Next Article in Journal
Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs
Previous Article in Journal
Suppression of Nonsense Mutations by New Emerging Technologies
Previous Article in Special Issue
Facile Histamine Detection by Surface-Enhanced Raman Scattering Using SiO2@Au@Ag Alloy Nanoparticles
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Silver Nano/Microparticles: Modification and Applications 2.0

Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2020, 21(12), 4395; https://doi.org/10.3390/ijms21124395
Submission received: 12 June 2020 / Accepted: 19 June 2020 / Published: 20 June 2020
(This article belongs to the Special Issue Silver Nano/Microparticles: Modification and Applications 2.0)
Currently, nano/microparticles are widely used in various fields [1,2,3]. Silver particles are one of the most vital materials among the various particles, due to their unique optical-physical-chemical properties. The materials have been proposed for various fields, such as bio-sensor, diagnostics, imaging, catalyst, solar cell, and antibacterial [4,5,6,7,8,9,10,11,12,13,14]. In particular, size-dependent unique plasmonic properties make the particles superior in biomedical applications [15,16,17,18,19,20].
Due to this importance of silver materials, the first version of “silver nano/microparticles: modification and applications” was successfully published last year with 10 outstanding papers [21,22,23,24,25,26,27,28,29,30]. This version 2.0 of the Special Issue also provides original contributions detailing the synthesis, modification, and applications of silver materials. Eleven outstanding papers which describe examples of the most recent advances in silver nano/microparticles are included.
The plasmonic properties of silver nanoparticles have been applied to the detection of harmful substances based on surface-enhanced Raman scattering (SERS), due to its non-destructive, rapid, molecular fingerprinting and ultrasensitive and photostable properties [31]. Because histamine intoxication associated with seafood consumption can cause illnesses, Kim-Hung et al. reported facile histamine detection by SERS using a plasmonic silver-gold nanostructure [32]. They successfully detected histamine with SERS using the nanostructure (3.698 ppm LOD). Pham et al. reported the sensitive and quantitative detection of pesticides based on SERS by using an internal standard containing nanostructures [33]. For the study, 4-mercaptobenzoic acid labeled silver-gold nanoparticles were used for a sensitive and quantitative thiram detection, and a range of 240 to 2400 ppb with a detection limit of 72 ppb of thiram was detected.
Silver nanoparticles have great potential as an antibacterial agent. Nakamura et al. reviewed the synthesis and application of silver nanoparticles for the prevention of infection [34]. In particular, they focused on environment friendly synthesis and the suppression of infections in healthcare workers. Nakamura et al. reported that ultraviolet irradiation enhances the microbicidal activity of silver nanoparticles via hydroxyl radicals [35]. They showed that UV irradiation to silver nanoparticles is effective for enhancing their microbicidal activity, due to the antimicrobial activity of reactive hydroxyl radicals which were generated from silver nanoparticles by UV irradiation. The UV irradiation-mediated enhanced production of reactive hydroxyl radicals is generated rapidly from silver nanoparticles. Silver nanowires, which exhibit excellent conductive properties, have been intensively studied for thermal and electronic applications. Mori et al. evaluated the antibacterial and cytotoxicity properties of silver nanowires and their composites with carbon nanotubes for biomedical applications [36]. Li et al. reported a simple, sustainable, and environmentally friendly method for the in situ fabrication of silver nanoparticles in mesoporous TiO2 films decorated on bamboo via self-sacrificing reduction to synthesize nanocomposites with an efficient antifungal activity [37]. The composite films-endowed bamboo exhibited an excellent antifungal activity to T. viride and P. citrinum. Because of the high biocompatibility, low cost, and ease of manufacture of the poly(methylmethacrylate) (PMMA) resin, it is widely used in medical and dental fields. Matteis et al. reported that silver nanoparticles added a poly(methyl methacrylate) dental matrix for topographic and antimycotic studies [38].
Since silver nanoparticles are attractive alternatives to plasmonic gold nanoparticles, the controlled synthesis of metal nanoparticles with a defined morphology can be important for such fields as biochemistry, catalysis, biosensors, and microelectronics. Cyclophanes, which have a variety of cyclophane 3D structures and unique redox abilities, can create metal nanoparticles. Padnya et al. summarized the recent advances in the synthesis and stabilization of Ag (0) nanoparticles based on self-assembly of associates with Ag (I) ions with the participation of cyclophanes [39].
Biological molecules have potential for the synthesis of metallic nanoparticles as green and economic methods. Tanaka et al. reported the green synthesis of silver nanoparticles by using peptides [40]. They used array-based screening to identify a list of mineralization peptides with various physicochemical properties. They evaluated the silver nanoparticle mineralization activity of the top 200 gold nanoparticle-binding peptides, and the highest silver nanoparticles synthesis activity was shown in the presence of EE and EXE peptides (E: glutamic acid, and X: any amino acid).
Silver islands films (SIF) can play an important role among plasmonically active platforms. Szalkowski et al. reported silver islands substrates which prepared on demand based on the laser-induced photochemical reduction of silver compounds on a glass substrate [41]. The prepared SIF showed a strong plasmonic activity.
Hybrid systems of photosynthetic pigment–protein complexes with plasmonically active metallic nanostructures can be a useful design for future biomimetic solar cells. Kowalska et al. reviewed SIF for enhancing light harvesting in natural photosynthetic proteins [42]. They presented the results of a variety of photosynthetic complexes upon coupling with SIF structures.

