Computational Insights on the Mechanism of the Chemiluminescence Reaction of New Group of Chemiluminogens—10-Methyl-9-thiophenoxycarbonylacridinium Cations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Investigated Models
2.2. Orbitals
2.3. Mechanism of Chemiluminescence
2.3.1. Chemiluminescence Pathway
2.3.2. Non-CL Processes
2.4. Electronically Excitation
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AE | Acridinium ester |
ATE | Acridinium thioester |
BCP | Bond critical point |
CL | Chemiluminescence |
DFT | Density functional theory |
FT4 | Thyroxine hormone |
HIV | Human immunodeficiency virus |
ISC | Intersystem crossing |
LCAO | Linear combination of atomic orbitals |
LUMO | Lowest Unoccupied Molecular Orbital |
PCM | Polarizable Continuum Model |
QTAIM | Quantum theory of atoms in molecules |
TD DFT | Time dependent density functional theory |
TS | Transition State |
TSH | Thyroid-stimulating hormone |
VDD | Voronoi deformation density |
References
- McCapra, F. The Chemiluminescence of Organic Compounds. Pure Appl. Chem. 1970, 24, 611–630. [Google Scholar] [CrossRef]
- Roda, A.; Pasini, P.; Guardigli, M.; Baraldini, M.; Musiani, M.; Mirasoli, M. Bio- and Chemiluminescence in Bioanalysis. Fresenius J. Anal. Chem. 2000, 366, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Eghlimi, A.; Jubaer, H.; Surmiak, A.; Bach, U. Developing a Safe and Versatile Chemiluminescence Demonstration for Studying Reaction Kinetics. J. Chem. Educ. 2019, 96, 522–527. [Google Scholar] [CrossRef]
- Gundermann, K.D.; McCapra, F. Chemiluminescence in Organic Chemistry; Reactivity and Structure: Concepts in Organic Chemistry; Springer: Berlin/Heidelberg, Germany, 1987; pp. 7–16 and 33–53. [Google Scholar] [CrossRef]
- Nakazono, M.; Oshikawa, Y.; Nakamura, M.; Kubota, H.; Nanbu, S. Strongly Chemiluminescent Acridinium Esters under Neutral Conditions: Synthesis, Properties, Determination, and Theoretical Study. J. Org. Chem. 2017, 82, 2450–2461. [Google Scholar] [CrossRef] [PubMed]
- Kricka, L.J. Clinical Applications of Chemiluminescence. Anal. Chim. Acta 2003, 500, 279–286. [Google Scholar] [CrossRef]
- Natrajan, A.; Wen, D. A Comparison of Chemiluminescent Acridinium Dimethylphenyl Ester Labels with Different Conjugation Sites. Org. Biomol. Chem. 2015, 13, 2622–2633. [Google Scholar] [CrossRef]
- Huertas-Pérez, J.F.; Moreno-González, D.; Airado-Rodríguez, D.; Lara, F.J.; García-Campaña, A.M. Advances in the Application of Chemiluminescence Detection in Liquid Chromatography. Trends Anal. Chem. 2016, 75, 35–48. [Google Scholar] [CrossRef]
- Giokas, D.L.; Vlessidis, A.G.; Tsogas, G.Z.; Evmiridis, N.P. Nanoparticle-Assisted Chemiluminescence and Its Applications in Analytical Chemistry. Trends Anal. Chem. 2010, 29, 1113–1126. [Google Scholar] [CrossRef]
- Jones, M.R.; Lee, K. Determination of Environmental H2O2 for Extended Periods by Chemiluminescence with Real-Time Inhibition of Iron Interferences. Microchem. J. 2019, 147, 1021–1027. [Google Scholar] [CrossRef]
