Impact of SRY-Box Transcription Factor 11 Gene Polymorphisms on Oral Cancer Risk and Clinicopathologic Characteristics
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Participants
2.2. Association of SOX11 Polymorphisms with Oral Cancer Risk
2.3. Association of SOX11 SNPs with Oral Cancer Risk Considering Betel Quid Chewing
2.4. Association between SOX11 Polymorphic Genotypes and Clinical Features of Oral Cancer
2.5. Association between SOX11 mRNA Expression and Clinical Characteristics of HNSCC Tissues from the TCGA Database
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Determination of Genotypes
4.3. Selection of SOX11 Polymorphisms and Database Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variable | Controls (n = 1200) (%) | Patients (n = 1196) (%) | OR (95% CI) | p Value | AOR (95% CI) | p Value |
---|---|---|---|---|---|---|
Age (yrs) | ||||||
≦55 | 610 (50.8%) | 609 (50.9%) | 1.000 (reference) | p = 0.966 | 1.000 (reference) | p = 0.014 |
>55 | 590 (49.2%) | 587 (49.1%) | 0.997 (0.849–1.170) | 1.283 (1.053–1.564) | ||
Betel quid chewing | ||||||
No | 1001 (83.4%) | 321 (26.8%) | 1.000 (reference) | p < 0.001 | 1.000 (reference) | p < 0.001 |
Yes | 199 (16.6%) | 875 (73.2%) | 13.711 (11.240–16.726) | 10.708 (8.539–13.428) | ||
Cigarette smoking | ||||||
No | 564 (47.0%) | 192 (16.0%) | 1.000 (reference) | p < 0.001 | 1.000 (reference) | p = 0.006 |
Yes | 636 (53.0%) | 1004 (84.0%) | 4.637 (3.829–5.616) | 1.398 (1.103–1.773) | ||
Alcohol drinking | ||||||
No | 963 (80.2%) | 648 (54.2%) | 1.000 (reference) | p < 0.001 | 1.000 (reference) | p < 0.001 |
Yes | 237 (19.8%) | 548 (45.8%) | 3.436 (2.864–4.122) | 1.499 (1.197–1.877) | ||
rs77996007 | ||||||
TT | 514 (42.8%) | 470 (39.3%) | 1.000 (reference) | p = 0.079 | 1.000 (reference) | p = 0.746 |
TC + CC | 686 (57.2%) | 726 (60.7%) | 1.157 (0.983–1.362) | 1.034 (0.844–1.268) | ||
rs66465560 | ||||||
TT | 911 (75.9%) | 921 (77.0%) | 1.000 (reference) | p = 0.529 | 1.000 (reference) | p = 0.472 |
TC + CC | 289 (24.1%) | 275 (23.0%) | 0.941 (0.779–1.137) | 0.572 (0.125–2.619) | ||
rs68114586 | ||||||
Ins/Ins | 912 (76.0%) | 921 (77.0%) | 1.000 (reference) | p = 0.561 | 1.000 (reference) | p = 0.513 |
Ins/Del or Del/Del | 288 (24.0%) | 275 (23.0%) | 0.946 (0.783–1.142) | 1.665 (0.362–7.650) |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- van der Waal, I. Are we able to reduce the mortality and morbidity of oral cancer; some considerations. Med. Oral Patol. Oral. Cir. Bucal 2013, 18, e33–e37. [Google Scholar] [CrossRef] [PubMed]
- Su, S.C.; Chang, L.C.; Lin, C.W.; Chen, M.K.; Yu, C.P.; Chung, W.H.; Yang, S.F. Mutational signatures and mutagenic impacts associated with betel quid chewing in oral squamous cell carcinoma. Hum. Genet. 2019, 138, 1379–1389. [Google Scholar] [CrossRef]
- Su, S.C.; Lin, C.W.; Liu, Y.F.; Fan, W.L.; Chen, M.K.; Yu, C.P.; Yang, W.E.; Su, C.W.; Chuang, C.Y.; Li, W.H.; et al. Exome sequencing of oral squamous cell carcinoma reveals molecular subgroups and novel therapeutic opportunities. Theranostics 2017, 7, 1088–1099. [Google Scholar] [CrossRef]
- Schepers, G.E.; Teasdale, R.D.; Koopman, P. Twenty pairs of sox: Extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev. Cell 2002, 3, 167–170. [Google Scholar] [CrossRef] [Green Version]
- She, Z.Y.; Yang, W.X. Sox family transcription factors involved in diverse cellular events during development. Eur. J. Cell Biol. 2015, 94, 547–563. [Google Scholar] [CrossRef]
