Organophosphorus Compounds and MAPK Signaling Pathways
Abstract
:1. Introduction
2. General Characteristics of Organophosphorus Compounds
3. Oxidative Effect of Organophosphate Pesticides is Mediated by MAPK Signaling
4. Apoptotic Effect of Organophosphorus Compounds Is Mediated by MAPK Signaling
5. Organophosphorus Compound-Induced Neurodegenerative Diseases are Mediated by MAPK Signaling
6. Organophosphorus Compound-Induced Cardiovascular Diseases are Mediated by MAPK Signaling
7. Organophosphorus Compound-Induced Respiratory Diseases are Mediated by MAPK Signaling
8. Organophosphorus Compound-Induced Hepatotoxicity is Mediated by MAPK Signaling
9. Organophosphorus Compound-Induced Nephrotoxicity is Mediated by MAPK Signaling
10. Organophosphorus Compound-Induced Reproductive Toxicity is Mediated by MAPK Signaling
11. Organophosphorus Compound-Induced Cancer is Mediated by MAPK Signaling
12. Organophosphorus Compounds-Induced Hyperglycemia are Mediated by MAPK Signaling
13. Organophosphorus Compound-Induced Dyslipidemia is Mediated by MAPK Signaling
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
Akt | Protein kinase B |
AP-1 | Activator protein 1 |
ASK1 | Apoptosis-signal-regulating kinase 1 |
ATF2 | Activating transcription factor 2 |
BPMP | Bis (pinacolylmethyl) phosphonate |
CAT | Catalase |
CHO-M2 | Chinese hamster |
COPD | Chronic obstructive pulmonary disease |
COX-2 | Cyclooxygenase-2 |
CPF | Chlorpyrifos |
CREB | cAMP response element |
DDVP | Dichlorvos |
Drp1 | Dynamin-related protein 1 |
DZN | Diazinon |
Elk-1 | ETS Like-1 |
ERK | Extracellular signal-regulated protein kinase |
Fox | Forkhead box |
GFAP | Glial fibrillary acidic protein |
GPx | Glutathione peroxidase |
GSH | Glutathione |
HO-1 | Heme oxygenase 1 |
HSP 27 | heat shock protein |
HUVECs | Human umbilical cord endothelial cells |
ICP | Isocarbophos |
IL-6 | Interleukin-6 |
iNOS | inducible nitric oxide synthase |
JNK | c-Jun NH2-terminal kinase |
LDLr | Lipoprotein receptor |
MAPKs: | Mitogen-activated protein kinases |
MCP | Monocrotophos |
MDA | Malondialdehyde |
MEK | Mitogen-activated protein kinase kinase |
Mev | Mevinphos |
MSK1/2 | Mitogen- and stress-activated protein kinases 1 and 2 |
NF-Κβ | Nuclear transcription factor kappa-β |
NGF | Nerve growth factor |
NO | Nitric oxide |
NQO-1 | NAD(P)H quinone oxidoreductase |
OPCs | Organophosphate compounds |
OPs | Organophosphate pesticides |
p70S6K | phosphorylated-p70 ribosomal S6 protein kinase |
PARP | Poly (ADP-ribose) polymerase |
PI3Ks | Phosphoinositide 3-kinases |
PINK1 | Protein kinase1 |
PKC | Protein kinase C |
PKG | Protein Kinase G |
PLC-gamma | Phospholipase C gamma |
PO | Per Os |
PON1 | Paraoxonase1 |
PP2C epsilon | Protein phosphatase 2C cDNA |
PPAR-γ | Peroxisome proliferator-activated receptor-gamma |
PSP | Phenyl-saligenin-phosphate |
PTr | Porcine trophectoderm |
RGZ | Rosiglitazone |
ROS | Reactive oxygen species |
RVLM | Rostral ventrolateral medulla |
Ser73 | Phospho-c-Jun |
SN | Substantia nigra |
SOD | Superoxide dismutase |
TCEP | Tris-(2-chloroethyl)-phosphate |
TCP | 3,5,6-trichloro-2-pyridinol |
TDCPP | Tris(1,3-dichloro-2-propyl)phosphate |
Thr180/Tyr182 | Phospho-p38 MAPK |
Thr261 | Phospho-SEK1/MKK |
TNF-α | Tumor necrosis factor alpha |
Trx | Thioredoxin |
References
- Vanova, N.; Pejchal, J.; Herman, D.; Dlabkova, A.; Jun, D. Oxidative stress in organophosphate poisoning: Role of standard antidotal therapy. J. Appl. Toxicol. 2018, 38, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 10 (Suppl. 7s), S18–S25. [Google Scholar] [CrossRef] [PubMed]
- Guignet, M.; Dhakal, K.; Flannery, B.M.; Hobson, B.A.; Zolkowska, D.; Dhir, A.; Bruun, D.A.; Li, S.; Wahab, A.; Harvey, D.J.; et al. Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol. Dis. 2019, 133, 104431. [Google Scholar] [CrossRef] [PubMed]
