SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner
Abstract
:1. Introduction
2. Limitations of Existing Tests to Assess Effects of Disrupting Chemicals on the Thyroid Gland
3. State of the Art on Screening of ED Effects on the Thyroid Gland
4. State of the Art on Mammalian Thyroid Organogenesis and Recent In Vitro Thyroid Culture Achievements
5. State of the Art on Proteomics for Investigation of the Thyroid Tissue
6. State of the Art on Transcriptomics and Its Applications to the Study of the Thyroid Tissue
7. State of the Art on In Vitro 3D Culture Assays and Recent Applications to the Thyroid Cells
8. Beyond Current 3D In Vitro Assays: Replicating the Anatomy and Functionality of the Thyroid Gland
9. Sex-Specific, Structural and Functional Dimorphism of the Mammalian Thyroid Gland and Strategies to Address this Topic in the Pursued Laboratory Modelling
10. Feasibility of the Organomorphism Approach
11. Conclusions
Funding
Conflicts of Interest
References
- Calsolaro, V.; Pasqualetti, G.; Niccolai, F.; Caraccio, N.; Monzani, F. Thyroid Disrupting Chemicals. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [Green Version]
- Boas, M.; Feldt-Rasmussen, U.; Main, K.M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2012, 355, 240–248. [Google Scholar] [CrossRef]
- OECD New Scoping Document on in vitro and ex vivo Assays for the Identification of Modulators of Thyroid Hormone Signalling; OECD Publishing: Paris, France, 2017.
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal-Price, A.; Hogberg, H.T.; Crofton, K.M.; Daneshian, M.; FitzGerald, R.E.; Fritsche, E.; Heinonen, T.; Hougaard Bennekou, S.; Klima, S.; Piersma, A.H.; et al. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX 2018. [Google Scholar] [CrossRef] [PubMed]
- Crofton, K.M.; Gilbert, M.; Friedman, K.P.; Demeneix, B.; Marty, M.S.; Zoeller, R.T. Inhibition of Thyroperoxidase and Subsequent Adverse Neurodevelopmental Outcomes in Mammals. Aop Wiki 2017. [Google Scholar]
- Friedman, K.P.; Gilbert, M.; Crofton, K.M. Upregulation of Thyroid Hormone Catabolism via Activation of Hepatic Nuclear Receptors, and Subsequent Adverse Neurodevelopmental Outcomes in Mammals. Aop Wiki 2017. [Google Scholar]
- Kimura, T.; Van Keymeulen, A.; Golstein, J.; Fusco, A.; Dumont, J.E.; Roger, P.P. Regulation of thyroid cell proliferation by TSH and other factors: A critical evaluation of in vitro models. Endocr. Rev. 2001, 22, 631–656. [Google Scholar] [CrossRef]
- Dohan, O.; De la Vieja, A.; Paroder, V.; Riedel, C.; Artani, M.; Reed, M.; Ginter, C.S.; Carrasco, N. The sodium/iodide Symporter (NIS): Characterization, regulation, and medical significance. Endocr. Rev. 2003, 24, 48–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogai, T.; Curcio, F.; Hyman, S.; Cornford, E.M.; Brent, G.A.; Hershman, J.M. Induction of follicle formation in long-term cultured normal human thyroid cells treated with thyrotropin stimulates iodide uptake but not sodium/iodide symporter messenger RNA and protein expression. J. Endocrinol. 2000, 167, 125–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, Y.; Mukohara, T.; Shimono, Y.; Funakoshi, Y.; Chayahara, N.; Toyoda, M.; Kiyota, N.; Takao, S.; Kono, S.; Nakatsura, T.; et al. Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Cancer Res. 2015, 75, Am2015–Am2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astashkina, A.I.; Mann, B.K.; Prestwich, G.D.; Grainger, D.W. Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines (vol 33, pg 4712, 2012). Biomaterials 2015, 38, 108. [Google Scholar] [CrossRef] [PubMed]
- Gunness, P.; Mueller, D.; Shevchenko, V.; Heinzle, E.; Ingelman-Sundberg, M.; Noor, F. 3D organotypic cultures of human HepaRG cells: A tool for in vitro toxicity studies. Toxicol. Sci. 2013, 133, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Ingeson-Carlsson, C.; Martinez-Monleon, A.; Nilsson, M. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture. Exp. Cell Res. 2015, 338, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Kim, Y.J.; Park, Y.K.; Ryu, J.C. Changes in thyroid peroxidase activity in response to various chemicals. J. Environ. Monit. 2012, 14, 2121–2126. [Google Scholar] [CrossRef]