Author Contributions

Conceptualization, X.-H.P., J.K., and B.-H.J., writing, X.-H.P., J.K., and B.-H.J.; supervision, B.-H.J. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the KU Research Professor Program of Konkuk University.

Acknowledgments

This work was supported by the KU Research Professor Program of Konkuk University.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Yang, S.C.; Luo, X. Mesoporous nano/micro noble metal particles: synthesis and applications. Nanoscale 2014, 6, 4438–4457. [Google Scholar] [CrossRef]
  2. Agrawal, M.; Gupta, S.; Stamm, M. Recent developments in fabrication and applications of colloid based composite particles. J. Mater. Chem. 2011, 21, 615–627. [Google Scholar] [CrossRef]
  3. Jun, B.H.; Kang, H.; Lee, Y.S.; Jeong, D.H. Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads. Molecules 2012, 17, 2474–2490. [Google Scholar] [CrossRef]
  4. Lee, B.; Roh, S.; Park, J. Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 2009, 15, 209–221. [Google Scholar] [CrossRef]
  5. Hahm, E.; Cha, M.G.; Kang, E.J.; Pham, X.H.; Lee, S.H.; Kim, H.M.; Kim, D.E.; Lee, Y.S.; Jeong, D.H.; Jun, B.H. Multilayer Ag-Embedded Silica Nanostructure as a Surface-Enhanced Raman Scattering-Based Chemical Sensor with Dual-Function Internal Standards. ACS Appl. Mater. Interfaces 2018, 10, 40748–40755. [Google Scholar] [CrossRef]
  6. Jun, B.H.; Kim, G.; Jeong, S.; Noh, M.S.; Pham, X.H.; Kang, H.; Cho, M.H.; Kim, J.H.; Lee, Y.S.; Jeong, D.H. Silica Core-based Surface-enhanced Raman Scattering (SERS) Tag: Advances in Multifunctional SERS Nanoprobes for Bioimaging and Targeting of Biomarkers. Bull. Korean Chem. Soc. 2015, 36, 963–978. [Google Scholar] [CrossRef]
  7. Kang, H.; Jeong, S.; Koh, Y.; Cha, M.G.; Yang, J.K.; Kyeong, S.; Kim, J.; Kwak, S.Y.; Chang, H.J.; Lee, H.; et al. Direct Identification of On-Bead Peptides Using Surface-Enhanced Raman Spectroscopic Barcoding System for High-Throughput Bioanalysis. Sci. Rep. 2015, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Kim, H.M.; Jeong, S.; Hahm, E.; Kim, J.; Cha, M.G.; Kim, K.M.; Kang, H.; Kyeong, S.; Pham, X.H.; Lee, Y.S.; et al. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. J. Ind. Eng. Chem. 2016, 33, 22–27. [Google Scholar] [CrossRef]
  9. Rho, W.Y.; Song, D.H.; Yang, H.Y.; Kim, H.S.; Son, B.S.; Suh, J.S.; Jun, B.H. Recent advances in plasmonic dye-sensitized solar cells. J. Solid State Chem. 2018, 258, 271–282. [Google Scholar] [CrossRef]
  10. Kang, H.; Koh, Y.; Jeong, S.; Jeong, C.; Cha, M.G.; Oh, M.H.; Yang, J.K.; Lee, H.; Jeong, D.H.; Jun, B.H.; et al. Graphical and SERS dual-modal identifier for encoding OBOC library. Sens. Actuator B-Chem. 2020, 303, 8. [Google Scholar] [CrossRef]
