Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of Clinical Samples Used in the Study
2.2. Urinary Proteome Analysis for Identification and Label-Free Quantitation
2.3. Functional Annotation of Differential Protein Expression in the PPG and GPG Groups
2.4. Univariate ROC Analysis for Predicting Renal Outcome
2.5. Multivariate Analysis for Predicting Renal Outcome
2.6. External Validation of Clinical Models in Public Studies
3. Discussion
4. Materials and Methods
4.1. Patients and Urine Samples
4.2. Measurements of Nephrology Parameters
4.3. Urinary Protein Sample Preparation
4.4. Enzymatic Digestion in-Solution
4.5. Nano-LC-ESI-MS/MS Analysis
4.6. Database Searching and Label-Free Quantitation
4.7. Normalization of Protein Abundance
4.8. Differential Data Analysis by Filling Missing Data
4.9. GO Analysis
4.10. Statistical Clinical Model Generation Based on Feature Selection
4.11. Mining Public Microarray Data
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
T2D | Type 2 diabetes |
eGFR | Estimated glomerular filtration rate |
DKD | Diabetic kidney disease |
BMI | Body mass index |
SBP | Systolic blood pressure |
HbA1c | Glycated hemoglobin concentration |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
ACR | Albumin-to-creatinine ratio |
NAPCR | Nonalbumin protein-to-creatinine ratio |
PCR | Urine protein-to-creatinine ratio |
GPG | Good-prognostic group |
PPG | Poor-prognostic group |
LC-MS | Liquid chromatography–mass spectrometry |
DAP | Differential abundant protein |
GO | Gene ontology |
FDR | False discovery rate |
ROC | Receiver operating characteristic |
AUC | Area under the receiver operating characteristic curve |
RF | Random forest |
SVM | Support vector machine |
ELISA | Enzyme-linked immunosorbent assay |
CKD | Chronic kidney disease |
MS/MS | Tandem mass spectrometry |
LFQ | Label-free quantitation |
NSF | Normalization scaling factor |
DN | Diabetic nephropathy |
FSGS | Focal and segmental glomerulosclerosis |
FSGS&MCD | Focal and segmental glomerulosclerosis and minimal change disease |
HT | Hypertensive nephropathy |
MCD | Minimal change disease |
MGN | Membranous glomerulonephritis |
RPGN | Rapidly progressive glomerulonephritis |
SLE | Systemic lupus erythematosus |
TMD | Thin membrane disease |
TN | Tumor nephrectomies |
References
- Ahn, J.H.; Yu, J.H.; Ko, S.H.; Kwon, H.S.; Kim, D.J.; Kim, J.H.; Kim, C.S.; Song, K.H.; Won, J.C.; Lim, S.; et al. Prevalence and determinants of diabetic nephropathy in Korea: Korea national health and nutrition examination survey. Diabetes Metab. J. 2014, 38, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, K.R.; Bakris, G.L.; Bilous, R.W.; Chiang, J.L.; de Boer, I.H.; Goldstein-Fuchs, J.; Hirsch, I.B.; Kalantar-Zadeh, K.; Narva, A.S.; Navaneethan, S.D.; et al. Diabetic kidney disease: A report from an ADA Consensus Conference. Diabetes Care 2014, 37, 2864–2883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.J.; Foley, R.N.; Chavers, B.; Gilbertson, D.; Herzog, C.; Johansen, K.; Kasiske, B.; Kutner, N.; Liu, J.; St Peter, W.; et al. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am. J. Kidney Dis. 2012, 59, A7. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.; Delles, C. Urinary Proteomics for Diagnosis and Monitoring of Diabetic Nephropathy. Curr. Diabetes Rep. 2016, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- KDIGO Working Group. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Chapter 2: Definition, identification, and prediction of CKD progression. Kidney Int. Suppl. 2013, 3, 63–72. [Google Scholar] [CrossRef]