- Gámiz-Gracia, L.; García-Campaña, A.M.; Huertas-Pérez, J.F.; Lara, F.J. Chemiluminescence Detection in Liquid Chromatography: Applications to Clinical, Pharmaceutical, Environmental and Food Analysis-A Review. Anal. Chim. Acta 2009, 640, 7–28. [Google Scholar] [CrossRef]
- Zadykowicz, B.; Czechowska, J.; Ożóg, A.; Renkevich, A.; Krzymiński, K. Effective Chemiluminogenic Systems Based on Acridinium Esters Bearing Substituents of Various Electronic and Steric Properties. Org. Biomol. Chem. 2016, 14, 652–668. [Google Scholar] [CrossRef] [PubMed]
- Czechowska, J.; Kawecka, A.; Romanowska, A.; Marczak, M.; Wityk, P.; Krzymiński, K.; Zadykowicz, B. Chemiluminogenic Acridinium Salts: A Comparison Study. Detection of Intermediate Entities Appearing upon Light Generation. J. Lumin. 2017, 187, 102–112. [Google Scholar] [CrossRef]
- Nakazono, M.; Nanbu, S.; Akita, T.; Hamase, K. Synthesis, Chemiluminescence, and Application of 2,4-Disubstituted Phenyl 10-Methyl-10λ4-Acridine-9-Carboxylates. Dyes Pigment. 2019, 170, 107628. [Google Scholar] [CrossRef]
- Ren, L.; Cui, H. Chemiluminescence Accompanied by the Reaction of Acridinium Ester and Manganese (II). Luminescence 2014, 29, 929–932. [Google Scholar] [CrossRef]
- Natrajan, A.; Wen, D. Effect of Branching in Remote Substituents on Light Emission and Stability of Chemiluminescent Acridinium Esters. RSC Adv. 2014, 4, 21852–21863. [Google Scholar] [CrossRef]
- Krzymiński, K.; Ożóg, A.; Malecha, P.; Roshal, A.D.; Wróblewska, A.; Zadykowicz, B.; Błażejowski, J. Chemiluminogenic Features of 10-Methyl-9-(Phenoxycarbonyl)Acridinium Trifluoromethanesulfonates Alkyl Substituted at the Benzene Ring in Aqueous Media. J. Org. Chem. 2011, 76, 1072–1085. [Google Scholar] [CrossRef] [PubMed]
- Holec-Gąsior, L.; Ferra, B.; Czechowska, J.; Serdiuk, I.E.; Krzymiński, K.; Kur, J. A Novel Chemiluminescent Immunoassay for Detection of Toxoplasma Gondii IgG in Human Sera. Diagn. Microbiol. Infect. Dis. 2016, 85, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Holec-Gąsior, L.; Ferra, B.; Czechowska, J.; Serdiuk, I.E.; Krzymiński, K. A Novel Chemiluminescent Immunoassay Based on Original Acridinium Ester Labels as Better Solution for Diagnosis of Human Toxoplasmosis than Conventional ELISA Test. Diagn. Microbiol. Infect. Dis. 2018, 91, 13–19. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Kishikawa, N.; Ohyama, K.; Ohba, Y.; Kohno, M.; Masuda, T.; Takadate, A.; Nakashima, K.; Kuroda, N. Evaluation of Chemiluminescence Reagents for Selective Detection of Reactive Oxygen Species. Anal. Chim. Acta 2010, 665, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Natrajan, A.; Sharpe, D.; Wen, D. Chemiluminescence from Alkoxy-Substituted Acridinium Dimethylphenyl Ester Labels. Org. Biomol. Chem. 2012, 10, 3432–3447. [Google Scholar] [CrossRef]
- Immunoassay. Available online: https://www.siemens-healthineers.com/immunoassay (accessed on 15 May 2020).