- Sárközy, M.; Kovács, Z.Z.; Kovács, M.G.; Gáspár, R.; Szűcs, G.; Dux, L. Mechanisms and modulation of oxidative/nitrative stress in type 4 cardio-renal syndrome and renal sarcopenia. Front. Physiol. 2018, 9, 1648. [Google Scholar] [CrossRef] [PubMed]
- Ki, Y.W.; Park, J.H.; Lee, J.E.; Shin, I.C.; Koh, H.C. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett. 2013, 218, 235–245. [Google Scholar] [CrossRef]
- McCain, J. The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. Pharm. Ther. 2013, 38, 96–108. [Google Scholar]
- Aggeli, I.K.; Gaitanaki, C.; Lazou, A.; Beis, I. Activation of multiple MAPK pathways (ERKs, JNKs, p38-MAPK) by diverse stimuli in the amphibian heart. Mol. Cell Biochem. 2001, 221, 63–69. [Google Scholar] [CrossRef]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Therap. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [Green Version]
- Paton, E.L.; Turner, J.A.; Schlaepfer, I.R. Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. J. Oncol. 2020, 2020, 14. [Google Scholar] [CrossRef]
- Adler, V.; Yin, Z.; Fuchs, S.Y.; Benezra, M.; Rosario, L.; Tew, K.D.; Pincus, M.R.; Sardana, M.; Henderson, C.J.; Wolf, C.R.; et al. Regulation of JNK signaling by GSTp. EMBO J. 1999, 18, 1321–1334. [Google Scholar] [CrossRef]
- Selim, K.A.; Abdelrasoul, H.; Aboelmagd, M.; Tawila, A.M. The Role of the MAPK Signaling, Topoisomerase and Dietary Bioactives in Controlling Cancer Incidence. Diseases 2017, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, R.E.; Smith, R.P.; Hodge, H.C. Clinical Toxicology of Commercial Products; Williams & Wilkins: Philadelphia, PA, USA, 1984; ISBN 13:978-0683036329. [Google Scholar]
- Figueroa-Villar, J.D.; Petronilho, E.C.; Kuca, K.; Franca, T.C.C. Review about structure and evaluation of reactivators of Acetylcholinesterase inhibited with neurotoxic organophosphorus compounds. Curr. Med. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Budzinski, H.; Couderchet, M. Environmental and human health issues related to pesticides: From usage and environmental fate to impact. Environ. Sci. Pollut. Res. 2018, 25, 14277–14279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baselt, R.C. Disposition of toxic drugs and chemicals in man. J. Anal. Toxicol. 2018, 42, 139. [Google Scholar] [CrossRef] [Green Version]
- Peter, J.V.; Sudarsan, T.I.; Moran, J.L. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med. 2014, 18, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Namba, T. Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bull. World Health Organ. 1971, 44, 289–307. [Google Scholar]
- Alahakoon, C.; Dassanayake, T.L.; Gawarammana, I.B.; Sedgwick, E.M.; Weerasinghe, V.S.; Abdalla, A.; Roberts, M.S.; Buckley, N.A. Prediction of organophosphorus insecticide-induced intermediate syndrome with stimulated concentric needle single fibre electromyography. PLoS ONE 2018, 13, e0203596. [Google Scholar] [CrossRef]
- Ventura, C.; Zappia, C.D.; Lasagna, M.; Pavicic, W.; Richard, S.; Bolzan, A.D.; Monczor, F.; Nunez, M.; Cocca, C. Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. J. Steroid Biochem. Mol. Biol. 2019, 186, 96–104. [Google Scholar] [CrossRef]
- Echiburu-Chau, C.; Calaf, G.M. Rat lung cancer induced by malathion and estrogen. Int. J. Oncol. 2008, 33, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Singh, S.; Chahal, K.S.; Prakash, A. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Can. J. Physiol. Pharmacol. 2014, 92, 893–911. [Google Scholar] [CrossRef]
- Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus compounds as chemical warfare agents: A review. J. Braz. Chem. Soc. 2009, 20, 407–428. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Samarghandian, S. Antidotal effects of curcumin against agents-induced cardiovascular toxicity. Cardiovasc. Hematol. Disord. Drug Targets 2016, 16, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J. 2017, 69, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarghandian, S.; Azimi-Nezhad, M.; Shabestari, M.M.; Azad, F.J.; Farkhondeh, T.; Bafandeh, F. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip. Toxicol. 2015, 8, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Hasanzadeh, M.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag. 2016, 12, S436. [Google Scholar]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Wu, B.; Wang, F.; Zhou, J.; Hou, Y.; Hong, G.; Zhao, G.; Ge, Y.; Liu, Y.; Qiu, Q.; Lu, Z. [Effect of PON1 overexpression on mouse diaphragmatic muscle cells injury caused by acute dichlorvos poisoning]. Zhonghua Yi Xue Za Zhi 2015, 95, 2955–2959. [Google Scholar] [CrossRef]
- Guo, R.; Chen, L.; Lian, J.; Wu, B.; Hong, G.; Ge, Y.; Liu, Y.; Qiu, Q.; Lu, Z. [The protective effect of regulation of paraoxonase 1 gene on liver oxidative stress injury induced by dichlorvos poisoning in mice]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2015, 27, 285–290. [Google Scholar] [CrossRef]
- Jahan, S.; Kumar, D.; Singh, S.; Kumar, V.; Srivastava, A.; Pandey, A.; Rajpurohit, C.S.; Khanna, V.K.; Pant, A.B. Resveratrol Prevents the Cellular Damages Induced by Monocrotophos via PI3K Signaling Pathway in Human Cord Blood Mesenchymal Stem Cells. Mol. Neurobiol. 2018, 55, 8278–8292. [Google Scholar] [CrossRef]
- Zhong, X.; Qiu, J.; Kang, J.; Xing, X.; Shi, X.; Wei, Y. Exposure to tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) induces vascular toxicity through Nrf2-VEGF pathway in zebrafish and human umbilical vein endothelial cells. Environ. Pollut. 2019, 247, 293–301. [Google Scholar] [CrossRef]
- Batista, J.E.; Sousa, L.R.; Martins, I.K.; Rodrigues, N.R.; Posser, T.; Franco, J.L. Data on the phosphorylation of p38MAPK and JNK induced by chlorpyrifos in Drosophila melanogaster. Data Brief 2016, 9, 32–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shou, L.; Bei, Y.; Song, Y.; Wang, L.; Ai, L.; Yan, Q.; He, W. Nrf2 mediates the protective effect of edaravone after chlorpyrifos-induced nervous system toxicity. Environ. Toxicol. 2019, 34, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Park, J.H.; Jang, S.J.; Koh, H.C. Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. Toxicol. Appl. Pharm. 2014, 278, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R.J.; Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995, 270, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xue, B.; Hu, J.; Li, J.; Cheng, X.; Hu, J.; Li, F.; Chen, Y.; Li, B. Exogenous substances regulate silkworm fat body protein synthesis through MAPK and PI3K/Akt signaling pathways. Chemosphere 2017, 171, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Sentíes, M.; Barrera, I.; Ortega, A.; Vega, L. Organophosphorous pesticide metabolite (DEDTP) induces changes in the activation status of human lymphocytes by modulating the interleukin 2 receptor signal transduction pathway. Toxicol. Appl. Pharmacol. 2010, 248, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Park, J.H.; Shin, I.C.; Koh, H.C. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol. Appl. Pharm. 2012, 263, 148–162. [Google Scholar] [CrossRef]
- Park, J.H.; Ko, J.; Hwang, J.; Koh, H.C. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells. Neurotoxicology 2015, 51, 145–157. [Google Scholar] [CrossRef]
- Tan, D.-H.; Peng, S.-Q.; Wu, Y.-L.; Wang, Y.-M.; Lu, C.-F.; Ding, W.; Wang, Q.-X.; Yan, C.-H. Chlorpyrifos induces delayed cytotoxicity after withdrawal in primary hippocampal neurons through extracellular signal-regulated kinase inhibition. Biol. Pharm. Bull. 2009, 32, 1649–1655. [Google Scholar] [CrossRef] [Green Version]
