Bioshell Calcium Oxide (BiSCaO) Ointment for the Disinfection and Healing of Pseudomonas aeruginosa-Infected Wounds in Hairless Rats
Abstract
:1. Introduction
2. Results
2.1. Bactericidal Activities of Various Concentrations of BiSCaO and Povidone Iodine Ointments In Vitro
2.2. Disinfection of P. aeruginosa-Infected Wounds with BiSCaO and Povidone Iodine Ointments In Vivo
2.3. Healing of P. aeruginosa-Infected Wounds by Applying Disinfectants In Vivo
2.4. Histological Analyses
3. Discussion
4. Materials and Methods
4.1. Preparation of BiSCaO Ointment
4.2. Bactericidal Activity of Various Concentrations of BiSCaO and Povidone Iodine Ointments In Vitro
4.3. Applications of Various Concentrations of BiSCaO and Povidone Iodine Ointment to P. aeruginosa-Infected Wounds In Vivo
4.4. Histological Examination
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BiSCaO | bioshell calcium oxides |
SSP | heated scallop shell powder |
CNFS | chitin nanofiber sheets |
Ag NP | silver nanoparticles |
HClO | hypochlorous acid |
CFU | colony forming units |
References
- Clark, R.A.F. Biology of dermal wound repairs. Dermatol. Clin. 1993, 11, 647–666. [Google Scholar] [CrossRef]
- Robson, M.C.; Stenberg, B.D.; Heggers, J.P. Wound healing alterations caused by infection. Clin. Plast. Surg. 1990, 17, 485–492. [Google Scholar]
- Payne, W.G.; Wright, T.E.; Ko, F.; Wheeler, C.; Wang, X.; Robson, M.C. Bacterial degradation of growth factors. J. Appl. Res. 2003, 3, 35–40. [Google Scholar]
- Serena, T.; Robson, M.C.; Cooper, D.M.; Ignatious, J. Lack of reliability of clinical/visual assessment of chronic wound infection: The incidence of biopsy-proven infection in venous leg ulcers. Wounds 2006, 18, 197–202. [Google Scholar]
- Robson, M.C.; Edstrom, L.E.; Krizek, T.J.; Groskin, M.G. The efficacy of systematic antibiotics in the treatment of granulating wounds. J. Surg. Res. 1974, 16, 299–306. [Google Scholar] [CrossRef]
- Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emer. Infect. Dis. 1998, 4, 551–560. [Google Scholar] [CrossRef]
- Wilson, J.P.; Mills, J.G.; Prather, I.D.; Dimitrijerich, S.D. A toxicity index of skin and wound cleaners used on in vitro fibroblasts and keratinocytes. Adv. Skin. Wound Care 2005, 18, 373–378. [Google Scholar] [CrossRef]
- McCauley, R.L.; Linares, H.A.; Herndon, D.N.; Robson, M.C.; Heggers, J.P. In vitro toxicity of topical antimicrobial agents to human fibroblasts. J. Surg. Res. 1989, 3, 269–274. [Google Scholar] [CrossRef]
- Kinoda, J.; Ishihara, M.; Hattori, H.; Fukuda, K.; Yokoe, H. Cytotoxicity of silver nanoparticle and chitin–nanofiber sheet composites caused by oxidative stress. Nanomaterials 2016, 6, 189. [Google Scholar] [CrossRef]
- McCauley, R.L.; Li, Y.Y.; Poole, B.; Evans, M.J.; Robson, M.C.; Heggers, J.P.; Hemdon, D.N. Differential inhibition of human basal keratinocyte growth to silver sulfadiazine and mafenide acetate. J. Surg. Res. 1992, 52, 276–285. [Google Scholar] [CrossRef]
- Wiercinski, F.J. Calcium, An overview–1989. Biol. Bull. 1989, 176, 195–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.J.; Chou, K.S.; Huang, Y.K. A novel method to make regenerable core-shell calcium-based sorbants. J. Environ. Manag. 2006, 79, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Sawai, J. Antimicrobial characteristics of heated scallop shell powder and its application. Biocontrol Sci. 2011, 1, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Fujimoto, R.; Sawai, J.; Kikuchi, M.; Yahata, S.; Satoh, S. Antibacterial characteristics of heated scallop-shell nano-particles. Biocontrol Sci. 2014, 19, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Thammakarn, G.; Satoh, K.; Suguro, A.; Hakim, H.; Ruenphet, S.; Talehara, K. Inactivation of avian influenza virus, Newcastle disease virus and goose parvovirus using solution of nano-sized scallop shell powder. J. Vet. Med. Sci. 2014, 76, 1277–1280. [Google Scholar] [CrossRef] [Green Version]
- Sawai, J.; Miyoshi, H.; Kojima, H. Sporicidal kinetics of Bacillus subtilis spores by heated scallop shell powder. J. Food Prot. 2003, 66, 1482–1485. [Google Scholar] [CrossRef]