- Kobayashi, J.; Kizu, R.; Sugiyama, H. Influences of polyaromatic hydrocarbons and heavy metals on a thyroid carcinoma cell line. J. Health Sci. 2005, 51, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, A.; Franz, C.; Breous, E.; Loos, U. Modulation of iodide uptake by dialkyl phthalate plasticisers in FRTL-5 rat thyroid follicular cells. Mol. Cell. Endocrinol. 2005, 244, 63–71. [Google Scholar] [CrossRef]
- Ye, H.F.; Ha, M.; Yang, M.; Yue, P.; Xie, Z.Y.; Liu, C.J. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes. Sci. Rep.-UK 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.G.; Fattori, V.; Giordano, G.; Vitalone, A. An in vitro approach to assess the toxicity of certain food contaminants: Methylmercury and polychlorinated biphenyls. Toxicology 2007, 237, 65–76. [Google Scholar] [CrossRef]
- Guo, H.W.; Yang, H.; Chen, H.H.; Li, W.; Tang, J.M.; Cheng, P.; Xie, Y.C.; Liu, Y.; Ding, G.X.; Cui, D.; et al. Molecular mechanisms of human thyrocyte dysfunction induced by low concentrations of polychlorinated biphenyl 118 through the Akt/FoxO3a/NIS pathway. J. Appl. Toxicol. 2015, 35, 992–998. [Google Scholar] [CrossRef]
- Chen, G.G.; Liu, Z.M.; Vlantis, A.C.; Tse, G.M.K.; Leung, B.C.H.; van Hasselt, C.A. Heme oxygenase-1 protects against apoptosis induced by tumor necrosis factor-alpha and cycloheximide in papillary thyroid carcinoma cells. J. Cell Biochem. 2004, 92, 1246–1256. [Google Scholar] [CrossRef]
- Hansen, J.F.; Brorson, M.M.; Boas, M.; Frederiksen, H.; Nielsen, C.H.; Lindstrom, E.S.; Hofman-Bang, J.; Hartoft-Nielsen, M.L.; Frisch, T.; Main, K.M.; et al. Phthalates Are Metabolised by Primary Thyroid Cell Cultures but Have Limited Influence on Selected Thyroid Cell Functions In Vitro. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jung, J.; Lee, I.; Jung, D.; Youn, H.; Choi, K. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines. Aquat. Toxicol. 2015, 160, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Pocar, P.; Klonisch, T.; Brandsch, C.; Eder, K.; Frohlich, C.; Hoang-Vu, C.; Hombach-Klonisch, S. AhR-agonist-induced transcriptional changes of genes involved in thyroid function in primary porcine thyrocytes. Toxicol. Sci. 2006, 89, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Bano, S. Thyroid ultrasound. Indian J. Endocrinol. Metab. 2013, 17, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Amano, I.; Takatsuru, Y.; Khairinisa, M.A.; Kokubo, M.; Haijima, A.; Koibuchi, N. Effects of Mild Perinatal Hypothyroidism on Cognitive Function of Adult Male Offspring. Endocrinology 2018, 159, 1910–1921. [Google Scholar] [CrossRef]
- Toda, S.; Koike, N.; Sugihara, H. Cellular integration of thyrocytes and thyroid folliculogenesis: A perspective for thyroid tissue regeneration and engineering. Endocr. J. 2001, 48, 407–425. [Google Scholar] [CrossRef] [Green Version]
- Fierabracci, A.; Puglisi, M.A.; Giuliani, L.; Mattarocci, S.; Gallinella-Muzi, M. Identification of an adult stem/progenitor cell-like population in the human thyroid. J. Endocrinol. 2008, 198, 471–487. [Google Scholar] [CrossRef]
- Hoshi, N.; Kusakabe, T.; Taylor, B.J.; Kimura, S. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology 2007, 148, 4251–4258. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Nowka, K.; Lan, L.; Derwahl, M. Expression of endoderm stem cell markers: Evidence for the presence of adult stem cells in human thyroid glands. Thyroid 2006, 16, 537–544. [Google Scholar] [CrossRef]
- De Felice, M.; Di Lauro, R. Thyroid development and its disorders: Genetics and molecular mechanisms. Endocr. Rev. 2004, 25, 722–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonica, F.; Kasprzyk, D.F.; Opitz, R.; Iacovino, M.; Liao, X.H.; Dumitrescu, A.M.; Refetoff, S.; Peremans, K.; Manto, M.; Kyba, M.; et al. Generation of functional thyroid from embryonic stem cells. Nature 2012, 491, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonica, F.; Kasprzyk, D.F.; Schiavo, A.A.; Romitti, M.; Costagliola, S. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells. Methods Mol. Biol. 2017, 1597, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.C.; Edwards, A.V.; Verano-Braga, T.; Schwammle, V.; Kjeldsen, F.; Jensen, O.N.; Larsen, M.R. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis: Observations and implications. Proteomics 2016, 16, 907–914. [Google Scholar] [CrossRef]