- Caughlan, A.; Newhouse, K.; Namgung, U.; Xia, Z. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases. Toxicol. Sci. 2004, 78, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dai, H.; Deng, Y.; Tian, J.; Zhang, C.; Hu, Z.; Bing, G.; Zhao, L. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology 2015, 336, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Lazar, S.; Egoz, I.; Brandeis, R.; Chapman, S.; Bloch-Shilderman, E.; Grauer, E. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes. Toxicol. Appl. Pharm. 2016, 310, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Niijima, H.; Nagao, M.; Nakajima, M.; Takatori, T.; Iwasa, M.; Maeno, Y.; Koyama, H.; Isobe, I. The effects of sarin-like and soman-like organophosphorus agents on MAPK and JNK in rat brains. Forensic Sci. Int. 2000, 112, 171–178. [Google Scholar] [CrossRef]
- Pejchal, J.; Osterreicher, J.; Kassa, J.; Tichy, A.; Mokry, J. Activation of mitogen activated protein kinase (MAPK) pathways after soman poisoning in rat cerebellar granule neurons. J. Appl. Toxicol. 2008, 28, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Pejchal, J.; Osterreicher, J.; Kassa, J.; Tichy, A.; Micuda, S.; Sinkorova, Z.; Zarybnicka, L. Soman poisoning alters p38 MAPK pathway in rat cerebellar Purkinje cells. J. Appl. Toxicol. 2009, 29, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.Y. Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death. J. Biomed. Sci. 2012, 19, 96. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.H.; Sun, E.Y.; Chang, A.Y. Extracellular signal-regulated kinase 1/2 plays a pro-life role in experimental brain stem death via MAPK signal-interacting kinase at rostral ventrolateral medulla. J. Biomed. Sci. 2010, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.H.; Chan, J.Y.; Hsu, K.S.; Li, F.C.; Sun, E.Y.; Chen, W.L.; Chang, A.Y. Amelioration of central cardiovascular regulatory dysfunction by tropomyocin receptor kinase B in a mevinphos intoxication model of brain stem death. Br. J. Pharm. 2011, 164, 2015–2028. [Google Scholar] [CrossRef] [Green Version]
- Isobe, I.; Maeno, Y.; Nagao, M.; Iwasa, M.; Koyama, H.; Seko-Nakamura, Y.; Monma-Ohtaki, J. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation. Toxicol. Appl. Pharm. 2003, 193, 383–392. [Google Scholar] [CrossRef]
- Felemban, S.G.; Garner, A.C.; Smida, F.A.; Boocock, D.J.; Hargreaves, A.J.; Dickenson, J.M. Phenyl Saligenin Phosphate Induced Caspase-3 and c-Jun N-Terminal Kinase Activation in Cardiomyocyte-Like Cells. Chem. Res. Toxicol. 2015, 28, 2179–2191. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, M.; Koppe, F.; Stenger, B.; Brochhausen, C.; Schmidt, A.; Steinritz, D.; Thiermann, H.; Kirkpatrick, C.J.; Pohl, C. Influence of organophosphate poisoning on human dendritic cells. Chem. Biol. Interact. 2013, 206, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, J.; Xu, L.; Zhou, S.; Li, L.; Liu, W. Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes. Toxicology 2010, 276, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Hu, J.; Shang, Y.; Zhong, Y.; Yu, Z.; An, J. Tributylphosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP) induced apoptosis and cell cycle arrest in HepG2 cells. Toxicol. Res. 2017, 6, 902–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Han, H.J.; Lee, Y.J.; Lee, S.H.; Ng, H.Y.; Chae, K.-J.; Kim, I.S. Proapoptotic effect of a micropollutant (tris-(2-chloroethyl)-phosphate) at environmental level in primary cultured renal proximal tubule cells. J. Water Health 2012, 10, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Saulsbury, M.D.; Heyliger, S.O.; Wang, K.; Round, D. Characterization of chlorpyrifos-induced apoptosis in placental cells. Toxicology 2008, 244, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Bomser, J.; Casida, J.E. Activation of extracellular signal-regulated kinases (ERK 44/42) by chlorpyrifos oxon in Chinese hamster ovary cells. J. Biochem. Mol. Toxicol. 2000, 14, 346–353. [Google Scholar] [CrossRef]