  11. Rho, W.Y.; Kim, H.S.; Chung, W.J.; Suh, J.S.; Jun, B.H.; Hahn, Y.B. Enhancement of power conversion efficiency with TiO2 nanoparticles/nanotubes-silver nanoparticles composites in dye-sensitized solar cells. Appl. Surf. Sci. 2018, 429, 23–28. [Google Scholar] [CrossRef]
  12. Pham, X.H.; Lee, M.; Shim, S.; Jeong, S.; Kim, H.M.; Hahm, E.; Lee, S.H.; Lee, Y.S.; Jeong, D.H.; Jun, B.H. Highly sensitive and reliable SERS probes based on nanogap control of a Au-Ag alloy on silica nanoparticles. RSC Adv. 2017, 7, 7015–7021. [Google Scholar] [CrossRef] [Green Version]
  13. Rho, W.Y.; Chun, M.H.; Kim, H.S.; Kim, H.M.; Suh, J.S.; Jun, B.H. Ag Nanoparticle-Functionalized Open-Ended Freestanding TiO2 Nanotube Arrays with a Scattering Layer for Improved Energy Conversion Efficiency in Dye-Sensitized Solar Cells. Nanomaterials 2016, 6, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Rho, W.Y.; Kim, H.S.; Lee, S.H.; Jung, S.; Suh, J.S.; Hahn, Y.B.; Jun, B.H. Front-illuminated dye-sensitized solar cells with Ag nanoparticle-functionalized freestanding TiO2 nanotube arrays. Chem. Phys. Lett. 2014, 614, 78–81. [Google Scholar] [CrossRef]
  15. Pham, X.H.; Hahm, E.; Kim, T.H.; Kim, H.M.; Lee, S.H.; Lee, Y.S.; Jeong, D.H.; Jun, B.H. Enzyme-catalyzed Ag Growth on Au Nanoparticle-assembled Structure for Highly Sensitive Colorimetric Immunoassay. Sci. Rep. 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Jun, B.H.; Kim, G.; Baek, J.; Kang, H.; Kim, T.; Hyeon, T.; Jeong, D.H.; Lee, Y.S. Magnetic field induced aggregation of nanoparticles for sensitive molecular detection. Phys. Chem. Chem. Phys. 2011, 13, 7298–7303. [Google Scholar] [CrossRef] [PubMed]
  17. Pham, X.H.; Shim, S.; Kim, T.H.; Hahm, E.; Kim, H.M.; Rho, W.Y.; Jeong, D.H.; Lee, Y.S.; Jun, B.H. Glucose Detection Using 4-mercaptophenyl Boronic Acid-incorporated Silver Nanoparticles-embedded Silica-coated Graphene Oxide as a SERS Substrate. Biochip J. 2017, 11, 46–56. [Google Scholar] [CrossRef]
  18. Pham, X.H.; Hahm, E.; Kang, E.; Ha, Y.N.; Lee, S.H.; Rho, W.Y.; Lee, Y.S.; Jeong, D.H.; Jun, B.H. Gold-silver bimetallic nanoparticles with a Raman labeling chemical assembled on silica nanoparticles as an internal-standard-containing nanoprobe. J. Alloy. Compd. 2019, 779, 360–366. [Google Scholar] [CrossRef]
  19. Jun, B.H.; Kim, G.; Noh, M.S.; Kang, H.; Kim, Y.K.; Cho, M.H.; Jeong, D.H.; Lee, Y.S. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays. Nanomedicine 2011, 6, 1463–1480. [Google Scholar] [CrossRef]
  20. Pham, X.H.; Hahm, E.; Huynh, K.H.; Kim, H.M.; Son, B.S.; Jeong, D.H.; Jun, B.H. Sensitive and selective detection of 4-aminophenol in the presence of acetaminophen using gold-silver core-shell nanoparticles embedded in silica nanostructures. J. Ind. Eng. Chem. 2020, 83, 208–213. [Google Scholar] [CrossRef]
  21. Lee, S.H.; Jun, B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
