 22179–22190. [Google Scholar] [CrossRef] [Green Version]
- Goryca, K.; Kulecka, M.; Paziewska, A.; Dabrowska, M.; Grzelak, M.; Skrzypczak, M.; Ginalski, K.; Mroz, A.; Rutkowski, A.; Paczkowska, K.; et al. Exome scale map of genetic alterations promoting metastasis in colorectal cancer. BMC Genet. 2018, 19, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Shen, Z.; Zhou, Y.; Yu, W. Independent prognostic genes and mechanism investigation for colon cancer. Biol. Res. 2018, 51, 10. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Wang, X.; Evers, B.M. Site-specific DNA methylation contributes to neurotensin/neuromedin N expression in colon cancers. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G1139–G1147. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Olaru, A.V.; Cheng, Y.; Agarwal, R.; Yang, J.; Luvsanjav, D.; Yu, W.; Selaru, F.M.; Hutfless, S.; Lazarev, M.; et al. Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning. Endocr. Relat. Cancer 2011, 18, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Roperch, J.P.; Incitti, R.; Forbin, S.; Bard, F.; Mansour, H.; Mesli, F.; Baumgaertner, I.; Brunetti, F.; Sobhani, I. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer. BMC Cancer 2013, 13, 566. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.M.; Ross, J.P.; Drew, H.R.; Ho, T.; Brown, G.S.; Saunders, N.F.; Duesing, K.R.; Buckley, M.J.; Dunne, R.; Beetson, I.; et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer 2014, 14, 54. [Google Scholar] [CrossRef] [Green Version]
- Kamimae, S.; Yamamoto, E.; Kai, M.; Niinuma, T.; Yamano, H.O.; Nojima, M.; Yoshikawa, K.; Kimura, T.; Takagi, R.; Harada, E.; et al. Epigenetic silencing of NTSR1 is associated with lateral and noninvasive growth of colorectal tumors. Oncotarget 2015, 6, 29975–29990. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, C.; Bi, X.; Zhou, C.; Huang, T.; Ni, C.; Yang, P.; Chen, S.; Ye, M.; Duan, S. DNA methylation of CMTM3, SSTR2, and MDFI genes in colorectal cancer. Gene 2017, 630, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.; Williams, M.; Cheng, Y.Y.; Leung, W.K. Roles of methylated DNA biomarkers in patients with colorectal cancer. Dis. Markers 2019, 2019, 2673543. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Yamamoto, E.; Yamano, H.O.; Nakase, H.; Sugai, T. Integrated analysis of the endoscopic, pathological and molecular characteristics of colorectal tumorigenesis. Digestion 2019, 99, 33–38. [Google Scholar] [CrossRef]
- Tham, C.; Chew, M.; Soong, R.; Lim, J.; Ang, M.; Tang, C.; Zhao, Y.; Ong, S.Y.; Liu, Y. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer 2014, 120, 3131–3141. [Google Scholar] [CrossRef]
- Bian, Q.; Chen, J.; Qiu, W.; Peng, C.; Song, M.; Sun, X.; Liu, Y.; Ding, F.; Chen, J.; Zhang, L. Four targeted genes for predicting the prognosis of colorectal cancer: A bioinformatics analysis case. Oncol. Lett. 2019, 18, 5043–5054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.W.; Fan, X.X.; Yang, L.L.; Song, J.J.; Fang, S.J.; Tu, J.F.; Chen, M.J.; Zheng, L.Y.; Wu, F.Z.; Zhang, D.K.; et al. The identification of a common different gene expression signature in patients with colorectal cancer. Math. Biosci. Eng. 2019, 16, 2942–2958. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yang, J. Identification of Genes related to clinicopathological characteristics and prognosis of patients with colorectal cancer. DNA Cell Biol. 2020, 39, 690–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, Y.; Cai, K.; Cheng, Y.; Wang, S.; Paun, B.; Hamilton, J.P.; Jin, Z.; Sato, F.; Berki, A.T.; Kan, T.; et al. A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology 2006, 131, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chew, M.H.; Tham, C.K.; Tang, C.L.; Ong, S.Y.; Zhao, Y. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer. Am. J. Cancer Res. 2016, 6, 2098–2108. [Google Scholar]
- Kobayashi, M.; Matsubara, N.; Nakachi, Y.; Okazaki, Y.; Uchino, M.; Ikeuchi, H.; Song, J.; Kimura, K.; Yasuhara, M.; Babaya, A.; et al. Hypermethylation of corticotropin releasing hormone receptor-2 gene in ulcerative colitis associated colorectal cancer. In Vivo 2020, 34, 57–63. [Google Scholar] [CrossRef]
- Smith, A.M.; Justin, T.; Michaeli, D.; Watson, S.A. Phase I/II study of G17-DT, an anti-gastrin immunogen, in advanced colorectal cancer. Clin. Cancer Res. 2000, 6, 4719–4724. [Google Scholar]
- Falciani, C.; Lelli, B.; Brunetti, J.; Pileri, S.; Cappelli, A.; Pini, A.; Pagliuca, C.; Ravenni, N.; Bencini, L.; Menichetti, S.; et al. Modular branched neurotensin peptides for tumor target tracing and receptor-mediated therapy: A proof-of-concept. Curr. Cancer Drug Targets 2010, 10, 695–704. [Google Scholar] [CrossRef]
- Falciani, C.; Accardo, A.; Brunetti, J.; Tesauro, D.; Lelli, B.; Pini, A.; Bracci, L.; Morelli, G. Target-selective drug delivery through liposomes labeled with oligobranched neurotensin peptides. ChemMedChem. 2011, 6, 678–685. [Google Scholar] [CrossRef]
- Schulz, J.; Rohracker, M.; Stiebler, M.; Goldschmidt, J.; Stöber, F.; Noriega, M.; Pethe, A.; Lukas, M.; Osterkamp, F.; Reineke, U.; et al. Proof of therapeutic efficacy of a 177Lu-labeled neurotensin receptor 1 antagonist in a colon carcinoma xenograft model. J. Nucl. Med. 2017, 58, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.; Gal, R.; Granoth, R.; Dreznik, Z.; Fridkin, M.; Gozes, I. In vitro and in vivo treatment of colon cancer by VIP antagonists. Regul. Pept. 2002, 109, 127–133. [Google Scholar] [CrossRef]
- Rick, F.G.; Buchholz, S.; Schally, A.V.; Szalontay, L.; Krishan, A.; Datz, C.; Stadlmayr, A.; Aigner, E.; Perez, R.; Seitz, S.; et al. Combination of gastrin-releasing peptide antagonist with cytotoxic agents produces synergistic inhibition of growth of human experimental colon cancers. Cell Cycle 2012, 11, 2518–2525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, S.L.; Ager, E.; Malcontenti-Wilson, C.; Muralidharan, V.; Christophi, C. Blockade of the renin-angiotensin system improves the early stages of liver regeneration and liver function. J. Surg. Res. 2013, 179, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Berber, E. Role of thermal ablation in the management of colorectal liver metastasis. Hepatobiliary Surg. Nutr. 2020, 9, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Mearadji, A.; Breeman, W.; Hofland, L.; van Koetsveld, P.; Marquet, R.; Jeekel, J.; Krenning, E.; van Eijck, C. Somatostatin receptor gene therapy combined with targeted therapy with radiolabeled octreotide: A new treatment for liver metastases. Ann. Surg. 2002, 236, 722. [Google Scholar] [CrossRef] [PubMed]