- Barratt, J.; Topham, P. Urine proteomics: The present and future of measuring urinary protein components in disease. CMAJ 2007, 177, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Retnakaran, R.; Cull, C.A.; Thorne, K.I.; Adler, A.I.; Holman, R.R.; Group, U.S. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006, 55, 1832–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamijo-Ikemori, A.; Sugaya, T.; Kimura, K. Novel urinary biomarkers in early diabetic kidney disease. Curr. Diabetes Rep. 2014, 14, 513. [Google Scholar] [CrossRef]
- Abitbol, C.; Zilleruelo, G.; Freundlich, M.; Strauss, J. Quantitation of proteinuria with urinary protein/creatinine ratios and random testing with dipsticks in nephrotic children. J. Pediatr. 1990, 116, 243–247. [Google Scholar] [CrossRef]
- Lemann, J., Jr.; Doumas, B.T. Proteinuria in health and disease assessed by measuring the urinary protein/creatinine ratio. Clin. Chem. 1987, 33, 297–299. [Google Scholar] [CrossRef]
- Zhao, M.; Li, M.; Yang, Y.; Guo, Z.; Sun, Y.; Shao, C.; Li, M.; Sun, W.; Gao, Y. A comprehensive analysis and annotation of human normal urinary proteome. Sci. Rep. 2017, 7, 3024. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pages, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bladel, E.R.; de Jager, R.L.; Walter, D.; Cornelissen, L.; Gaillard, C.A.; Boven, L.A.; Roest, M.; Fijnheer, R. Platelets of patients with chronic kidney disease demonstrate deficient platelet reactivity in vitro. BMC Nephrol. 2012, 13, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prozialeck, W.C.; Edwards, J.R. Cell adhesion molecules in chemically-induced renal injury. Pharmacol. Ther. 2007, 114, 74–93. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Zhang, Z.; Jia, L.; Wang, Y. Role of Bone Marrow-Derived Fibroblasts in Renal Fibrosis. Front. Physiol. 2016, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Deva, R.; Alias, M.A.; Colville, D.; Tow, F.K.; Ooi, Q.L.; Chew, S.; Mohamad, N.; Hutchinson, A.; Koukouras, I.; Power, D.A.; et al. Vision-threatening retinal abnormalities in chronic kidney disease stages 3 to 5. Clin. J. Am. Soc. Nephrol. 2011, 6, 1866–1871. [Google Scholar] [CrossRef] [Green Version]
- Dziura, J.D.; Post, L.A.; Zhao, Q.; Fu, Z.; Peduzzi, P. Strategies for dealing with missing data in clinical trials: From design to analysis. Yale J. Biol. Med. 2013, 86, 343–358. [Google Scholar]
- Karpievitch, Y.V.; Dabney, A.R.; Smith, R.D. Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinform. 2012, 13 (Suppl. 16), S5. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach Learn 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Calle, M.L.; Urrea, V.; Boulesteix, A.L.; Malats, N. AUC-RF: A new strategy for genomic profiling with random forest. Hum. Hered. 2011, 72, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Shved, N.; Warsow, G.; Eichinger, F.; Hoogewijs, D.; Brandt, S.; Wild, P.; Kretzler, M.; Cohen, C.D.; Lindenmeyer, M.T. Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts. Sci. Rep. 2017, 7, 8576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, W.; Greene, C.S.; Eichinger, F.; Nair, V.; Hodgin, J.B.; Bitzer, M.; Lee, Y.S.; Zhu, Q.; Kehata, M.; Li, M.; et al. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 2013, 23, 1862–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woroniecka, K.I.; Park, A.S.; Mohtat, D.; Thomas, D.B.; Pullman, J.M.; Susztak, K. Transcriptome analysis of human diabetic kidney disease. Diabetes 2011, 60, 2354–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.S.; Qiu, D.D.; Le, W.B.; Wang, H.; Li, S.; Lu, Y.H.; Jiang, S. Identification of Transcription Regulatory Relationships in Diabetic Nephropathy. Chin. Med. J. 2018, 131, 2886–2890. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Jiang, S.; Hou, Q.; Qiu, D.; Shi, J.; Wang, L.; Chen, Z.; Zhang, M.; Duan, A.; Qin, W.; et al. Dissection of Glomerular Transcriptional Profile in Patients With Diabetic Nephropathy: SRGAP2a Protects Podocyte Structure and Function. Diabetes 2018, 67, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Kania, K.; Byrnes, E.A.; Beilby, J.P.; Webb, S.A.; Strong, K.J. Urinary proteases degrade albumin: Implications for measurement of albuminuria in stored samples. Ann. Clin. Biochem. 2010, 47, 151–157. [Google Scholar] [CrossRef]