- Mann, M.; Kulak, N.A.; Nagaraj, N.; Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol. Cell 2013, 49, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Abazova, N.; Krijgsveld, J. Advances in stem cell proteomics. Curr. Opin. Genet. Dev. 2017, 46, 149–155. [Google Scholar] [CrossRef]
- Takata, N.; Eiraku, M. Stem cells and genome editing: Approaches to tissue regeneration and regenerative medicine. J. Hum. Genet. 2018, 63, 165–178. [Google Scholar] [CrossRef]
- Fang, H.; Fang, W.; Cao, H.; Luo, S.; Cong, J.; Liu, S.; Pan, F.; Jia, X. Di-(2-ethylhexyl)-phthalate induces apoptosis via the PPAR$\gamma$/PTEN/AKT pathway in differentiated human embryonic stem cells. Food Chem. Toxicol. 2019, 131, 110552. [Google Scholar] [CrossRef]
- Yan, X.; He, B.; Hu, L.; Gao, J.; Chen, S.; Jiang, G. Insight into the endocrine disrupting effect and cell response to butyltin compounds in H295R cell: Evaluated with proteomics and bioinformatics analysis. Sci. Total Environ. 2018, 628–629, 1489–1496. [Google Scholar] [CrossRef]
- Lamartiniere, C.A. Altered Blood Proteome in Girls with High Urine Concentrations of Bisphenol A, Genistein, Mono-Ethyl Hexylphthalate and Mono-Benzyl Phthalate. Moj Proteom. Bioinform. 2015, 2. [Google Scholar] [CrossRef]
- Tremoen, N.H.; Fowler, P.A.; Ropstad, E.; Verhaegen, S.; Krogens, A. Exposure to the Three Structurally Different PCB Congeners (PCB 118, 153, and 126) Results in Decreased Protein Expression and Altered Steroidogenesis in the Human Adrenocortical Carcinoma Cell Line H295R. J. Toxicol. Environ. Healthpart A 2014, 77, 516–534. [Google Scholar] [CrossRef] [PubMed]
- Gump, B.B.; MacKenzie, J.A.; Dumas, A.K.; Palmer, C.D.; Parsons, P.J.; Segu, Z.M.; Mechref, Y.S.; Bendinskas, K.G. Fish consumption, low-level mercury, lipids, and inflammatory markers in children. Environ. Res. 2012, 112, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottingham, K. Proteomic effects of potential endocrine-disrupting compounds. J. Proteome Res. 2009, 8, 5411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Shinka, T.; Kinoshita, K.; Yan, H.-T.; Iwamoto, T.; Nakahori, Y. Roles of estrogen receptor alpha (ER alpha) in the regulation of the human M \ u llerian inhibitory substance (MIS) promoter. J. Med. Investig. Jmi 2003, 50, 192–198. [Google Scholar]
- Ban, Y.; Yamamoto, G.; Takada, M.; Hayashi, S.; Ban, Y.; Shimizu, K.; Akasu, H.; Igarashi, T.; Bando, Y.; Tachikawa, T.; et al. Proteomic profiling of thyroid papillary carcinoma. J. Thyroid Res. 2012, 2012, 815079. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Aguilar, J.; Clifton-Bligh, R.; Molloy, M.P. Proteomics of thyroid tumours provides new insights into their molecular composition and changes associated with malignancy. Sci. Rep. 2016, 6, 23660. [Google Scholar] [CrossRef] [Green Version]
- Ucal, Y.; Eravci, M.; Tokat, F.; Duren, M.; Ince, U.; Ozpinar, A. Proteomic analysis reveals differential protein expression in variants of papillary thyroid carcinoma. Eupa Open Proteom. 2017, 11, 1–6. [Google Scholar] [CrossRef]
- Gawin, M.; Wojakowska, A.; Pietrowska, M.; Marczak, L.; Chekan, M.; Jelonek, K.; Lange, D.; Jaksik, R.; Gruca, A.; Widlak, P. Proteome profiles of different types of thyroid cancers. Mol. Cell. Endocrinol. 2017. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Z.; Sun, H.; Li, W.; Sun, W. Comprehensive Map and Functional Annotation of Human Pituitary and Thyroid Proteome. J. Proteome Res. 2017, 16, 2680–2691. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Pietsch, J.; Riwaldt, S.; Bauer, J.; Sickmann, A.; Weber, G.; Grosse, J.; Infanger, M.; Eilles, C.; Grimm, D. Interaction of proteins identified in human thyroid cells. Int. J. Mol. Sci. 2013, 14, 1164–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, J.; Kopp, S.; Schlagberger, E.M.; Grosse, J.; Sahana, J.; Riwaldt, S.; Wehland, M.; Luetzenberg, R.; Infanger, M.; Grimm, D. Proteome Analysis of Human Follicular Thyroid Cancer Cells Exposed to the Random Positioning Machine. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Eraslan, B.; Wieland, T.; Hallstrm, B.; Hopf, T.; Zolg, D.P.; Zecha, J.; Asplund, A.; Li, L.h.; Meng, C.; et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 2019, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Phay, J.E.; Shen, R.; Pellegata, N.S.; Saji, M.; Ringel, M.D.; de la Chapelle, A.; He, H. Primary Cell Culture Systems for Human Thyroid Studies. Thyroid 2016, 26, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Fagerberg, L.; Hallstrm, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Tonry, C.; Armstrong, J.; Pennington, S.R. Probing the prostate tumour microenvironment I: Impact of glucose deprivation on a cell model of prostate cancer progression. Oncotarget 2017, 8, 14374–14394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwasnik, A.; von Kriegsheim, A.; Irving, A.; Pennington, S.R. Potential mechanisms of calcium dependent regulation of the mammalian cell cycle revealed by comprehensive unbiased label-free nLC-MS/MS quantitative proteomics. J. Proteom. 2018, 170, 151–166. [Google Scholar] [CrossRef]
- Nuwaysir, E.F.; Bittner, M.; Trent, J.; Barrett, J.C.; Afshari, C.A. Microarrays and toxicology: The advent of toxicogenomics. Mol. Carcinog 1999, 24, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhang, M.; Borlak, J.; Tong, W. A decade of toxicogenomic research and its contribution to toxicological science. Toxicol. Sci. 2012, 130, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gong, B.; Bushel, P.R.; Thierry-Mieg, J.; Thierry-Mieg, D.; Xu, J.; Fang, H.; Hong, H.; Shen, J.; Su, Z.; et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat. Biotechnol. 2014, 32, 926–932. [Google Scholar] [CrossRef]
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Carninci, P. Is sequencing enlightenment ending the dark age of the transcriptome? Nat. Methods 2009, 6, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bigas, N.; Audit, B.; Ouzounis, C.; Parra, G.; Guigo, R. Are splicing mutations the most frequent cause of hereditary disease? Febs Lett. 2005, 579, 1900–1903. [Google Scholar] [CrossRef] [PubMed]
- Morin, R.D.; O’Connor, M.D.; Griffith, M.; Kuchenbauer, F.; Delaney, A.; Prabhu, A.L.; Zhao, Y.; McDonald, H.; Zeng, T.; Hirst, M.; et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008, 18, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell. Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Mahmoudian-Sani, M.R.; Mehri-Ghahfarrokhi, A.; Asadi-Samani, M.; Mobini, G.R. Serum miRNAs as Biomarkers for the Diagnosis and Prognosis of Thyroid Cancer: A Comprehensive Review of the Literature. Eur. Thyroid J. 2017, 6, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Cameron, B.E.; Craig, P.M.; Trudeau, V.L. Implication of microRNA deregulation in the response of vertebrates to endocrine disrupting chemicals. Environ. Toxicol. Chem. 2016, 35, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Porreca, I.; D’Angelo, F.; De Franceschi, L.; Matte, A.; Ceccarelli, M.; Iolascon, A.; Zamo, A.; Russo, F.; Ravo, M.; Tarallo, R.; et al. Pesticide toxicogenomics across scales: In vitro transcriptome predicts mechanisms and outcomes of exposure in vivo. Sci. Rep. 2016, 6, 38131. [Google Scholar] [CrossRef] [Green Version]
- Porreca, I.; Ulloa Severino, L.; D’Angelo, F.; Cuomo, D.; Ceccarelli, M.; Altucci, L.; Amendola, E.; Nebbioso, A.; Mallardo, M.; De Felice, M.; et al. "Stockpile" of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells. PLoS ONE 2016, 11, e0151618. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.; Kho, Y.; Kim, P.G.; Ji, K. Thyroid endocrine disruption in male zebrafish following exposure to binary mixture of bisphenol AF and sulfamethoxazole. Environ. Toxicol. Pharm. 2016, 48, 168–174. [Google Scholar] [CrossRef]
- van Boxtel, A.L.; Kamstra, J.H.; Cenijn, P.H.; Pieterse, B.; Wagner, J.M.; Antink, M.; Krab, K.; van der Burg, B.; Marsh, G.; Brouwer, A.; et al. Microarray analysis reveals a mechanism of phenolic polybrominated diphenylether toxicity in zebrafish. Environ. Sci. Technol. 2008, 42, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Kim, Y.J.; Song, M.K.; Choi, H.S.; Park, Y.K.; Ryu, J.C. Identification of classifiers for increase or decrease of thyroid peroxidase activity in the FTC-238/hTPO recombinant cell line. Environ. Sci. Technol. 2011, 45, 7906–7914. [Google Scholar] [CrossRef] [PubMed]
- McDougal, J.N.; Jones, K.L.; Fatuyi, B.; Gray, K.J.; Blount, B.C.; Valentin-Blasini, L.; Fisher, J.W. The effects of perchlorate on thyroidal gene expression are different from the effects of iodide deficiency. J. Toxicol. Environ. Health A 2011, 74, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regan, E.A.; Hersh, C.P.; Castaldi, P.J.; DeMeo, D.L.; Silverman, E.K.; Crapo, J.D.; Bowler, R.P. Omics and the Search for Blood Biomarkers in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. Am. J. Respir. Cell Mol. Biol. 2019, 61, 143–149. [Google Scholar] [CrossRef]
- Gallo Cantafio, M.E.; Grillone, K.; Caracciolo, D.; Scionti, F.; Arbitrio, M.; Barbieri, V.; Pensabene, L.; Guzzi, P.H.; Di Martino, M.T. From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High. Throughput 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Rolland, D.C.M.; Basrur, V.; Jeon, Y.K.; McNeil-Schwalm, C.; Fermin, D.; Conlon, K.P.; Zhou, Y.; Ng, S.Y.; Tsou, C.C.; Brown, N.A.; et al. Functional proteogenomics reveals biomarkers and therapeutic targets in lymphomas. Proc. Natl. Acad. Sci. USA 2017, 114, 6581–6586. [Google Scholar] [CrossRef] [Green Version]
- Meierhofer, D.; Weidner, C.; Hartmann, L.; Mayr, J.A.; Han, C.T.; Schroeder, F.C.; Sauer, S. Protein sets define disease states and predict in vivo effects of drug treatment. Mol. Cell. Proteom. 2013, 12, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.Y.; Hong, L.C.; Feng, J.; Wu, Y.T.; Zhang, Y.Z. Integrative proteomics and transcriptomics identify novel invasive-related biomarkers of non-functioning pituitary adenomas. Tumour Biol. 2016, 37, 8923–8930. [Google Scholar] [CrossRef]
- Chalmel, F.; Rolland, A.D. Linking transcriptomics and proteomics in spermatogenesis. Reproduction 2015, 150, R149–R157. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Kim, S.; et al. Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Huch, M.; Knoblich, J.A.; Lutolf, M.P.; Martinez-Arias, A. The hope and the hype of organoid research. Development 2017, 144, 938–941. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Mead, B.E.; Safaee, H.; Langer, R.; Karp, J.M.; Levy, O. Stem Cell Organoid Engineering. Cell Stem Cell 2016, 18, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Mohr, J.C.; de Pablo, J.J.; Palecek, S.P. 3-D microwell culture of human embryonic stem cells. Biomaterials 2006, 27, 6032–6042. [Google Scholar] [CrossRef]
- Laurent, J.; Blin, G.; Chatelain, F.; Vanneaux, V.; Fuchs, A.; Larghero, J.; Théry, M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat. Biomed. Eng. 2017, 1, 939–956. [Google Scholar] [CrossRef]
- Chu, L.; Robinson, D.K. Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 2001, 12, 180–187. [Google Scholar] [CrossRef]
- Qian, X.; Nguyen, H.N.; Song, M.M.; Hadiono, C.; Ogden, S.C.; Hammack, C.; Yao, B.; Hamersky, G.R.; Jacob, F.; Zhong, C.; et al. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell 2016, 165, 1238–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, P.; Sun, A.X.; An, J.; Chua, C.K.; Chew, S.Y. 3D neural tissue models: From spheroids to bioprinting. Biomaterials 2018, 154, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Sensenig, R.; Sapir, Y.; MacDonald, C.; Cohen, S.; Polyak, B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomed. Nanotechnol. Biol. Med. 2012, 7, 1425–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.J.; Miranda-Nieves, D.; Ankrum, J.A.; Matthiesen, M.E.; Phillips, J.A.; Roes, I.; Wojtkiewicz, G.R.; Juneja, V.; Kultima, J.R.; Zhao, W.A.; et al. Tracking Mesenchymal Stem Cells with Iron Oxide Nanoparticle Loaded Poly(lactide-co-glycolide) Microparticles. Nano Lett. 2012, 12, 4131–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Huang, Z.; Liu, X.; Qian, J.; Xu, J.; Yang, X.; Sun, A.; Ge, J. Iron-induced myocardial injury: An alarming side effect of superparamagnetic iron oxide nanoparticles. J. Cell Mol. Med. 2015, 19, 2032–2035. [Google Scholar] [CrossRef] [PubMed]
- Tampieri, A.; D’Alessandro, T.; Sandri, M.; Sprio, S.; Landi, E.; Bertinetti, L.; Panseri, S.; Pepponi, G.; Goettlicher, J.; Banobre-Lopez, M.; et al. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012, 8, 843–851. [Google Scholar] [CrossRef]
- Iannotti, V.; Adamiano, A.; Ausanio, G.; Lanotte, L.; Aquilanti, G.; Coey, J.M.D.; Lantieri, M.; Spina, G.; Fittipaldi, M.; Margaris, G.; et al. Fe-Doping-Induced Magnetism in Nano-Hydroxyapatites. Inorg. Chem. 2017, 56, 4447–4459. [Google Scholar] [CrossRef]
- King, S.M.; Higgins, J.W.; Nino, C.R.; Smith, T.R.; Paffenroth, E.H.; Fairbairn, C.E.; Docuyanan, A.; Shah, V.D.; Chen, A.E.; Presnell, S.C.; et al. 3D Proximal Tubule Tissues Recapitulate Key Aspects of Renal Physiology to Enable Nephrotoxicity Testing. Front. Physiol. 2017, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernerd, F.; Marionnet, C. In vitro skin models for the evaluation of sunscreen-based skin photoprotection: Molecular methodologies and opportunities. Curr. Med. Chem. 2017. [Google Scholar] [CrossRef]
- Bulanova, E.A.; Koudan, E.V.; Degosserie, J.; Heymans, C.; Pereira, F.D.; Parfenov, V.A.; Sun, Y.; Wang, Q.; Akhmedova, S.A.; Sviridova, I.K.; et al. Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 2017, 9, 034105. [Google Scholar] [CrossRef]
- Liu, N.; Huang, S.; Yao, B.; Xie, J.; Wu, X.; Fu, X. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland. Sci. Rep. 2016, 6, 34410. [Google Scholar] [CrossRef]
- Klimant, I.; Huber, C.; Liebsch, G.; Nierauter, G.; Stangelmayer, A.; Wolfbeis, O.S. Dual Lifetime Referencing (DLR) — a New Scheme for Converting Fluorescence Intensity into a Frequency-Domain or Time-Domain Information; Valeur, B., Brochon, J.C., Eds.; New Trends Fluoresc. Spectroscopy. Springer Ser. Fluoresc. (Methods Appl.); Springer: Berlin/Heidelberg, Germany, 2001; Volume 1. [Google Scholar]
- Santoro, R.; Krause, C.; Martin, I.; Wendt, D. On-line monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs. J. Tissue Eng. Regen. Med. 2012, 6, 696–701. [Google Scholar] [CrossRef]
- Alginate-based Bi-layered Hydrogels with Embedded Cells for the Regenerative Therapy of Osteo-chondral Defects. Available online: https://www.presens.de/knowledge/publications/application-note/alginate-based-bi-layered-hydrogels-with-embedded-cells-for-the-regenerative-therapy-of-osteo-chondral-defects-630.html (accessed on 18 May 2020).
- Truckenmuller, R.; Giselbrecht, S.; Rivron, N.; Gottwald, E.; Saile, V.; van den Berg, A.; Wessling, M.; van Blitterswijk, C. Thermoforming of film-based biomedical microdevices. Adv. Mater. 2011, 23, 1311–1329. [Google Scholar] [CrossRef] [PubMed]
- Zalesskiy, S.S.; Danieli, E.; Blümich, B.; Ananikov, V.P. Miniaturization of NMR Systems: Desktop Spectrometers, Microcoil Spectroscopy, and “NMR on a Chip” for Chemistry, Biochemistry, and Industry. Chem. Rev. 2014, 114, 5641–5694. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.-Y.; Lu, M.S.C. A CMOS magnetic microbead-based capacitive biosensor array with on-chip electromagnetic manipulation. Biosens. Bioelectron. 2013, 45, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Hakho, L.; Yong, L.; Westervelt, R.M.; Ham, D. IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid-State Circuits 2006, 41, 1471–1480. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.; Reddy, V.; Hu, X.; Kim, K.; Jadhav, M.; Abedini-Nassab, R.; Noh, Y.-W.; Lim, Y.T.; Yellen, B.B.; Kim, C. Magnetophoretic circuits for digital control of single particles and cells. Nat. Commun. 2014, 5, 3846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toni, R.; Tampieri, A.; Zini, N.; Strusi, V.; Sandri, M.; Dallatana, D.; Spaletta, G.; Bassoli, E.; Gatto, A.; Ferrari, A.; et al. Ex situ bioengineering of bioartificial endocrine glands: A new frontier in regenerative medicine of soft tissue organs. Ann. Anat. 2011, 193, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Toni, R.; Bassi, E.; Barbaro, F.; Zini, N.; Zamparelli, A.; Alfieri, M.; Dallatana, D.; Mosca, S.; Della Casa, C.; Gnocchi, C.; et al. Bioartificial endocrine glands: at the cutting edge of translational research in endocrinology. Bio-Inspired Regen. Med. Mater. Process. Clin. Appl. Pan Standford Publ. 2016, 357–387. [Google Scholar]