- Bomser, J.A.; Quistad, G.B.; Casida, J.E. Chlorpyrifos oxon potentiates diacylglycerol-induced extracellular signal-regulated kinase (ERK 44/42) activation, possibly by diacylglycerol lipase inhibition. Toxicol. Appl. Pharm. 2002, 178, 29–36. [Google Scholar] [CrossRef]
- Lim, W.; An, Y.; Yang, C.; Bazer, F.W.; Song, G. Trichlorfon inhibits proliferation and promotes apoptosis of porcine trophectoderm and uterine luminal epithelial cells. Environ. Pollut. 2018, 242, 555–564. [Google Scholar] [CrossRef]
- Suriyo, T.; Tachachartvanich, P.; Visitnonthachai, D.; Watcharasit, P.; Satayavivad, J. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway. Toxicology 2015, 338, 117–129. [Google Scholar] [CrossRef]
- Ventura, C.; Venturino, A.; Miret, N.; Randi, A.; Rivera, E.; Núñez, M.; Cocca, C. Chlorpyrifos inhibits cell proliferation through ERK1/2 phosphorylation in breast cancer cell lines. Chemosphere 2015, 120, 343–350. [Google Scholar] [CrossRef]
- Park, J.H.; Ko, J.; Park, Y.S.; Park, J.; Hwang, J.; Koh, H.C. Clearance of damaged mitochondria through PINK1 stabilization by JNK and ERK MAPK signaling in chlorpyrifos-treated neuroblastoma cells. Mol. Neurobiol. 2017, 54, 1844–1857. [Google Scholar] [CrossRef] [PubMed]
- Aluigi, M.G.; Guida, C.; Falugi, C. Apoptosis as a specific biomarker of diazinon toxicity in NTera2-D1 cells. Chem. Biol. Interact. 2010, 187, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy-Black, M.; Ehrich, M. Organophosphorus compound effects on neurotrophin receptors and intracellular signaling. Toxicol. Vitr. 2012, 26, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Ling, L.Y.; Zhu, M.F.; Lian, H.B.; Ning, Z.C.; Han, X.S.; Ping, R.S. Effects of Omethoate on Liver Insulin Signaling in Mice. Biomed. Environ. Sci. 2018, 31, 627. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, M.; Li, J.; Wei, Q.; Ren, Z.; Lv, J.; Niu, F.; Ren, S. Does omethoate have the potential to cause insulin resistance? Environ. Toxicol. Pharmacol. 2014, 37, 284–290. [Google Scholar] [CrossRef]
- Mense, S.M.; Sengupta, A.; Lan, C.; Zhou, M.; Bentsman, G.; Volsky, D.J.; Whyatt, R.M.; Perera, F.P.; Zhang, L. The common insecticides cyfluthrin and chlorpyrifos alter the expression of a subset of genes with diverse functions in primary human astrocytes. Toxicol. Sci. 2006, 93, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Lari, P.; Rashedinia, M.; Abnous, K.; Hosseinzadeh, H. Crocin improves lipid dysregulation in subacute diazinon exposure through ERK1/2 pathway in rat liver. Drug Res. 2014, 64, 301–305. [Google Scholar] [CrossRef]
References | OPC(s)/Dose | Experimental Model | Findings |
---|---|---|---|
[30] | Monocrotophos; 10, 100, and 1000 μM | Human Cord Blood Mesenchymal Stem Cells | Increased ROS production through the activation of the ERK/AP-1 pathway |
[32] | Chlorpyrifos; 0.75 ppm (diluted in 1% sucrose solution) | Drosophila flies | Increased the phosphorylation of p38 and JNK; no changes in the content of total forms of p38 and JNK |
[34] | Chlorpyrifos; 0–200 μM; 0–24 h | SH-SY5Y cells | Induced cell apoptosis via activation of p38, JNK, and ERK |
[36] | Phoxim; 4 mg/L added to the diet | Silkworms | Upregulated MAPK and PI3K/Akt signaling pathway genes |