- Bowles, J.; Schepers, G.; Koopman, P. Phylogeny of the sox family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 2000, 227, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Koopman, P.; Gubbay, J.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. Male development of chromosomally female mice transgenic for sry. Nature 1991, 351, 117–121. [Google Scholar] [CrossRef]
- Hou, L.; Srivastava, Y.; Jauch, R. Molecular basis for the genome engagement by sox proteins. Semin. Cell Dev. Biol. 2017, 63, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Hochedlinger, K. The sox family of transcription factors: Versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013, 12, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jay, P.; Goze, C.; Marsollier, C.; Taviaux, S.; Hardelin, J.P.; Koopman, P.; Berta, P. The human sox11 gene: Cloning, chromosomal assignment and tissue expression. Genomics 1995, 29, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Sock, E.; Rettig, S.D.; Enderich, J.; Bosl, M.R.; Tamm, E.R.; Wegner, M. Gene targeting reveals a widespread role for the high-mobility-group transcription factor sox11 in tissue remodeling. Mol. Cell. Biol. 2004, 24, 6635–6644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, J.H.; Uray, I.P.; Mazumdar, A.; Tsimelzon, A.; Savage, M.; Hilsenbeck, S.G.; Brown, P.H. The sox11 transcription factor is a critical regulator of basal-like breast cancer growth, invasion, and basal-like gene expression. Oncotarget 2016, 7, 13106–13121. [Google Scholar] [CrossRef] [PubMed]
- Wasik, A.M.; Lord, M.; Wang, X.; Zong, F.; Andersson, P.; Kimby, E.; Christensson, B.; Karimi, M.; Sander, B. Soxc transcription factors in mantle cell lymphoma: The role of promoter methylation in sox11 expression. Sci. Rep. 2013, 3, 1400. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chang, X.; Li, Z.; Wang, J.; Deng, P.; Zhu, X.; Liu, J.; Zhang, C.; Chen, S.; Dai, D. Aberrant sox11 promoter methylation is associated with poor prognosis in gastric cancer. Cell. Oncol. (Dordr) 2015, 38, 183–194. [Google Scholar] [CrossRef]
- Sernbo, S.; Gustavsson, E.; Brennan, D.J.; Gallagher, W.M.; Rexhepaj, E.; Rydnert, F.; Jirstrom, K.; Borrebaeck, C.A.; Ek, S. The tumour suppressor sox11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation. BMC Cancer 2011, 11, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Xie, Q.; Qin, Q.; Liang, Y.; Lin, H.; Zeng, D. Upregulation of sox11 enhances tamoxifen resistance and promotes epithelial-to-mesenchymal transition via slug in mcf-7 breast cancer cells. J. Cell. Physiol. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Sunyaev, S.; Ramensky, V.; Koch, I.; Lathe, W., 3rd; Kondrashov, A.S.; Bork, P. Prediction of deleterious human alleles. Hum. Mol. Genet. 2001, 10, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Gupta, A.; Rastogi, N.; Agrawal, S.; Kumar, A.; Kumar, V.; Mittal, B. Association of cancer stem cell markers genetic variants with gallbladder cancer susceptibility, prognosis, and survival. Tumour Biol. 2016, 37, 1835–1844. [Google Scholar] [CrossRef]
- Tulsyan, S.; Agarwal, G.; Lal, P.; Mittal, B. Significant association of combination of oct4, nanog, and sox2 gene polymorphisms in susceptibility and response to treatment in north indian breast cancer patients. Cancer Chemother. Pharm. 2014, 74, 1065–1078. [Google Scholar] [CrossRef] [PubMed]
- Bafligil, C.; Thompson, D.J.; Lophatananon, A.; Smith, M.J.; Ryan, N.A.; Naqvi, A.; Evans, D.G.; Crosbie, E.J. Association between genetic polymorphisms and endometrial cancer risk: A systematic review. J. Med. Genet. 2020, in press. [Google Scholar] [CrossRef]