- Zhang, J.; Cheng, P.; Pu, K. Recent Advances of Molecular Optical Probes in Imaging of β-Galactosidase. Bioconjug. Chem. 2019, 30, 2089–2101. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Tsuruoka, K.; Ohno, K.I.; Tajima, N.; Nagano, H. Development of a Highly Sensitive Chemiluminescent Assay for Hydrogen Peroxide under Neutral Conditions Using Acridinium Ester and Its Application to an Enzyme Immunoassay. Luminescence 2014, 29, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Guardigli, M. Analytical Chemiluminescence and Bioluminescence: Latest Achievements and New Horizons. Anal. Bioanal. Chem. 2012, 402, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, L.; Chu, X. Chemiluminescence Immunoassay. Trends Anal. Chem. 2009, 28, 404–415. [Google Scholar] [CrossRef]
- Goryacheva, I.Y.; Lenain, P.; De Saeger, S. Nanosized Labels for Rapid Immunotests. Trends Anal. Chem. 2013, 46, 30–43. [Google Scholar] [CrossRef]
- Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as a Diagnostic Tool. A Review. Talanta 2000, 51, 415–439. [Google Scholar] [CrossRef]
- Roda, A.; Guardigli, M.; Michelini, E.; Mirasoli, M.; Pasini, P. Peer Reviewed: Analytical Bioluminescence and Chemiluminescence. Anal. Chem. 2003, 75, 462A–470A. [Google Scholar] [CrossRef]
- Baj, S.; Krawczyk, T. Chemiluminescence Detection of Organic Peroxides in a Two-Phase System. Anal. Chim. Acta 2007, 585, 147–153. [Google Scholar] [CrossRef]
- García-Campaña, A.M.; Lara, F.J. Trends in the Analytical Applications of Chemiluminescence in the Liquid Phase. Anal. Bioanal. Chem. 2007, 387, 165–169. [Google Scholar] [CrossRef]
- Watanabe, F.; Takenaka, S.; Abe, K.; Tamura, Y.; Nakano, Y. Comparison of a Microbiological Assay and a Fully Automated Chemiluminescent System for the Determination of Vitamin B 12 in Food. J. Agric. Food Chem. 1998, 46, 1433–1436. [Google Scholar] [CrossRef]
- Gámiz-Gracia, L.; García-Campaña, A.M.; Soto-Chinchilla, J.J.; Huertas-Pérez, J.F.; González-Casado, A. Analysis of Pesticides by Chemiluminescence Detection in the Liquid Phase. Trends Anal. Chem. 2005, 11, 927–947. [Google Scholar] [CrossRef]
- Weeks, I.; Beheshti, I.; McCapra, F.; Campbell, A.K.; Woodhead, J.S. Acridinium Esters as High-Specific-Activity Labels in Immunoassay. Clin. Chem. 1983, 29, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Rak, J.; Skurski, P.; Błażejowski, J. Toward an Understanding of the Chemiluminescence Accompanying the Reaction of 9-Carboxy-10-Methylacridinium Phenyl Ester with Hydrogen Peroxide. J. Org. Chem. 1999, 64, 3002–3008. [Google Scholar] [CrossRef] [PubMed]
- Vacher, M.; Fdez Galván, I.; Ding, B.W.; Schramm, S.; Berraud-Pache, R.; Naumov, P.; Ferré, N.; Liu, Y.J.; Navizet, I.; Roca-Sanjuán, D.; et al. Chemi- and Bioluminescence of Cyclic Peroxides. Chem. Rev. 2018, 118, 6927–6974. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Da Silva, J.C.G.E. Dioxetanones’ Peroxide Bond as a Charge-Shifted Bond: Implications in the Chemiluminescence Process. Struct. Chem. 2014, 25, 1075–1081. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Da Silva, J.C.G.E. Chemiluminescence of 1,2-Dioxetanone Studied by a Closed-Shell DFT Approach. Int. J. Quantum Chem. 2013, 113, 1709–1716. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; De Vico, L.; Lindh, R. Theoretical Study of the Chemiluminescent Decomposition of Dioxetanone. J. Am. Chem. Soc. 2009, 131, 6181–6188. [Google Scholar] [CrossRef]
- Bastos, E.L.; Farahani, P.; Bechara, E.J.H.; Baader, W.J. Four-Membered Cyclic Peroxides: Carriers of Chemical Energy. J. Phys. Org. Chem. 2017, 30, e3725. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Magalhães, C.M. Mechanistic Insights into the Efficient Intramolecular Chemiexcitation of Dioxetanones from TD-DFT and Multireference Calculations. Int. J. Quantum Chem. 2019, 119, 1–13. [Google Scholar] [CrossRef]