[37] | Diethyldithiophosphate; 1–50 μM | Human CD4+ T lymphocytes | Stimulated the activation of ERK, JNK, and p38 and NFAT nuclear translocation, leading to a decrease in cell proliferation |
[38] | Chlorpyrifos; 0, 25, 50, 100, and 200 μM | PC12 cells | Induced apoptosis via activating the p38, JNK, and ERK; activated caspase-3 and cleavage of PARP |
[39] | Chlorpyrifos; 25, 50, or 100 µM | SH-SY5Y cells | Induced generation of ROS and activation of MAPKs via expression of phospho-Drp1 |
[5] | Chlorpyrifos; 100 µM | SH-SY5Y cells | Induced apoptosis by producing ROS and upregulating COX-2 mediated by JNK and p38 pathways, independent of the activation of ERK1/2 signaling |
[40] | Chlorpyrifos; 10 µM | Rat hippocampal neurons | Phosphorylation of ERK1/2 during 96 h exposure; withdrawal after 48 h exposure caused inhibition of ERK1/2 activation, leading to the delayed cytotoxicity in primary rat hippocampal neurons |
[41] | Chlorpyrifos; 0–80 µM | Primary cortical neurons from embryonic day 17 or neonates rats | Activation of the ERK1/2- and JNK-induced apoptosis; activation of the p38-MAPK prevented apoptosis |
[42] | Chlorpyrifos; 5 mg/kg, daily | Substantia nigra (SN) in young adults at PND 11–14 | Induced dopaminergic neuronal damage in SN following the inflammatory response activation through NF-kB p65 and p38- MAPK pathways in the nigrostriatal system |
[43] | Sarin; 80 μg/kg | Wistar rats | In the first 6 h after exposure, fast elevation in the activity of ERK1/2 with no change in JNK that temporarily inhibited apoptosis |
[44] | Sarin and Soman-like agents; 4.0 mg/kg body weight; Intravenous injection | Wistar rats | Neurotoxicity via activation of JNK following tyrosine kinase phosphorylation |
[45] | Soman; intramuscular administration; 60 μg kg−1 | Wistar rat cerebellum | Elevated the expression of activated p38-MAPK and c-myc at 14 days after poisoning; c-jun and elk-1 expressions did not change at 14 days after poisoning |
[46] | Soman; intramuscular administration; 60 μg kg−1 | Rat cerebellar Purkinje cells | Elevated the expression of phosphorylated p38-MAPK and c-myc at 14 days after poisoning; both activated elk-1 and c-jun expressions were not changed at 14 days after poisoning |
[47] [48] | Mevinphos, bilateral injection, of 10 nmol | Rostral ventrolateral medulla (RVLM) of rats | No effect on ERK1/2 and the total amount of JNK, p38-MAPK, MAP2K4, and MAP2K6. Increased the phosphorylation of ERK1/2 in Thr202 and Tyr204 and JNK in Thr183 and Tyr185, of p38-MAPK in Thr180 and Tyr182, of MAP2K4 in Ser257 and Thr261, and of MAP2K6 in Ser207 and Thr211 in RVLM and also ATF-2 in Thr71 and of c-Jun in Ser73 death |
[49] | Mevinphos; 10 nmol; injected bilaterally | Rostral ventrolateral medulla (RVLM) of rats during brain stem death | Stimulated the phosphorylation of ERK1/2 at Thr202 and Tyr204 |
[50] | Bis(pinacolyl methyl phosphonate); 600 µM | Cultured rat astrocytes | Induced ERK signaling cascade for the induction of mitochondrial vacuolation |
[51] | Phenyl saligenin phosphate; 0–200 µM | Mitotic and differentiated H9c2 cardiomyoblasts | Induced cytotoxicity by activating JNK1/2 but not ERK1/2 |
[52] | Chlorpyrifos and dimethoate; 0–1000 µM | Human dendritic cells | Decreased the phosphorylation of Akt 1, Akt 2, Akt, and ERK 2 and caused pulmonary complications.; no effect on the p38 or the JNK |
[53] | Enantiomers of isocarbophos; 0–40 µM | Human hepatoma cells | (−)-ICP caused modification in Bax/Bcl-2 ratio and hepatotoxicity via sustained activation of the JNK |
[54] | Tributylphosphate and tris (2-butoxy ethyl) phosphate; 50, 100, and 200 μM | Human hepatoma cells | Induced mitochondrial and p53-mediated apoptosis via activated JNK and TBP also affected ERK1/2 |