- Elzakra, N.; Cui, L.; Liu, T.; Li, H.; Huang, J.; Hu, S. Mass spectrometric analysis of sox11-binding proteins in head and neck cancer cells demonstrates the interaction of sox11 and hsp90α. J. Proteome Res. 2017, 16, 3961–3968. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ji, E.H.; Zhao, X.; Cui, L.; Misuno, K.; Guo, M.; Huang, Z.; Chen, X.; Hu, S. Sox11 promotes head and neck cancer progression via the regulation of sdccag8. J. Exp. Clin. Cancer Res. 2019, 38, 138. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, W.; Wang, X.; Wang, T.; Chen, Y.; Chen, B.; Liu, R.; Bai, P.; Xing, J. Circular rna cep128 acts as a sponge of mir-145-5p in promoting the bladder cancer progression via regulating sox11. Mol. Med. 2018, 24, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrakis, G.; Veloza, L.; Clot, G.; Gine, E.; Gonzalez-Farre, B.; Navarro, A.; Bea, S.; Martinez, A.; Lopez-Guillermo, A.; Amador, V.; et al. Increased tumour angiogenesis in sox11-positive mantle cell lymphoma. Histopathology 2019, 75, 704–714. [Google Scholar] [CrossRef]
- Devilee, P.; Rookus, M.A. A tiny step closer to personalized risk prediction for breast cancer. N. Engl. J. Med. 2010, 362, 1043–1045. [Google Scholar] [CrossRef]
- Hung, S.C.; Chou, Y.E.; Li, J.R.; Chen, C.S.; Lin, C.Y.; Chang, L.W.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Wang, S.S.; et al. Functional genetic variant of ww domain containing oxidoreductase gene associated with urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urol. Oncol. 2020, 38, e41–e49. [Google Scholar] [CrossRef]
- Su, C.W.; Chien, M.H.; Lin, C.W.; Chen, M.K.; Chow, J.M.; Chuang, C.Y.; Chou, C.H.; Liu, Y.C.; Yang, S.F. Associations of genetic variations of the endothelial nitric oxide synthase gene and environmental carcinogens with oral cancer susceptibility and development. Nitric Oxide 2018, 79, 1–7. [Google Scholar] [CrossRef]
- Steri, M.; Idda, M.L.; Whalen, M.B.; Orrù, V. Genetic variants in mrna untranslated regions. Wiley Interdiscip. Rev. RNA 2018, 9, e1474. [Google Scholar] [CrossRef]
- Hua, K.T.; Liu, Y.F.; Hsu, C.L.; Cheng, T.Y.; Yang, C.Y.; Chang, J.S.; Lee, W.J.; Hsiao, M.; Juan, H.F.; Chien, M.H.; et al. 3′utr polymorphisms of carbonic anhydrase ix determine the mir-34a targeting efficiency and prognosis of hepatocellular carcinoma. Sci. Rep. 2017, 7, 4466. [Google Scholar] [CrossRef] [PubMed]
- Tung, M.C.; Wen, Y.C.; Wang, S.S.; Lin, Y.W.; Chow, J.M.; Yang, S.F.; Chien, M.H. Impact of long non-coding rna hotair genetic variants on the susceptibility and clinicopathologic characteristics of patients with urothelial cell carcinoma. J. Clin. Med. 2019, 8, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.S.; Cho, Y.G.; Park, J.Y.; Kim, C.J.; Lee, J.H.; Kim, H.S.; Lee, J.W.; Song, Y.H.; Park, C.H.; Park, Y.K.; et al. A single nucleotide polymorphism in the e-cadherin gene promoter-160 is not associated with risk of korean gastric cancer. J. Korean Med. Sci. 2003, 18, 501–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.; Kim, I.J.; Kang, H.C.; Park, J.H.; Park, H.R.; Park, H.W.; Park, M.A.; Lee, J.S.; Yoon, K.A.; Ku, J.L.; et al. The e-cadherin -347g->ga promoter polymorphism and its effect on transcriptional regulation. Carcinogenesis 2004, 25, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.W.; Fletcher, S.; Wilton, S.D. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 2012, 69, 3613–3634. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Blagev, D.; Pollack, J.L.; Erle, D.J. Toward a systematic understanding of mrna 3′ untranslated regions. Proc. Am. Thorac. Soc. 2011, 8, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet. 2017, 51, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.P.; Sun, D.; Luan, Z.L.; Dai, X.; Bie, X.; Ming, W.H.; Sun, X.W.; Huo, X.X.; Lu, T.L.; Zhang, D. Association of sox11 polymorphisms in distal 3′utr with susceptibility for schizophrenia. J. Clin. Lab. Anal. 2020, e23306. [Google Scholar] [CrossRef] [Green Version]
- Didiano, D.; Hobert, O. Molecular architecture of a mirna-regulated 3′ utr. RNA 2008, 14, 1297–1317. [Google Scholar] [CrossRef] [Green Version]
- Edge, S.B.; Compton, C.C. The american joint committee on cancer: The 7th edition of the ajcc cancer staging manual and the future of tnm. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Su, S.C.; Hsieh, M.J.; Lin, C.W.; Chuang, C.Y.; Liu, Y.F.; Yeh, C.M.; Yang, S.F. Impact of hotair gene polymorphism and environmental risk on oral cancer. J. Dent. Res. 2018, 97, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Su, S.C.; Hsieh, M.J.; Liu, Y.F.; Chou, Y.E.; Lin, C.W.; Yang, S.F. Adamts14 gene polymorphism and environmental risk in the development of oral cancer. PLoS ONE 2016, 11, e0159585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Controls (n = 1200) | Patients (n = 1196) | p-Value |
---|---|---|---|
Age (yrs) | |||
≦55 | 610 (50.8%) | 609 (50.9%) | p = 0.966 |
>55 | 590 (49.2%) | 587 (49.1%) | |
Betel quid chewing | |||
No | 1001 (83.4%) | 321 (26.8%) | |
Yes | 199 (16.6%) | 875 (73.2%) | p < 0.001 * |
Cigarette smoking | |||
No | 564 (47.0%) | 192 (16.0%) | |
Yes | 636 (53.0%) | 1004 (84.0%) | p < 0.001 * |
Alcohol drinking | |||
No | 963 (80.2%) | 648 (54.2%) | |
Yes | 237 (19.8%) | 548 (45.8%) | p < 0.001 * |
Stage | |||
I + II | 565 (47.2%) | ||
III + IV | 631 (52.8%) | ||
Tumor T status | |||
T1 + T2 | 599 (50.1%) | ||
T3 + T4 | 597 (49.9%) | ||
Lymph node status | |||
N0 | 796 (66.6%) | ||
N1 + N2 + N3 | 400 (33.4%) | ||
Metastasis | |||
M0 | 1186 (99.2%) | ||
M1 | 10 (0.8%) | ||
Cell differentiation | |||
Well differentiated | 170 (14.2%) | ||
Moderately or poorly differentiated | 1026 (85.8%) |
Variable | Controls (n = 1200) (%) | Patients (n = 1196) (%) | OR (95% CI) | AOR (95% CI) b |
---|---|---|---|---|
rs77996007 | ||||
TT | 514 (42.8%) | 470 (39.3%) | 1.000 (reference) | 1.000 (reference) |
TC | 526 (43.8%) | 586 (49.0%) | 1.218 (1.026–1.446) a | 1.076 (0.871–1.328) |
CC | 160 (13.4%) | 140 (11.7%) | 0.957 (0.739–1.240) | 0.923 (0.670–1.271) |
TC + CC | 686 (57.2%) | 726 (60.7%) | 1.157 (0.983–1.362) | 1.042 (0.853–1.272) |
rs66465560 | ||||
TT | 911 (75.9%) | 921 (77.0%) | 1.000 (reference) | 1.000 (reference) |
TC | 271 (22.6%) | 265 (22.2%) | 0.967 (0.798–1.173) | 0.965 (0.762–1.223) |
CC | 18 (1.5%) | 10 (0.8%) | 0.550 (0.252–1.197) | 0.424 (0.163–1.099) |
TC + CC | 289 (24.1%) | 275 (23.0%) | 0.941 (0.779–1.137) | 0.929 (0.736–1.171) |
rs68114586 | ||||
Ins/Ins | 912 (76.0%) | 921 (77.0%) | 1.000 (reference) | 1.000 (reference) |
Ins/Del | 269 (22.4%) | 264 (22.1%) | 0.972 (0.801–1.179) | 0.978 (0.772–1.240) |
Del/Del | 19 (1.6%) | 11 (0.9%) | 0.573 (0.271–1.211) | 0.435 (0.174–1.090) |
Ins/Del or Del/Del | 288 (24.0%) | 275 (23.0%) | 0.946 (0.783–1.142) | 0.939 (0.745–1.184) |
Variable | Controls (n = 636) (%) | Patients (n = 1004) (%) | OR (95% CI) | AOR (95% CI) |
---|---|---|---|---|
rs77996007 | ||||
TT genotype & non-betel nut chewing | 196 (30.8%) | 86 (8.6%) | 1.000 (reference) | 1.000 (reference) |
TC or CC genotype or betel nut chewing | 330 (51.9%) | 406 (40.4%) | 2.804 (2.094–3.755) | 2.623 (1.949–3.530) |
TC or CC genotype with betel nut chewing | 110 (17.3%) | 512 (51.0%) | 10.608 (7.652–14.705) | 9.225 (6.610–12.874) |
rs66465560 | ||||
TT genotype & non-betel nut chewing | 336 (52.8%) | 138 (13.8%) | 1.000 (reference) | 1.000 (reference) |
TC or CC genotype or betel nut chewing | 252 (39.6%) | 678 (67.5%) | 6.551 (5.126–8.372) | 5.872 (4.575–7.535) |
TC or CC genotype with betel nut chewing | 48 (7.6%) | 188 (18.7%) | 9.536 (6.562–13.859) | 8.376 (5.735–12.234) |
rs68114586 | ||||
Ins/Ins genotype & non-betel nut chewing | 338 (53.1%) | 138 (13.8%) | 1.000 (reference) | 1.000 (reference) |
Ins/Del or Del/Del genotype or betel nut chewing | 251 (39.5%) | 677 (67.4%) | 6.606 (5.169–8.443) | 5.934 (4.625–7.613) |
Ins/Del or Del/Del genotype with betel nut chewing | 47 (7.4%) | 189 (18.8%) | 9.849 (6.763–14.343) | 8.653 (5.913–12.664) |
Variable | AOR (95% CI) | p-Value | ||
---|---|---|---|---|
Clinical Stage | ||||
rs77996007 | Stage I + II | Stage III + IV | ||
(n = 565) (%) | (n = 631) (%) | |||
TT | 238 (42.1%) | 232 (36.8%) | 1.00 | |
TC + CC | 327 (57.9%) | 399 (63.2%) | 1.252 (0.991–1.582) | p = 0.060 |
Tumor size | ||||
rs77996007 | ≦T2 | >Τ2 | ||
(n = 599) (%) | (n = 597) (%) | |||
TT | 255 (42.6%) | 215 (36.0%) | 1.00 | |
TC + CC | 344 (57.4%) | 382 (64.0%) | 1.324 (1.047–1.674) | p = 0.019 * |
Lymph node metastasis | ||||
rs77996007 | No | Yes | ||
(n = 796) (%) | (n = 400) (%) | |||
TT | 313 (39.3%) | 157 (39.3%) | 1.00 | |
TC + CC | 483 (60.7%) | 243 (60.7%) | 1.000 (0.780–1.282) | p = 0.999 |
Distant metastasis | ||||
rs77996007 | M0 | M1 | ||
(n = 1034) (%) | (n = 10) (%) | |||
TT | 468 (39.5%) | 2 (20.0%) | 1.00 | |
TC + CC | 718 (60.5%) | 8 (80.0%) | 2.645 (0.555–12.597) | p = 0.222 |
Cell differentiation grade | ||||
rs77996007 | ≦Grade I (n = 170) (%) | >Grade I (n = 1026) (%) | ||
TT | 63 (37.1%) | 407 (39.7%) | 1.00 | |
TC + CC | 107 (62.9%) | 619 (60.3%) | 0.889 (0.634–1.246) | p = 0.494 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-M.; Lin, C.-W.; Lu, H.-J.; Chuang, C.-Y.; Chou, C.-H.; Yang, S.-F.; Chen, M.-K. Impact of SRY-Box Transcription Factor 11 Gene Polymorphisms on Oral Cancer Risk and Clinicopathologic Characteristics. Int. J. Mol. Sci. 2020, 21, 4468. https://doi.org/10.3390/ijms21124468
Yeh C-M, Lin C-W, Lu H-J, Chuang C-Y, Chou C-H, Yang S-F, Chen M-K. Impact of SRY-Box Transcription Factor 11 Gene Polymorphisms on Oral Cancer Risk and Clinicopathologic Characteristics. International Journal of Molecular Sciences. 2020; 21(12):4468. https://doi.org/10.3390/ijms21124468
Chicago/Turabian StyleYeh, Chia-Ming, Chiao-Wen Lin, Hsueh-Ju Lu, Chun-Yi Chuang, Chia-Hsuan Chou, Shun-Fa Yang, and Mu-Kuan Chen. 2020. "Impact of SRY-Box Transcription Factor 11 Gene Polymorphisms on Oral Cancer Risk and Clinicopathologic Characteristics" International Journal of Molecular Sciences 21, no. 12: 4468. https://doi.org/10.3390/ijms21124468
APA StyleYeh, C. -M., Lin, C. -W., Lu, H. -J., Chuang, C. -Y., Chou, C. -H., Yang, S. -F., & Chen, M. -K. (2020). Impact of SRY-Box Transcription Factor 11 Gene Polymorphisms on Oral Cancer Risk and Clinicopathologic Characteristics. International Journal of Molecular Sciences, 21(12), 4468. https://doi.org/10.3390/ijms21124468