- El-Salhy, M.; Dennerqvist, V. Effects of triple therapy with octreotide, galanin and serotonin on liver metastasis of human colon cancer in xenografts. Oncol. Rep. 2004, 11, 1177–1182. [Google Scholar] [CrossRef]
- Ager, E.I.; Wen, S.W.; Chan, J.; Chong, W.W.; Neo, J.H.; Christophi, C. Altered efficacy of AT1R-targeted treatment after spontaneous cancer cell-AT1R upregulation. BMC Cancer 2011, 11, 274. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Ohmori, H.; Shimomoto, T.; Fujii, K.; Sasahira, T.; Chihara, Y.; Kuniyasu, H. Anti-angiotensin and hypoglycemic treatments suppress liver metastasis of colon cancer cells. Pathobiology 2011, 78, 285–290. [Google Scholar] [CrossRef]
- Jensen, L.H.; Olesen, R.; Petersen, L.N.; Boysen, A.K.; Andersen, R.F.; Lindebjerg, J.; Nottelmann, L.; Thomsen, C.E.B.; Havelund, B.M.; Jakobsen, A.; et al. NPY gene methylation as a universal, longitudinal plasma marker for evaluating the clinical benefit from last-line treatment with regorafenib in metastatic colorectal cancer. Cancers 2019, 11, 1649. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Xu, Y.; Wang, Z.; Chen, Y.; Yue, Z.; Gao, P.; Xing, C.; Xu, H. MicroRNA-148b suppresses cell growth by targeting cholecystokinin-2 receptor in colorectal cancer. Int. J. Cancer 2012, 131, 1042–1051. [Google Scholar] [CrossRef]
- Sarkar, C.; Chakroborty, D.; Chowdhury, U.R.; Dasgupta, P.S.; Basu, S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin. Cancer Res. 2008, 14, 2502–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, N.; Yang, Y.; Wang, X.; Liang, J.; Tian, X.; Zhang, H.; Leng, X. Polydopamine nanoparticles carrying tumor cell lysate as a potential vaccine for colorectal cancer immunotherapy. Biomater. Sci. 2019, 7, 3062–3075. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Song, J.; Chen, F.; Wang, Q.; Liu, X.; Ren, H.; Li, Y.; Meng, X.; Zhou, Y.; Lu, S.; et al. A novel immunotoxin—rCCK8PE38 targeting of CCK-R overexpressed colon cancers. J. Drug Target 2015, 23, 462–468. [Google Scholar] [CrossRef] [PubMed]
Stage of Liver Metastasis | Type of Molecule/Receptor | Mechanisms/Signaling Pathways | ||
---|---|---|---|---|
Nts | NPs | Ntt | ||
Cell proliferation, migration, survival | ACh NE Serotonin β2-AR CHRM | ET-1 Gastrin, PG, G17 CRH GCG GLP1/2 GRP/GRPR NT NPY SP VIP GPCR family | NGF BDNF Nt-3,-4-,-5 TrK A, B, C | See Figure 1 |
Cell-Cell weakening and CEM loss of adhesion | ACh | G17-Gly CRH/CRHR2 NT/sNTSR3 | TrKB | ↑MMP1, -2, -3, -7; Src/ERK; FAK/Src/PI3K; AKT |
EMT | E NE | ANG/ATR1/ATR2 GPR56 | TrKB | PI3K/AKT; E-cadherin, ZEB1, vimentin expression modulation |
Angiogenesis | ANG/ATR1 CRH G17, G17-Gly, PG NPY, NT/NTSR1 | TrKB | ↑VEGF-A, VEGF-C; Cadherin phosphorylation; P125-FAK, paxillin, actin remodelling; ↑HB-EGF; ↑MMP2, -3, -9 |
Neuropeptides/NP Receptors | CRC | |||
---|---|---|---|---|
Type | Source | Cellular localization | Primary | Liver Metastases |
ACE | T | #, ↑ versus C [244] | ||