[55] | Tris-(2-chloroethyl)-phosphate; 0.01 and 1 mg/L−1 | Primary cultured renal proximal tubule cells | Elevated the phosphorylation of JNK |
[56] | Chlorpyrifos; 3–250 µM for 24, 48, and 72 h | Human placental choriocarcinoma (JAR) cells | Activated the p38-MAPK signaling pathway protected against cytotoxicity |
[57] | Chlorpyrifon-oxon; 50 µM for 40 min | Wild-type (CHOK1) and human muscarinic receptor-expressing Chinese hamster ovary cells (CHO-M2) | Activated the ERK 44/42 signaling through P13-K, PKC, and MEK |
[58] | Chlorpyrifos-oxon; 0–100 µM | Chinese hamster ovary (CHOK1) | Increased the effect of diacylglycerol on ERK 44/42 activation in dose and time dependent manner |
[59] | Trichlorfon; 100 µM | Porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells | Temporarily activated JNK and p38-MAPK; inhibition of JNK, p38-MAPK, and ERK1/2 decreased the proliferation in pTr cells |
[60] | Chlorpyrifos; 5–100 µM | Colorectal adenocarcinoma H508 cells | Caused colorectal adenocarcinoma H508 cell growth via involvement of EGFR/ERK1/2 signaling pathway |
[61] | Chlorpyrifos; 50 µM | MDA-MB-231 and MCF-7 human breast cancer cell lines | Caused cell death through ERK1/2 phosphorylation-mediated |
[62] | Chlorpyrifos; 0, 25, 50, and 100 µM | SH-SY5Y cells | Caused protein kinase 1 stabilization on the outer mitochondrial membrane; resulted in an elevation in Parkin recruitment from the cytoplasm to the abnormal mitochondria; PINK1 stabilization was modulated by ROS-mediated activation of JNK and ERK1/2 signaling. |
[63] | Diazinon; 10−4 to 10−5 M | NT2 cells | Reduced the phosphorylated ERK-2 dose-dependently; phosphorylation of Raf-1 did not affect |
[64] | Paraoxon: 100 µM; Phenyl saligenin phosphate: 0.01, 0.1, and 1.0 µM | SH-SY5Y cells | Paraoxon elevated the activity of the MAPK pathway; Phenyl saligenin phosphate inhibited the activation of the MAPK pathway |
[65] | Omethoate; 0.5, 1, and 2 mg/kg, PO, 60 days | ICR male mice | At high doses, increased the expression levels of both NF-кB and p38 MAPK; at medium doses, increased the expression of p38-MAPK |
[66] | Omethoate; 1.5, 3, and 6 mg/kg body through gastric for 2 months | Wistar rats | Increased the levels of MDA, TNF-α, and IL-6 and decreased the activities of SOD and GPx through activation of JNK, p38 MAPK, and NF-κB, leading to insulin resistance. |
[67] | Chlorpyrifos and cyfluthrin; 0, 25, 50, and 100 µM | Primary human fetal astrocytes | Increased the levels of activated ERK1/2; increased inflammatory markers IL-6 and GFAP |
[68] | Diazinon; 15 mg/kg, PO | Liver of rats | Induced hyperlipemia and increased levels of LDLr transcription through inhibition of ERK pathway |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkhondeh, T.; Mehrpour, O.; Buhrmann, C.; Pourbagher-Shahri, A.M.; Shakibaei, M.; Samarghandian, S. Organophosphorus Compounds and MAPK Signaling Pathways. Int. J. Mol. Sci. 2020, 21, 4258. https://doi.org/10.3390/ijms21124258
Farkhondeh T, Mehrpour O, Buhrmann C, Pourbagher-Shahri AM, Shakibaei M, Samarghandian S. Organophosphorus Compounds and MAPK Signaling Pathways. International Journal of Molecular Sciences. 2020; 21(12):4258. https://doi.org/10.3390/ijms21124258
Chicago/Turabian StyleFarkhondeh, Tahereh, Omid Mehrpour, Constanze Buhrmann, Ali Mohammad Pourbagher-Shahri, Mehdi Shakibaei, and Saeed Samarghandian. 2020. "Organophosphorus Compounds and MAPK Signaling Pathways" International Journal of Molecular Sciences 21, no. 12: 4258. https://doi.org/10.3390/ijms21124258
APA StyleFarkhondeh, T., Mehrpour, O., Buhrmann, C., Pourbagher-Shahri, A. M., Shakibaei, M., & Samarghandian, S. (2020). Organophosphorus Compounds and MAPK Signaling Pathways. International Journal of Molecular Sciences, 21(12), 4258. https://doi.org/10.3390/ijms21124258