- Parekh, R.S.; Kao, W.H.; Meoni, L.A.; Ipp, E.; Kimmel, P.L.; La Page, J.; Fondran, C.; Knowler, W.C.; Klag, M.J.; Family Investigation of Nephropathy and Diabetes; et al. Reliability of urinary albumin, total protein, and creatinine assays after prolonged storage: The Family Investigation of Nephropathy and Diabetes. Clin. J. Am. Soc. Nephrol. 2007, 2, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.P.; Gooding, K.M.; McDonald, T.J.; Shore, A.C. Stability of urinary albumin and creatinine after 12 months storage at −20 degrees C and −80 degrees C. Pract. Lab. Med. 2019, 15, e00120. [Google Scholar] [CrossRef]
- Herrington, W.; Illingworth, N.; Staplin, N.; Kumar, A.; Storey, B.; Hrusecka, R.; Judge, P.; Mahmood, M.; Parish, S.; Landray, M.; et al. Effect of Processing Delay and Storage Conditions on Urine Albumin-to-Creatinine Ratio. Clin. J. Am. Soc. Nephrol. 2016, 11, 1794–1801. [Google Scholar] [CrossRef] [Green Version]
- Klasen, I.S.; Reichert, L.J.; de Kat Angelino, C.M.; Wetzels, J.F. Quantitative determination of low and high molecular weight proteins in human urine: Influence of temperature and storage time. Clin. Chem. 1999, 45, 430–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voller, A.; Bartlett, A.; Bidwell, D.E. Enzyme immunoassays with special reference to ELISA techniques. J. Clin. Pathol. 1978, 31, 507–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frantzi, M.; Bhat, A.; Latosinska, A. Clinical proteomic biomarkers: Relevant issues on study design & technical considerations in biomarker development. Clin. Transl. Med. 2014, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrebaeck, C.A. Precision diagnostics: Moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 2017, 17, 199–204. [Google Scholar] [CrossRef]
- Thomas, M.C.; Burns, W.C.; Cooper, M.E. Tubular changes in early diabetic nephropathy. Adv. Chronic Kidney Dis. 2005, 12, 177–186. [Google Scholar] [CrossRef]
- Good, D.M.; Zurbig, P.; Argiles, A.; Bauer, H.W.; Behrens, G.; Coon, J.J.; Dakna, M.; Decramer, S.; Delles, C.; Dominiczak, A.F.; et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol. Cell. Proteomics 2010, 9, 2424–2437. [Google Scholar] [CrossRef] [Green Version]
- Lindhardt, M.; Persson, F.; Zurbig, P.; Stalmach, A.; Mischak, H.; de Zeeuw, D.; Lambers Heerspink, H.; Klein, R.; Orchard, T.; Porta, M.; et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol. Dial. Transplant. 2017, 32, 1866–1873. [Google Scholar] [CrossRef]
- Rodriguez-Ortiz, M.E.; Pontillo, C.; Rodriguez, M.; Zurbig, P.; Mischak, H.; Ortiz, A. Novel Urinary Biomarkers For Improved Prediction Of Progressive Egfr Loss In Early Chronic Kidney Disease Stages And In High Risk Individuals Without Chronic Kidney Disease. Sci. Rep. 2018, 8, 15940. [Google Scholar] [CrossRef] [Green Version]
- Pontillo, C.; Mischak, H. Urinary peptide-based classifier CKD273: Towards clinical application in chronic kidney disease. Clin. Kidney J. 2017, 10, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Surendran, K.; Vitiello, S.P.; Pearce, D.A. Lysosome dysfunction in the pathogenesis of kidney diseases. Pediatr. Nephrol. 2014, 29, 2253–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.J.; Shen, T.T.; Chen, R.H.; Wu, H.L.; Wang, Y.J.; Deng, J.K.; Chen, Q.H.; Pan, Q.; Huang Fu, C.M.; Tao, J.L.; et al. Autophagy-Lysosome Pathway in Renal Tubular Epithelial Cells Is Disrupted by Advanced Glycation End Products in Diabetic Nephropathy. J. Biol. Chem. 2015, 290, 20499–20510. [Google Scholar] [CrossRef] [Green Version]