AT1R/AT2R | T | cell membranes (AT1R), cell nuclei (AT2R) of TCs [198] | ♦, ↑ of AT1R; ♦↓ of AT2R [198] | |
BBS, GRP, pro-GRP | T | TCs, including signet-ring cells [135,142,144,146,212]; EECs [214] | 100% (+) pCRC [135]; ♣, (+) [144]; ♦, #, ↓ [142,146]; (+) [212]; 30% pCRC with intracellular changes [214] | Aberrantly expressed mRNA [135]; ND [144] |
CCK | S | ↓ versus C, ↑ CRC versus GC [237] | ||
CCK2R | T | TCs [123]; epithelial TCs (33%), non-epithelial cells (39%) [211] | 44.4% (+), 26.7% (++) [123]; CCK-BRi4sv in 50% CRC and 100% polyps [126], 6/8 (+) [211] | |
CRHR1, CRHR2 (CRF1, CRF2) | T | Epithelial TCs (CRF2) [188] | ♦, #, ↓ mRNA/protein versus C [96]; ♣, ↑ Ucn2/3, CRF2 [188]; ND [217] | ♦, #, ↓CRHR2 [96] |
ET-1 | T | ECs in normal liver [208]; epithelial TCs [117,208,209]; TECs [117,208], myofibroblasts, stromal cells [117,208] | ↑ [117]; microvascular (+) associated with big ET-1 plasma level [209] | (+) [208] |
S | ↑ versus C [117,208,209,232]; #, ↑ big ET-1 versus C [233]; big ET-1 not associated with OS or CSS [240] | ↑ versus C [117,208]; ♦↑portal and systemic versus localized CRC [209]; ↑ in both LM types versus C [232] | ||
ET AR, ET BR | T | TCs [114] | ↑ ET AR mRNA, ↓ ET BR mRNA versus C [114] | |
Galanin | T | submucosal and MPs cells, TCs, intestinal epithelium [67] | #, ↑ [120,121] | |
S | ↑ 2.4x level versus C [67] | |||
G, G17, PG | T | cell membranes of TCs [210]; epithelial TCs [123,211] | ♦, ↑ [47]; ↑ [123]; ♣, ↑ [210]; 39% (+) cells [211] | (+) [210] |
S | ♦,↑ (G) in CRC with lymph node M versus CRC without M [234]; ↑ (G17) in CRC versus C [235]; ↑(G) not associated with any colonic neoplasms [241] | |||
GCG | T | TCs [210]; L cells [213]; EG cells [214] | ↑ [210]; (+) [213] | |
GLP1/2 | T | human L cells [213];TCs of NET [236] | (+) [213,236] | |
S | ↑/↑ [236] | |||
GLP2R | T | EECs in normal mucosa (GLP2R), cytoplasm of TCs [215] | (+) 20% CRC; 0% in polyps [215] | |
GRPR | T | Tumor stromal (95%) and epithelial TCs (15%) [211] | ↑ versus C; 100% (+); BRS-3-ND [135]; ♦,#,↓ [142]; ♣, (+) [144]; 100% (+) [211] | ↓ mRNA versus pCRC [135]; ♦, #, lack or ↓ [142]; ND [144] |
NmB | T | TCs and normal epithelium [141] | ↑ in all but one tumor samples [135]; (+) [141] | ↓ in LM versus pCRC [135] |
NmB-R | T | TCs and normal epithelium [141] | ND [135]; ↑ versus C; ♣, ↓ [136] | |
NK-1R | T | Peritumoral host vein cells [194]; TCs [218] | 3-5-fold ↑ [194]; ♦,#, ↑ versus C [218] | |
NT | S | ↑3.7x in colon pathology versus C [49]; ↑ versus C and GC [237]; ↑ versus C [238] | ||
NTSR1 | T | Epithelial (35%) and mesenchymal TCs (12%) [211]; colonic epithelial cells [227,229] | (+) 50% [211]; NS in colitis-CRC versus sporadic CRC [227]; ♣, moderate to strong expression [229] | |
Pro-GCG, Glicentin | T | L cells [213] | (+) [213] | |
PYY, PP/proPP-like peptides | T | human L cells [213]; TCs of NET [236] | (+) [213,236] | |
S | ↑PYY [236]; PYY NS versus C, ↓PYY versus GC [237] | |||
Serotonin | T | EECs [214] | (+) [214] | |
S | ♦, #, ↑ versusC and polyps [231] | |||
5HT3, 5HT4 | T | (+) [106] | ||
SM | T | D cells [214,221]; TCs [221] | ♣, ↓ [210]; ↓ [221] | |