- Zomer, G.; Stavenuiter, J.F.C. Chemiluminogenic Labels, Old and New. Anal. Chim. Acta 1989, 227, 11–19. [Google Scholar] [CrossRef]
- Natrajan, A.; Sharpe, D. Synthesis and Properties of Differently Charged Chemiluminescent Acridinium Ester Labels. Org. Biomol. Chem. 2013, 11, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.; de Paula, J.; Keeler, J. Atkins’ Physical Chemistry, 11th ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons Ltd.: New York, NY, USA, 1976. [Google Scholar]
- Boużyk, A.; Jóźwiak, L.; Kolendo, A.Y.; Błażejowski, J. Theoretical Interpretation of Electronic Absorption and Emission Transitions in 9-Acridinones. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 543–558. [Google Scholar] [CrossRef]
- Bader, R.F.M. Atoms in Molecules. A Quantum Theory; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P.C. Charge-Shift Bonding and Its Manifestations in Chemistry. Nat. Chem. 2009, 1, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Rzepa, H.S. Nature of the Carbon-Sulfur Bond in the Species H-CS-OH. J. Chem. Theory Comput. 2011, 7, 97–102. [Google Scholar] [CrossRef]
- Mitra, S.; Chandra, A.K.; Gashnga, P.M.; Jenkins, S.; Kirk, S.R. Exploring Hydrogen Bond in the Excited State Leading toward Intramolecular Proton Transfer: Detailed Analysis of the Structure and Charge Density Topology along the Reaction Path Using QTAIM. J. Mol. Model. 2012, 18, 4225–4237. [Google Scholar] [CrossRef]
- Nasiri, M.; Shakourian-Fard, M.; Fattahi, A. Influence of the Hydrogen Bonding on the Basicity of Selected Macrocyclic Amines. J. Phys. Org. Chem. 2012, 25, 803–810. [Google Scholar] [CrossRef]
- Farahani, P.; Roca-Sanjuán, D.; Zapata, F.; Lindh, R. Revisiting the Nonadiabatic Process in 1,2-Dioxetane. J. Chem. Theory Comput. 2013, 9, 5404–5411. [Google Scholar] [CrossRef]
- Augusto, F.A.; Francés-Monerris, A.; Fdez Galván, I.; Roca-Sanjuán, D.; Bastos, E.L.; Baader, W.J.; Lindh, R. Mechanism of Activated Chemiluminescence of Cyclic Peroxides: 1,2-Dioxetanes and 1,2-Dioxetanones. Phys. Chem. Chem. Phys. 2017, 19, 3955–3962. [Google Scholar] [CrossRef]
- Zomer, G.; Stavenuiter, J.F.C.; Van Den Berg, R.H.; Jansen, E.H.J.M. Synthesis, Chemiluminescence and Stability of Acridinium Esters Labeled Compounds. In Luminescence Techniques in Chemical and Biochemical Analysis; Baeyens, W.R.G., Keukeleire, D.D., Korkidis, K., Dekker, M., Eds.; Marcel Dekker: New York, NY, USA, 1991; pp. 505–521. [Google Scholar]
- Natrajan, A.; Sharpe, D.; Costello, J.; Jiang, Q. Enhanced Immunoassay Sensitivity Using Chemiluminescent Acridinium Esters with Increased Light Output. Anal. Biochem. 2010, 406, 204–213. [Google Scholar] [CrossRef]
- Marian, C.M. Spin-Orbit Coupling and Intersystem Crossing in Molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 187–203. [Google Scholar] [CrossRef]
- Penfold, T.J.; Gindensperger, E.; Daniel, C.; Marian, C.M. Spin-Vibronic Mechanism for Intersystem Crossing. Chem. Rev. 2018, 118, 6975–7025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahani, P.; Baader, W.J. Unimolecular Decomposition Mechanism of 1,2-Dioxetanedione: Concerted or Biradical? That Is the Question! J. Phys. Chem. A 2017, 121, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Labanowski, J.K.; Andzelm, J.W. Density Functional Methods in Chemistry; Springer: New York, NY, USA, 1991. [Google Scholar]
- Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and Properties of Excited States in the Gas Phase and in Solution: Theory and Application of a Time-Dependent Density Functional Theory Polarizable Continuum Model. J. Chem. Phys. 2006, 124, 094107. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; People, J.A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E. 01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. J. Chem. Phys. 1997, 107, 3210–3221. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 20 April 2020).