- Xing, R.; Qin, Y.; Guan, X.; Liu, S.; Yu, H.; Li, P. Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products. Egypt. J. Aqua. Res. 2013, 39, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Sawai, J.; Nagasawa, K.; Kikuchi, M. Ability of heated scallop–shell powder to disinfect Staphylococcus aureus biofilm. Food Sci. Technol. Res. 2013, 19, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Shimamura, N.; Irie, F.; Yamakawa, T.; Kikuchi, M.; Sawai, J. Heated scallop-shell powder treatment for deactivation and removal of Listeria sp. Biofilm formed at low temperature. Biocontrol Sci. 2015, 20, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Ishihara, M.; Nakamura, S.; Fukuda, K.; Takayama, T.; Hiruma, S.; Murakami, K.; Fujita, M.; Yokoe, H. Preparation and application of bioshell calcium oxide (BiSCaO) nanoparticles-dispersions with bectericidal activity. Molecules 2019, 24, 3415. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Ohata, H.; Inoue, A.; Ishihara, M.; Nakamura, S.; Fukuda, K.; Takayama, T.; Murakami, K.; Hiruma, S.; Yokoe, H. Application of colloidal dispersions of bioshell calcium oxide (BiSCaO) for disinfection. Polymers 2019, 11, 1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dissemond, J. Chronic wounds and bacteria. Clinical relevance, detection and therapy. Hautarzt 2014, 65, 10–14. [Google Scholar] [CrossRef]
- Selim, P.; Bashford, C.; Grossman, C. Evidence-based practice: Tap water cleansing of leg ulcers in the community. J. Clin. Nurse 2001, 10, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Moore, Z.; Cowman, S. A systematic review of wound cleansing for pressure ulcers. J. Clin. Nurse 2008, 17, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Murakami, K.; Fukuda, K.; Nakamura, S.; Kuwabara, M.; Hattori, H.; Fujita, M.; Kiyosawa, T.; Yokoe, H. Stability of weak acidic hypochlorous acid solution with microbicidal activity. Biocontrol Sci. 2017, 22, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lee, J.G.; Kang, J.W.; Cho, H.J.; Kim, H.S.; Byeon, H.K.; Yoon, J.H. Effects of a low concentration hypochlorous acid nasal irrigation solution on bacteria, fungi, and virus. The Laryngoscope 2008, 118, 1862–1867. [Google Scholar] [CrossRef]
- Kuwabara, M.; Ishihara, M.; Fukuda, K.; Nakamura, S.; Murakami, K.; Sato, Y.; Yokoe, H.; Kiyosawa, T. Disinfection by Hypochlorous Acid for Pseudomonas aeruginosa-Infected Wounds in Diabetic db/db Mice. Wound Med. 2018, 23, 1–5. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Ishihara, M.; Kinoda, J.; Hattori, H.; Nakamura, S.; Ono, T.; Miyahira, Y.; Matsui, T. Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. J. Nanobiotechnol. 2014, 12, Art no. 49. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, M.; Nguyen, V.Q.; Mori, Y.; Nakamura, S.; Hattori, H. Adsorption of silver nanoparticles onto different surface structures of chitin/ chitosan and correlations with antimicrobial activities. Int. J. Mol. Sci. 2015, 16, 13973–13988. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Sato, M.; Sato, Y.; Ando, N.; Takayama, T.; Fujita, M.; Ishihara, M. Synthesis and application of silver nanoparticles (Ag nps) for the prevention of infection in healthcare workers. Int. J. Mol. Sci. 2019, 20, Art No. 3620. [Google Scholar] [CrossRef] [Green Version]
- Kuwabara, M.; Sato, Y.; Takayama, T.; Nakamura, S.; Fukuda, K.; Murakami, K.; Yokoe, H.; Kiyosawa, T. Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin nanofiber sheet covering. Wound Med. 2020, 28, Art. No. 100183. [Google Scholar] [CrossRef]
- Takayama, T.; Ishihara, M.; Sato, Y.; Nakamura, S.; Fukuda, K.; Murakami, K.; Yokoe, H. Bioshell calcium oxide (BiSCaO) for cleansing and healing of pseudomonas aeruginosa-infected wounds in hairless rats. Bio-Med. Mater. Engineer. 2020, in press. [Google Scholar]
- Galiano, R.D.; Michaels, J., 5th; Dobryansky, M.; Levine, J.P.; Gurtner, G.C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 2004, 12, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Nakanishi, K.; Ono, K.; Sato, M.; Kikuchi, M.; Saitoh, Y.; Yura, H.; Matsui, T.; Hattori, H.; Uenoyama, M.; et al. Photocrosslinkable chitosan as a dressing for wound occlusion and acceletor in healing process. Biomaterials 2002, 23, 833–840. [Google Scholar] [CrossRef]