Sst1-sst5 | T | TCs [222,223,230] | (+) SSt2 mRNA (20-50% CRC), ND in stage D, and LM [222]; ♣ (lower grade)-↑ Sst2, ♦, #, ↓ Sst2 and sst5 [223]; #, ↑ sst2 mRNA [230] | Sst2 mRNA ND in LM [222]; Sst2 and sst5-negative correlation with LM [223] |
SP | T | ♦,#, ↑ versus C [218] | ||
S | ↑ levels versus C [239] | |||
TrK | T | TCs of pCRC and peritoneal metastases [183] | ↓ 10-fold TrKC in 60% CRC [178]; #, ♦, ↑ BDNF, #,↑ TrKB; ♦, #, ↑ TrKB [181]; ♦, (+) 23.3% (TrKB) and 12.8% (TrKC) [182]; ♦, #, ↑ BDNF/TrKB [183] | ↑TrKB related to distant M [181]; TrKC related to LM [182]; BDNF alone, and BDNF+TrKB associated with LM [183] |
VIP | T | cell membranes of signet-ring cells [212]; EECs [214] | (+) [212,214] | |
S | NS versus C, ↑ versus GC [237] | ↑ versus C [158] | ||
VPAC1 | T | TCs, blood vessels near CRC, TAMs [95]; mucosal cells [216] | ♣, ↑ VPAC1 [95]; (+) 96% CRC [216] |
NPs/NP-R | Model of Research | Type of Treatment | Therapeutical Effects | Ref. |
---|---|---|---|---|
SM receptor (SSR, Sst) | SSR (Sst2)-transfected CC531 CRC cells in a rat LM model (CC2B LM) | PRRT; 185 or 370 MBq (177 Lu-DOTA0, Tyr3) octreotate | significant antitumor response in rats with CC2B LM (SSR+) versus controls | [276] |
SM analog (octreotide), galanin, serotonin | SW 620 CRC cells, nude (C57BL/6JBom-nu) mice | octreotide, galanin and serotonin | ↓ incidence of metastases to the peritoneal cavity in the treated animals ((but NS); ↑ LM and to the intra-abdominal lymph nodes in controls; ↓ tumor volume, wet weight, proliferation index and number of tumor blood vessels in the treated animals | [277] |
RAS | mouse CRC cells (MoCR); dimethylhydrazine-induced CRC in a CBA mouse with LM | rbesartan (AT1R blocker), captopril (ACE blocker), CGP42112A (AT2R agonist), and/or ANG-(1-7) | failed to show any benefit of combined targeting of the RAS | [278] |
diabetic mouse model, LM of CT26 mouse CRC cells | anti-ANG treatment with a chymase inhibitor, a renin inhibitor, and an ANG II receptor blocker | concurrent hypoglycemic and anti-ANG treatments showed a synergistic inhibitory effect on CT26 cell liver metastasis | [279] | |
orthotopic murine model of CRC LM | ANG II, ANG-(1-7), captopril | ↑ KC numbers in the liver but not tumor; captopril reduced growth of LM | [225] | |
NPY | N = 100 of metastatic CRC patients; ctDNA with mNPY | Regorafenib as last-line treatment | #, ↑ baseline level of ctDNA of mNPY | [280] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprzak, A.; Adamek, A. The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int. J. Mol. Sci. 2020, 21, 3494. https://doi.org/10.3390/ijms21103494
Kasprzak A, Adamek A. The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. International Journal of Molecular Sciences. 2020; 21(10):3494. https://doi.org/10.3390/ijms21103494
Chicago/Turabian StyleKasprzak, Aldona, and Agnieszka Adamek. 2020. "The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management" International Journal of Molecular Sciences 21, no. 10: 3494. https://doi.org/10.3390/ijms21103494
APA StyleKasprzak, A., & Adamek, A. (2020). The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. International Journal of Molecular Sciences, 21(10), 3494. https://doi.org/10.3390/ijms21103494