- Rops, A.L.; van der Vlag, J.; Lensen, J.F.; Wijnhoven, T.J.; van den Heuvel, L.P.; van Kuppevelt, T.H.; Berden, J.H. Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int. 2004, 65, 768–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landray, M.J.; Wheeler, D.C.; Lip, G.Y.; Newman, D.J.; Blann, A.D.; McGlynn, F.J.; Ball, S.; Townend, J.N.; Baigent, C. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: The chronic renal impairment in Birmingham (CRIB) study. Am. J. Kidney Dis. 2004, 43, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Shlipak, M.G.; Matsushita, K.; Arnlov, J.; Inker, L.A.; Katz, R.; Polkinghorne, K.R.; Rothenbacher, D.; Sarnak, M.J.; Astor, B.C.; Coresh, J.; et al. Cystatin C versus creatinine in determining risk based on kidney function. N. Engl. J. Med. 2013, 369, 932–943. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingelfinger, J.R.; Marsden, P.A. Estimated GFR and risk of death--is cystatin C useful? N. Engl. J. Med. 2013, 369, 974–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bataineh, M.M.; Sutton, T.A.; Hughey, R.P. Novel roles for mucin 1 in the kidney. Curr. Opin. Nephrol. Hypertens. 2017, 26, 384–391. [Google Scholar] [CrossRef]
- Kirby, A.; Gnirke, A.; Jaffe, D.B.; Baresova, V.; Pochet, N.; Blumenstiel, B.; Ye, C.; Aird, D.; Stevens, C.; Robinson, J.T.; et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 2013, 45, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Tryggvason, S.H.; Guo, J.; Nukui, M.; Norlin, J.; Haraldsson, B.; Jornvall, H.; Tryggvason, K.; He, L. A meta-analysis of expression signatures in glomerular disease. Kidney Int. 2013, 84, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Ngov, C.; Henley, N.; Boufaied, N.; Gerarduzzi, C. Characterization of Matricellular Protein Expression Signatures in Mechanistically Diverse Mouse Models of Kidney Injury. Sci. Rep. 2019, 9, 16736. [Google Scholar] [CrossRef]
- Ye, H.; Wang, W.G.; Cao, J.; Hu, X.C. SPARCL1 suppresses cell migration and invasion in renal cell carcinoma. Mol. Med. Rep. 2017, 16, 7784–7790. [Google Scholar] [CrossRef] [PubMed]
- Gudehithlu, K.P.; Hart, P.D.; Vernik, J.; Sethupathi, P.; Dunea, G.; Arruda, J.A.L.; Singh, A.K. Peptiduria: A potential early predictor of diabetic kidney disease. Clin. Exp. Nephrol. 2019, 23, 56–64. [Google Scholar] [CrossRef]
- Gatsing, D.; Garba, I.H.; Adoga, G.I. The use of lysosomal enzymuria in the early detection and monitoring of the progression of diabetic nephropathy. Indian J. Clin. Biochem. 2006, 21, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Song, S.H.; Kim, I.J.; Yang, J.Y.; Lee, J.G.; Kwak, I.S.; Kim, Y.K. Clinical implication of urinary tubular markers in the early stage of nephropathy with type 2 diabetic patients. Diabetes Res. Clin. Pract. 2012, 97, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.; Brown, M.; Dunsmuir, W.; Kelly, J.; Mangos, G. Can spot urine protein/creatinine ratio replace 24 h urine protein in usual clinical nephrology? Nephrology 2006, 11, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Summary of Recommendation Statements. Kidney Int 2013, 3, 5–14. [CrossRef] [PubMed] [Green Version]
- Deutsch, E.W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.; Carver, J.J.; Kundu, D.J.; Garcia-Seisdedos, D.; Jarnuczak, A.F.; Hewapathirana, S.; Pullman, B.S.; et al. The ProteomeXchange consortium in 2020: Enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Hein, M.Y.; Cox, J.; Mann, M. A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteomics 2014, 13, 3497–3506. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, H.S.; Sohn, T.S.; Kim, M.J.; Cho, B.K.; Kim, S.M.; Kim, S.T.; Yi, E.C.; Lee, C. SEPROGADIC—Serum protein-based gastric cancer prediction model for prognosis and selection of proper adjuvant therapy. Sci. Rep. 2018, 8, 16892. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A travel guide to Cytoscape plugins. Nat. Methods 2012, 9, 1069–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, T.; Edgar, R. Gene expression omnibus: Microarray data storage, submission, retrieval, and analysis. Methods Enzymol. 2006, 411, 352–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legendre, P. Comparison of permutation methods for the partial correlation and partial Mantel tests. J Stat Comput. Sim. 2000, 67, 37–73. [Google Scholar] [CrossRef]
- Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J. pcaMethods--a bioconductor package providing PCA methods for incomplete data. Bioinformatics 2007, 23, 1164–1167. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Muller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011, 12, 77. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
Variable | With Renal Outcome | Without Renal Outcome |
---|---|---|
Sex, n (%) | ||
Male | 8 (42.1) | 11 (31.4) |
Female | 11 (57.9) | 24 (68.6) |
Age at diagnosis of diabetic kidney disease, mean ± SD (years) | 54.58 ± 11.66 | 58.66 ± 9.19 |
BMI, mean ± SD (kg/m2) | 22.64 ± 3.46 | 23.81 ± 3.00 |
Duration of follow-up, mean ± SD (years) | 4.80 ± 1.96 | 4.73 ± 1.94 |
SBP, mean ± SD (mmHg) | 126.58 ± 15.70 | 125.97 ± 12.07 |
LDL cholesterol, mean ± SD (mg/dL) | 104.89 ± 41.00 | 99.83 ± 32.32 |
HDL cholesterol, mean ± SD (mg/dL) | 48.42 ± 7.50 | 52.51 ± 11.51 |
Triglycerides, mean ± SD (mg/dL) | 145.74 ± 99.80 | 154.57 ± 128.88 |
eGFR after 1 years, mean ± SD (mL/min/1.73 m2) | 91.52 ± 17.57 | 88.33 ± 15.46 |
HbA1c, mean ± SD (%) | 8.34 ± 2.09 | 7.16 ± 1.36 |
ACR, mean ± SD (mg/g) | 213.66 ± 446.75 | 126.11 ± 419.70 |
NAPCR, mean ± SD (mg/g) | 178.18 ± 209.30 | 154.76 ± 299.68 |
PCR, mean ± SD (mg/g) | 391.84 ± 652.79 | 280.87 ± 711.04 |
Diabetic retinopathy, n (%) | 9 (47.37) | 11 (31.43) |
RAS inhibitor, n (%) | 6 (31.58) | 15 (42.86) |
Anti-hypertensive agent, n (%) | 5 (26.32) | 12 (34.29) |
Lipid-lowering agent, n (%) | 10 (52.63) | 20 (57.14) |
Uniprot Accession No. | Gene Name | Importance | Prob. Select | Selection | Univariate AUC |
---|---|---|---|---|---|
P10619 | CTSA | 0.422 | 0.700 | Y | 0.737 |
Q14515 | SPARCL1 | 0.378 | 0.583 | Y | 0.659 |
P17900 | GM2A | 0.373 | 0.613 | Y | 0.726 |
P15941-2 | MUC1 | 0.332 | 0.543 | Y | 0.791 |
P11117 | ACP2 | 0.312 | 0.563 | Y | 0.718 |
P19961 | AMY2B | 0.299 | 0.510 | N | 0.779 |
P00734 | F2 | 0.296 | 0.483 | N | 0.694 |
P06865 | HEXA | 0.274 | 0.466 | N | 0.651 |
P05155-3 | SERPING1 | 0.275 | 0.377 | N | 0.771 |
P11142 | HSPA8 | 0.238 | 0.330 | N | 0.734 |
P10451 | SPP1 | 0.228 | 0.323 | N | 0.680 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.-S.; Kim, J.H.; Jeong, H.; Yu, J.; Yeom, J.; Song, S.H.; Kim, S.S.; Kim, I.J.; Kim, K. Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. Int. J. Mol. Sci. 2020, 21, 4236. https://doi.org/10.3390/ijms21124236
Ahn H-S, Kim JH, Jeong H, Yu J, Yeom J, Song SH, Kim SS, Kim IJ, Kim K. Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. International Journal of Molecular Sciences. 2020; 21(12):4236. https://doi.org/10.3390/ijms21124236
Chicago/Turabian StyleAhn, Hee-Sung, Jong Ho Kim, Hwangkyo Jeong, Jiyoung Yu, Jeonghun Yeom, Sang Heon Song, Sang Soo Kim, In Joo Kim, and Kyunggon Kim. 2020. "Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction" International Journal of Molecular Sciences 21, no. 12: 4236. https://doi.org/10.3390/ijms21124236
APA StyleAhn, H. -S., Kim, J. H., Jeong, H., Yu, J., Yeom, J., Song, S. H., Kim, S. S., Kim, I. J., & Kim, K. (2020). Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. International Journal of Molecular Sciences, 21(12), 4236. https://doi.org/10.3390/ijms21124236