Step No. | Compound | Gaseous Phase | Aqueous Phase | Step No. | Compound | Gaseous Phase | Aqueous Phase | ||
---|---|---|---|---|---|---|---|---|---|
Δr,298H0 | Δr,298G0 | Δr,298G0 | Δr,298H0 | Δr,298G0 | Δr,298G0 | ||||
I | a | −166.2 | −153.0 | −43.1 | II | a | −80.1 | −93.2 | −69.0 |
b | −166.0 | −153.1 | −43.2 | b | −86.3 | −99.5 | −73.3 | ||
c | −167.1 | −152.7 | −44.9 | c | −80.3 | −93.9 | −67.7 | ||
d | −165.8 | −152.0 | −43.8 | d | −83.3 | −97.2 | −67.5 | ||
e | −163.6 | −150.0 | −42.3 | e | −75.8 | −89.7 | −67.8 | ||
f | −171.1 | −157.4 | −44.0 | f | −101.7 | −115.0 | −79.3 | ||
g | −166.0 | −151.6 | −44.1 | g | −92.1 | −105.1 | −76.2 | ||
h | −171.0 | −158.0 | −44.6 | h | −102.2 | −115.1 | −78.9 | ||
i | −162.3 | −149.4 | −41.3 | i | −80.1 | −93.1 | −68.7 | ||
j | −162.5 | −149.5 | −41.2 | j | −85.9 | −99.6 | −73.3 | ||
k | −162.6 | −148.9 | −41.6 | k | −80.9 | −94.5 | −68.9 | ||
l | −161.5 | −148.2 | −41.2 | l | −83.7 | −97.3 | −68.2 | ||
III | a–h | −16.5 | −27.2 | −33.2 | IV | a–h | −78.1 | −77.6 | −73.3 |
i–l | −23.0 | −32.6 | −38.7 | i–l | −72.3 | −71.8 | −68.2 | ||
V | a–h | −94.6 | −103.9 | −106.5 | VII | a | −64.7 | −63.9 | −37.4 |
i–l | −95.3 | −104.5 | −107.0 | b | −76.2 | −75.5 | −38.9 | ||
VI | a | −197.1 | −187.5 | −61.9 | c | −72.1 | −72.6 | −37.9 | |
b | −188.9 | −179.5 | −61.7 | d | −73.6 | −74.3 | −37.4 | ||
c | −189.9 | −178.6 | −62.3 | e | −64.1 | −63.8 | −37.1 | ||
d | −188.8 | −178.5 | −62.3 | f | −83.0 | −83.0 | −41.2 | ||
e | −186.4 | −176.0 | −60.7 | g | −80.9 | −81.3 | −44.7 | ||
f | −194.3 | −183.7 | −62.6 | h | −82.4 | −83.4 | −40.4 | ||
g | −188.9 | −177.6 | −62.1 | i | −73.6 | −73.2 | −38.0 | ||
h | −194.3 | −183.6 | −62.9 | j | −77.3 | −77.0 | −39.3 | ||
i | −185.1 | −175.4 | −59.1 | k | −73.2 | −74.0 | −37.7 | ||
j | −184.7 | −175.3 | −59.5 | l | −74.4 | −74.7 | −37.5 | ||
k | −185.7 | −174.9 | −60.3 | IX | a | −92.0 | −93.2 | −68.9 | |
l | −184.8 | −174.9 | −60.5 | b | −97.9 | −99.6 | −73.3 | ||
VIII | a | −13.2 | −37.1 | −48.6 | c | −93.0 | −93.6 | −69.4 | |
b | −15.9 | −39.8 | −51.7 | d | −94.8 | −96.1 | −68.0 | ||
c | −14.0 | −37.6 | −48.2 | e | −85.0 | −86.7 | −66.8 | ||
d | −15.4 | −38.7 | −47.3 | f | −118.6 | −119.4 | −80.1 | ||
e | −11.7 | −35.5 | −48.0 | g | −103.7 | −103.7 | −77.1 | ||
f | −24.3 | −48.1 | −55.3 | h | −118.9 | −120.2 | −80.3 | ||
g | −16.9 | −40.0 | −49.3 | i | −92.3 | −93.4 | −68.9 | ||
h | −25.2 | −48.4 | −55.9 | j | −98.3 | −100.1 | −73.4 | ||
i | −13.0 | −36.6 | −49.2 | k | −93.3 | −94.4 | −69.4 | ||
j | −15.8 | −39.6 | −52.0 | l | −95.1 | −96.5 | −68.3 | ||
k | −13.9 | −37.3 | −48.8 | X | a | −60.3 | −58.8 | −46.9 | |