  22. Jun, B.H. Silver Nano/Microparticles: Modification and Applications. Int. J. Mol. Sci. 2019, 20, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Pham, X.H.; Hahm, E.; Kang, E.; Son, B.S.; Ha, Y.; Kim, H.M.; Jeong, D.H.; Jun, B.H. Control of Silver Coating on Raman Label Incorporated Gold Nanoparticles Assembled Silica Nanoparticles. Int. J. Mol. Sci. 2019, 20, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Kang, E.J.; Baek, Y.M.; Hahm, E.; Lee, S.H.; Pham, X.H.; Noh, M.S.; Kim, D.E.; Jun, B.H. Functionalized beta-Cyclodextrin Immobilized on Ag-Embedded Silica Nanoparticles as a Drug Carrier. Int. J. Mol. Sci. 2019, 20, 315. [Google Scholar] [CrossRef] [Green Version]
  25. Liu, L.Y.; Cai, R.; Wang, Y.J.; Tao, G.; Ai, L.S.; Wang, P.; Yang, M.R.; Zuo, H.; Zhao, P.; He, H.W. Polydopamine-Assisted Silver Nanoparticle Self-Assembly on Sericin/Agar Film for Potential Wound Dressing Application. Int. J. Mol. Sci. 2018, 19, 2875. [Google Scholar] [CrossRef] [Green Version]
  26. Radtke, A.; Grodzicka, M.; Ehlert, M.; Muziol, T.M.; Szkodo, M.; Bartmanski, M.; Piszczek, P. Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants. Int. J. Mol. Sci. 2018, 19, 3962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Liao, C.Z.; Li, Y.C.; Tjong, S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [Green Version]
  28. Fehaid, A.; Taniguchi, A. Size-Dependent Effect of Silver Nanoparticles on the Tumor Necrosis Factor -Induced DNA Damage Response. Int. J. Mol. Sci. 2019, 20, 1038. [Google Scholar] [CrossRef] [Green Version]
  29. Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
  30. Mo, L.X.; Guo, Z.X.; Yang, L.; Zhang, Q.Q.; Fang, Y.; Xin, Z.Q.; Chen, Z.; Hu, K.; Han, L.; Li, L.H. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics. Int. J. Mol. Sci. 2019, 20, 2124. [Google Scholar] [CrossRef] [Green Version]
  31. Hahm, E.; Jeong, D.; Cha, M.G.; Choi, J.M.; Pham, X.H.; Kim, H.M.; Kim, H.; Lee, Y.S.; Jeong, D.H.; Jung, S.; et al. beta-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Huynh, K.-H.; Pham, X.-H.; Hahm, E.; An, J.; Kim, H.-M.; Jo, A.; Seong, B.; Kim, Y.-H.; Son, B.S.; Kim, J.; et al. Facile Histamine Detection by Surface-Enhanced Raman Scattering Using SiO2@Au@Ag Alloy Nanoparticles. Int. J. Mol. Sci. 2020, 21, 4048. [Google Scholar] [CrossRef] [PubMed]
  33. Pham, X.H.; Hahm, E.; Huynh, K.H.; Son, B.S.; Kim, H.M.; Jeong, D.H.; Jun, B.H. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection. Int. J. Mol. Sci. 2019, 20, 4841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Nakamura, S.; Sato, M.; Sato, Y.; Ando, N.; Takayama, T.; Fujita, M.; Ishihara, M. Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. Int. J. Mol. Sci. 2019, 20, 3620. [Google Scholar] [CrossRef] [Green Version]
  35. Nakamura, S.; Ando, N.; Sato, M.; Ishihara, M. Ultraviolet Irradiation Enhances the Microbicidal Activity of Silver Nanoparticles by Hydroxyl Radicals. Int. J. Mol. Sci. 2020, 21, 3204. [Google Scholar] [CrossRef]