- Fagman, H.; Nilsson, M. Morphogenetics of early thyroid development. J. Mol. Endocrinol. 2011, 46, R33–R42. [Google Scholar] [CrossRef] [Green Version]
- Hegedus, L.; Perrild, H.; Poulsen, L.R.; Andersen, J.R.; Holm, B.; Schnohr, P.; Jensen, G.; Hansen, J.M. The determination of thyroid volume by ultrasound and its relationship to body weight, age, and sex in normal subjects. J. Clin. Endocrinol. Metab. 1983, 56, 260–263. [Google Scholar] [CrossRef]
- Hegedus, L.; Rasmussen, N.; Knudsen, N. Seasonal variation in thyroid size in healthy males. Horm. Metab. Res. 1987, 19, 391–392. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, J.; Bach, P.R.; Snow, G.L.; Schneider, A.; Lee, J.L.; Ilstrup, S.; Bennett, S.T.; Benvenga, S. Circadian and Circannual Rhythms in Thyroid Hormones: Determining the TSH and Free T4 Reference Intervals Based Upon Time of Day, Age, and Sex. Thyroid 2015, 25, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.H.; Howards, P.P.; Darrow, L.A.; Meadows, J.W.; Kesner, J.S.; Spencer, J.B.; Terrell, M.L.; Marcus, M. Thyroid hormones and menstrual cycle function in a longitudinal cohort of premenopausal women. Paediatr. Perinat. Epidemiol. 2018, 32, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Malendowicz, L.K.; Bednarek, J. Sex dimorphism in the thyroid gland. IV. Cytologic aspects of sex dimorphism in the rat thyroid gland. Acta. Anat. (Basel) 1986, 127, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Marassi, M.P.; Fortunato, R.S.; da Silva, A.C.M.; Pereira, V.S.; Carvalho, D.P.; Rosenthal, D.; da Costa, V.M.C. Sexual dimorphism in thyroid function and type 1 iodothyronine deiodinase activity in pre-pubertal and adult rats. J. Endocrinol. 2007, 192, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Malendowicz, L.K.; Majchrzak, M. Sex dimorphism in the thyroid gland. III. Morphometric studies on the rat thyroid gland in the course of postnatal ontogenesis. Endokrinologie 1981, 77, 297–302. [Google Scholar]
- Dulken, B.; Brunet, A. Stem Cell Aging and Sex: Are We Missing Something? Cell Stem Cell 2015, 16, 588–590. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Isotani, A.; Mise, N.; Yamamoto, M.; Fujihara, Y.; Kaseda, K.; Nakanishi, T.; Ikawa, M.; Hamada, H.; Abe, K.; et al. Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr. Biol. 2006, 16, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Bermejo-Alvarez, P.; Rizos, D.; Rath, D.; Lonergan, P.; Gutierrez-Adan, A. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl. Acad. Sci. USA 2010, 107, 3394–3399. [Google Scholar] [CrossRef] [Green Version]
- Lowe, R.; Gemma, C.; Rakyan, V.K.; Holland, M.L. Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. Bmc Genom. 2015, 16, 295. [Google Scholar] [CrossRef] [Green Version]
- Ronen, D.; Benvenisty, N. Sex-dependent gene expression in human pluripotent stem cells. Cell Rep. 2014, 8, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Latif, R.; Davies, T.F. Human embryonic stem cells form functional thyroid follicles. Thyroid 2015, 25, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurmann, A.A.; Serra, M.; Hawkins, F.; Rankin, S.A.; Mori, M.; Astapova, I.; Ullas, S.; Lin, S.; Bilodeau, M.; Rossant, J.; et al. Regeneration of Thyroid Function by Transplantation of Differentiated Pluripotent Stem Cells. Cell Stem Cell 2015, 17, 527–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, F.S.; Gray, G.M.; Bucher, J.R. Toxicology - Transforming environmental health protection. Science 2008, 319, 906–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellington, A.A.; Kullo, I.J.; Bailey, K.R.; Klee, G.G. Antibody-based protein multiplex platforms: Technical and operational challenges. Clin. Chem. 2010, 56, 186–193. [Google Scholar] [CrossRef]
- Boja, E.S.; Rodriguez, H. Mass spectrometry-based targeted quantitative proteomics: Achieving sensitive and reproducible detection of proteins. Proteomics 2012, 12, 1093–1110. [Google Scholar] [CrossRef]
- Lemoine, N.R.; Mayall, E.S.; Jones, T.; Sheer, D.; McDermid, S.; Kendall-Taylor, P.; Wynford-Thomas, D. Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Br. J. Cancer 1989, 60, 897–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambesi-Impiombato, F.S.; Parks, L.A.; Coon, H.G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc. Natl. Acad. Sci. USA 1980, 77, 3455–3459. [Google Scholar] [CrossRef] [Green Version]
Human Thyroid Carcinoma FTC-238 Cells Male Donor [15] | 8505C Human Thyroid Cells Female Donor [16] | KAT5 Human Thyroid Carcinoma Cells Female Donor [21] | TT Human Thyroid Cell Line Female Donor [19] | ||
---|---|---|---|---|---|
Polycyclic aromatic hydrocarbons (PAH) µg/L | Benz(a)anthracene (BAA) | 220 ↑ cell proliferation | |||
Benzo[a]pyrene (BAP) | 252.31 ↓TPO | 250 ↑ cell proliferation | |||
Benzo[k]fluoranthene (BKF) | 0.25–2.52 ↓TPO | 250 ↑ cell proliferation | |||
Dibenzo[a,h]anthracene (DahA) | 278.34–2783.46 ↑TPO | ||||
3-methylchloranthracene | 0.02–214.69 ↓TPO | ||||
Pyrene | 0.20–20.22 ↓TPO | ||||
Heavy Metals µg/L | Cadmium (Cd) | 160 cytotoxic effect | 560–1120 arrest of cell growth in the G0/G1 phase | ||
Copper (Cu) | 90 cytotoxic effect | ||||
Nickel (Ni) | 90 cytotoxic effect | ||||
Zinc (Zn) | 100 cytotoxic effect | ||||
MeHg | 107.81–4312.54 cytotoxic effect |
FRTL 5 Rat Thyroid Cells Unspecified Karyotype [17] | Primary Human Thyroid Cells Unspecified Karyotype [22] | FRTL 5 Rat Thyroid Cells Unspecified Karyotype [23] | Human Thyroid Follicular Rpithelial Cell Line (Nthy-ori 3-1) Unspecified Karyotype [18] | TT Human Thyroid Cell Line Female Donor [19] | Human Thyroid Epithelial Cells Female Donor [20] | Primary Pig Thyroid Cells Unspecified Karyotype [24] | ||
---|---|---|---|---|---|---|---|---|
Phthalates µg/L | DIDP | 44,600–446,000 ↑ Iodine uptake | ||||||
DOP | 39,000–390,000 ↑ Iodine uptake | |||||||
DINP | 41,800–418,000 ↑ Iodine uptake | |||||||
DEHP | 39,000–390,000 ↑ Iodine uptake | 3900 ↓cAMP | 39,060–156,240 ↑ cell proliferation ↑ROS production only at 156,240 ↑TRH-R | |||||
BBP | 31,200–312,000 ↑ Iodine uptake cytotoxic effect | |||||||
DBP | 80,400–804,000 cytotoxic effect | |||||||
MEHP | 27,830 ↓cAMP ↓ TG cytotoxic effect | |||||||
Organophosphate flame retardants (OPFRs) µg/L | Triphenyl phosphate (TPP) | 1000 ↓TG ↓TSH-R 3000–10,000 ↑ NIS 10,000 ↑ NIS ↑ TPO | ||||||
Polychlorinated biphenyls (PCB) µg/L | PCB 118 | 0.81–8.16 ↓ TG ↓T4 81.60–8160.55 cytotoxic effect | ||||||
PCB 126 | 979.26 cytotoxic effect | 99.88 ↑ cytochrome P- 450 ↓ NIS |
Parameter | 2D Assays | 3D Assays | ||
---|---|---|---|---|
Organoids | Decellularized ECM | Bioprinted Constructs | ||
Cell-to-Cell, Cell-to-ECM Interactions | Poor | Excellent | Excellent | Excellent |
Tissue microenvironment | Extremely Limited | Limited | Good Duplication | Limited |
Control of structural architecture | No | No | Yes, but influenced by chemical and physical preparations | Yes |
Presence of connective tissue cells | Possible but not used | Yes | Yes | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, L.; Barbaro, F.; Caiment, F.; Coleman, O.; Costagliola, S.; Di Conza, G.; Elviri, L.; Giselbrecht, S.; Krause, C.; Mota, C.; et al. SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner. Int. J. Mol. Sci. 2020, 21, 3648. https://doi.org/10.3390/ijms21103648
Moroni L, Barbaro F, Caiment F, Coleman O, Costagliola S, Di Conza G, Elviri L, Giselbrecht S, Krause C, Mota C, et al. SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner. International Journal of Molecular Sciences. 2020; 21(10):3648. https://doi.org/10.3390/ijms21103648
Chicago/Turabian StyleMoroni, Lorenzo, Fulvio Barbaro, Florian Caiment, Orla Coleman, Sabine Costagliola, Giusy Di Conza, Lisa Elviri, Stefan Giselbrecht, Christian Krause, Carlos Mota, and et al. 2020. "SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner" International Journal of Molecular Sciences 21, no. 10: 3648. https://doi.org/10.3390/ijms21103648
APA StyleMoroni, L., Barbaro, F., Caiment, F., Coleman, O., Costagliola, S., Di Conza, G., Elviri, L., Giselbrecht, S., Krause, C., Mota, C., Nazzari, M., Pennington, S. R., Ringwald, A., Sandri, M., Thomas, S., Waddington, J., & Toni, R. (2020). SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner. International Journal of Molecular Sciences, 21(10), 3648. https://doi.org/10.3390/ijms21103648