l | −15.3 | −38.7 | −47.6 | b | −74.5 | −73.2 | −51.4 | ||
XI | a–h | −83.5 | −103.8 | −109.9 | c | −68.5 | −68.0 | −46.9 | |
i–l | −84.6 | −104.8 | −110.6 | d | −71.4 | −70.8 | −45.5 | ||
e | −64.1 | −63.8 | −45.9 | ||||||
f | −89.7 | −88.9 | −57.3 | ||||||
g | −80.2 | −79.2 | −54.7 | ||||||
h | −90.0 | −89.6 | −57.1 | ||||||
i | −68.0 | −66.7 | −47.2 | ||||||
j | −74.5 | −73.5 | −51.4 | ||||||
k | −68.4 | −68.2 | −46.6 | ||||||
l | −71.4 | −70.3 | −45.2 |
Step No. | Compound | Gaseous Phase | Aqueous Phase | ||
---|---|---|---|---|---|
Δr,298H0 | Δr,298G0 | 298k0(298τ99) | Δr,298G0 | ||
TS-III | a–h | 12.9 | 14.2 | 2.5 × 102 (1.9 × 10−2) | 15.6 |
i–l | 12.8 | 14.2 | 2.4 × 102 (1.9 × 10−2) | 14.5 | |
TS-VIII | a | 2.1 | 0.3 | 4.1 × 1012 (1.1 × 10−12) | 2.1 |
b | 2.3 | 1.2 | 8.9 × 1011 (5.2 × 10−12) | 1.6 | |
c | 1.9 | 0.9 | 1.3 × 1012 (3.4 × 10−12) | 2.4 | |
d | 2.4 | 1.7 | 3.8 × 1011 (1.2 × 10−11) | 0.5 | |
e | 2.4 | 1.1 | 1.0 × 1012 (4.5 × 10−12) | 2.1 | |
f | 1.1 | 0.4 | 3.2 × 1012 (1.5 × 10−12) | 1.3 | |
g | 3.1 | 2.2 | 1.5 × 1011 (3.1 × 10−10) | 2.8 | |
h | 0.5 | 0.4 | 3.4 × 1012 (1.3 × 10−12) | 0.3 | |
i | 2.7 | 1.5 | 4.8 × 1011 (9.5 × 10−12) | 2.4 | |
j | 2.3 | 1.2 | 8.6 × 1011 (5.4 × 10−12) | 2.0 | |
k | 2.5 | 1.5 | 4.9 × 1011 (9.3 × 10−12) | 2.0 | |
l | 2.5 | 0.8 | 1.7 × 1012 (2.7 × 10−12) | 2.7 | |
TS-XI | a–h | 43.6 | 45.3 | 4.1 × 10−21(1.1 × 1021) | 43.3 |
i–l | 35.1 | 36.9 | 6.0 × 10−15(7.7 × 1014) | 36.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieńkos, M.; Zadykowicz, B. Computational Insights on the Mechanism of the Chemiluminescence Reaction of New Group of Chemiluminogens—10-Methyl-9-thiophenoxycarbonylacridinium Cations. Int. J. Mol. Sci. 2020, 21, 4417. https://doi.org/10.3390/ijms21124417
Pieńkos M, Zadykowicz B. Computational Insights on the Mechanism of the Chemiluminescence Reaction of New Group of Chemiluminogens—10-Methyl-9-thiophenoxycarbonylacridinium Cations. International Journal of Molecular Sciences. 2020; 21(12):4417. https://doi.org/10.3390/ijms21124417
Chicago/Turabian StylePieńkos, Milena, and Beata Zadykowicz. 2020. "Computational Insights on the Mechanism of the Chemiluminescence Reaction of New Group of Chemiluminogens—10-Methyl-9-thiophenoxycarbonylacridinium Cations" International Journal of Molecular Sciences 21, no. 12: 4417. https://doi.org/10.3390/ijms21124417
APA StylePieńkos, M., & Zadykowicz, B. (2020). Computational Insights on the Mechanism of the Chemiluminescence Reaction of New Group of Chemiluminogens—10-Methyl-9-thiophenoxycarbonylacridinium Cations. International Journal of Molecular Sciences, 21(12), 4417. https://doi.org/10.3390/ijms21124417