- Ishihara, M.; Ono, K.; Sato, M.; Nakanishi, K.; Saitoh, Y.; Yura, H.; Matsui, T.; Hattori, H.; Fujita, M.; Kikuchi, M.; et al. Acceleration of wound contraction and healing with photocrosslinkable chitosan hydrogel. Wound Repair Regen. 2001, 9, 513–521. [Google Scholar] [CrossRef]
- Xu, Z.; Han, S.; Gu, Z.; Wu, J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv. Healthcare Mater. 2020, 9, 1901502. [Google Scholar] [CrossRef]
- Huang, J.; Chen, L.; Gu, Z.; Wu, J. Red jujube-incorporated gelatin methacryloyl (GelMA) hydrogels with anti-oxidation and immunoregulation activity for wound healing. J. Biomed. Nanotechnol. 2019, 15, 1357–1370. [Google Scholar] [CrossRef]
- Sato, Y.; Ishihara, M.; Nakamura, S.; Fukuda, K.; Kuwabara, M.; Takayama, T.; Hiruma, S.; Murakami, K.; Fujita, M.; Yokoe, H. Comparison of various disinfectants on bactericidal activity under organic matter contaminated water. Biocontrol Sci. 2019, 24, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, K.; Sato, Y.; Ishihara, M.; Nakamura, S.; Takayama, T.; Murakami, K.; Fujita, M.; Yokoe, H. Skin cleansing technique with disinfectant using improved high-velocity steam-air micro mist jet spray. Biocontrol Sci. 2020, 25, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Kubo, M.; Ohshima, Y.; Irie, F.; Kikuchi, M.; Sawai, J. Disinfection treatment of heated scallop–shell powder on biofilm of Escherichia coli ATCC 25922 surrogated for E. coli O157:H7. J. Biomater. Nanobiotechnol. 2013, 4, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Yamashita, K.; Murayama, T.; Sato, T. Microbicidal effect of weak acid hypochlorous solution on various microorganisms. Biocontrol Sci. 2012, 17, 129–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakarya, S.; Gunay, N.; Karakulak, M.; Ozturk, B.; Ertugrul, B. Hypochlorous acids: An ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds 2014, 26, 342–350. [Google Scholar]
- Sato, Y.; Ishihara, M.; Fukuda, K.; Nakamura, S.; Murakami, K.; Fujita, M.; Yokoe, H. Behavior of nitrate nitrogen and nitrite nitrogen in drinking waters. Biocontrol. Sci. 2018, 23, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottardi, W.; Debabov, D.; Nagl, M. N-chloramine, a promising class of well-tolerated topical anti-infectives. Antimicrob. Agents Chemother. 2013, 57, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disinfectant in Ointments | Length of Granulation Tissue (µm) | Capillary Formation (Capillary Number/Image) |
---|---|---|
No cleansing | 920 ± 95 | 7 ± 5 |
Ointment alone | 940 ± 100 | 13 ± 4 |
Providone-iodine | 980 ± 80 | 9 ± 3 |
0.04 wt% BiSCaO | 1020 ± 60 | 14 ± 6 |
0.2 wt% BiSCaO | 1160 ± 85 * | 35 ± 10 * |
1 wt% BiSCaO | 1120 ± 75 * | 31 ± 8 * |
5 wt% BiSCaO | 950 ± 65 | 11 ± 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takayama, T.; Ishihara, M.; Nakamura, S.; Sato, Y.; Hiruma, S.; Fukuda, K.; Murakami, K.; Yokoe, H. Bioshell Calcium Oxide (BiSCaO) Ointment for the Disinfection and Healing of Pseudomonas aeruginosa-Infected Wounds in Hairless Rats. Int. J. Mol. Sci. 2020, 21, 4176. https://doi.org/10.3390/ijms21114176
Takayama T, Ishihara M, Nakamura S, Sato Y, Hiruma S, Fukuda K, Murakami K, Yokoe H. Bioshell Calcium Oxide (BiSCaO) Ointment for the Disinfection and Healing of Pseudomonas aeruginosa-Infected Wounds in Hairless Rats. International Journal of Molecular Sciences. 2020; 21(11):4176. https://doi.org/10.3390/ijms21114176
Chicago/Turabian StyleTakayama, Tomohiro, Masayuki Ishihara, Shingo Nakamura, Yoko Sato, Sumiyo Hiruma, Koichi Fukuda, Kaoru Murakami, and Hidetaka Yokoe. 2020. "Bioshell Calcium Oxide (BiSCaO) Ointment for the Disinfection and Healing of Pseudomonas aeruginosa-Infected Wounds in Hairless Rats" International Journal of Molecular Sciences 21, no. 11: 4176. https://doi.org/10.3390/ijms21114176
APA StyleTakayama, T., Ishihara, M., Nakamura, S., Sato, Y., Hiruma, S., Fukuda, K., Murakami, K., & Yokoe, H. (2020). Bioshell Calcium Oxide (BiSCaO) Ointment for the Disinfection and Healing of Pseudomonas aeruginosa-Infected Wounds in Hairless Rats. International Journal of Molecular Sciences, 21(11), 4176. https://doi.org/10.3390/ijms21114176