  36. De Mori, A.; Jones, R.S.; Cretella, M.; Cerri, G.; Draheim, R.R.; Barbu, E.; Tozzi, G.; Roldo, M. Evaluation of Antibacterial and Cytotoxicity Properties of Silver Nanowires and Their Composites with Carbon Nanotubes for Biomedical Applications. Int. J. Mol. Sci. 2020, 21, 2303. [Google Scholar] [CrossRef] [Green Version]
  37. Li, J.P.; Su, M.L.; Wang, A.K.; Wu, Z.X.; Chen, Y.H.; Qin, D.C.; Jiang, Z.H. In Situ Formation of Ag Nanoparticles in Mesoporous TiO2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity. Int. J. Mol. Sci. 2019, 20, 5497. [Google Scholar] [CrossRef] [Green Version]
  38. De Matteis, V.; Cascione, M.; Toma, C.C.; Albanese, G.; De Giorgi, M.L.; Corsalini, M.; Rinaldi, R. Silver Nanoparticles Addition in Poly(Methyl Methacrylate) Dental Matrix: Topographic and Antimycotic Studies. Int. J. Mol. Sci. 2019, 20, 4691. [Google Scholar] [CrossRef] [Green Version]
  39. Padnya, P.; Gorbachuk, V.; Stoikov, I. The Role of Calix n arenes and Pillar n arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int. J. Mol. Sci. 2020, 21, 1425. [Google Scholar] [CrossRef] [Green Version]
  40. Tanaka, M.; Saito, S.; Kita, R.; Jang, J.; Choi, Y.; Choi, J.; Okochi, M. Array-Based Screening of Silver Nanoparticle Mineralization Peptides. Int. J. Mol. Sci. 2020, 21, 2377. [Google Scholar] [CrossRef] [Green Version]
  41. Szalkowski, M.; Sulowska, K.; Jonsson-Niedziolka, M.; Wiwatowski, K.; Niedziolka-Jonsson, J.; Mackowski, S.; Piatkowski, D. Photochemical Printing of Plasmonically Active Silver Nanostructures. Int. J. Mol. Sci. 2020, 21, 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Kowalska, D.; Szalkowski, M.; Sulowska, K.; Buczynska, D.; Niedziolka-Jonsson, J.; Jonsson-Niedziolka, M.; Kargul, J.; Lokstein, H.; Mackowski, S. Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins. Int. J. Mol. Sci. 2020, 21, 2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]

Share and Cite

MDPI and ACS Style

Pham, X.-H.; Kim, J.; Jun, B.-H. Silver Nano/Microparticles: Modification and Applications 2.0. Int. J. Mol. Sci. 2020, 21, 4395. https://doi.org/10.3390/ijms21124395

AMA Style

Pham X-H, Kim J, Jun B-H. Silver Nano/Microparticles: Modification and Applications 2.0. International Journal of Molecular Sciences. 2020; 21(12):4395. https://doi.org/10.3390/ijms21124395

Chicago/Turabian Style

Pham, Xuan-Hung, Jaehi Kim, and Bong-Hyun Jun. 2020. "Silver Nano/Microparticles: Modification and Applications 2.0" International Journal of Molecular Sciences 21, no. 12: 4395. https://doi.org/10.3390/ijms21124395

APA Style

Pham, X. -H., Kim, J., & Jun, B. -H. (2020). Silver Nano/Microparticles: Modification and Applications 2.0. International Journal of Molecular Sciences, 21(12), 4395. https://doi.org/10.3390/ijms21124395

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop