Host Epigenetics in Intracellular Pathogen Infections
Abstract
:1. Introduction
2. Mycobacterium Tuberculosis
3. Listeria
4. Chlamydia
5. Mycoplasma
6. Rickettsiae
7. Legionella
8. Yersinia Pestis
9. Epigenetic Modifications as Therapeutic Targets
10. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maekita, T.; Nakazawa, K.; Mihara, M.; Nakajima, T.; Yanaoka, K.; Iguchi, M.; Arii, K.; Kaneda, A.; Tsukamoto, T.; Tatematsu, M.; et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin. Cancer Res. 2006, 12, 989–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drury, J.L.; Chung, W.O. DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges. Pathog. Dis. 2015, 73, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oka, T.; Sato, H.; Ouchida, M.; Utsunomiya, A.; Yoshino, T. Cumulative epigenetic abnormalities in host genes with viral and microbial infection during initiation and progression of malignant lymphoma/leukemia. Cancers 2011, 3, 568–581. [Google Scholar] [CrossRef]
- Rodenhiser, D.; Mann, M. Epigenetics and human disease: Translating basic biology into clinical applications. CMAJ 2006, 174, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Lod, S.; Johansson, T.; Abrahamsson, K.H.; Larsson, L. The influence of epigenetics in relation to oral health. Int. J. Dent. Hyg. 2014, 12, 48–54. [Google Scholar] [CrossRef]
- Barros, S.P.; Offenbacher, S. Modifiable risk factors in periodontal disease: Epigenetic regulation of gene expression in the inflammatory response. Periodontol. 2000 2014, 64, 95–110. [Google Scholar] [CrossRef]
- Yadav, V.; Dwivedi, V.P.; Bhattacharya, D.; Mittal, A.; Moodley, P.; Das, G. Understanding the host epigenetics in Mycobacterium tuberculosis infection. J. Genet. Genome Res. 2015, 2, 016. [Google Scholar] [CrossRef]
- Fatima, S.; Kumari, A.; Das, G.; Dwivedi, V.P. Tuberculosis vaccine: A journey from BCG to present. Life Sci. 2020, 252, 117594. [Google Scholar] [CrossRef]
- Sia, J.K.; Rengarajan, J. Immunology of Mycobacterium tuberculosis Infections. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Pagliano, P.; Arslan, F.; Ascione, T. Epidemiology and treatment of the commonest form of listeriosis: Meningitis and bacteraemia. Infez. Med. 2017, 25, 210–216. [Google Scholar] [PubMed]
- Gitsels, A.; Sanders, N.; Vanrompay, D. Chlamydial infection from outside to inside. Front. Microbiol. 2019, 10, 2329. [Google Scholar] [CrossRef] [PubMed]
- Balish, M.F.; Krause, D.C. Mycoplasmas: A distinct cytoskeleton for wall-less bacteria. J. Mol. Microbiol. Biotechnol. 2006, 11, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Bierne, H. Cross talk between bacteria and the host epigenetic machinery. In Epigenetics of Infectious Diseases. Epigenetics and Human Health; Doerfler, W., Casadesús, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 113–158. [Google Scholar]
- Ehrt, S.; Rhee, K.; Schnappinger, D. Mycobacterial genes essential for the pathogen’s survival in the host. Immunol. Rev. 2015, 264, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Bussi, C.; Gutierrez, M.G. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol. Rev. 2019, 43, 341–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, W.; Wu, F.; Zhang, Y.; Fu, Y.; Liu, Z. The immune sscape mechanisms of Mycobacterium tuberculosis. Int. J. Mol. Sci. 2019, 20, 340. [Google Scholar] [CrossRef] [Green Version]
- Khosla, S.; Sharma, G.; Yaseen, I. Learning epigenetic regulation from mycobacteria. Microb. Cell. 2016, 3, 92–94. [Google Scholar] [CrossRef] [Green Version]
- Yaseen, I.; Kaur, P.; Nandicoori, V.K.; Khosla, S. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat. Commun. 2015, 6, 8922. [Google Scholar] [CrossRef] [Green Version]
- Augsburger, F.; Filippova, A.; Jaquet, V. Methods for detection of NOX-Derived superoxide radical anion and hydrogen peroxide in cells. Methods Mol. Biol. 2019, 1982, 233–241. [Google Scholar]
- Buvelot, H.; Jaquet, V.; Krause, K.-H. Mammalian NADPH oxidases. NADPH Oxidases. Methods. Mol. Biol. 2019, 1982, 17–36. [Google Scholar]
- Xie, X.; Jin, J.; Zhu, L.; Jie, Z.; Li, Y.; Zhao, B.; Cheng, X.; Li, P.; Sun, S.C. Cell type-specific function of TRAF2 and TRAF3 in regulating type I IFN induction. Cell Biosci. 2019, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, W.W.; Zhang, X.; Shi, J.G.; Jiang, S.; Zheng, L.; Qin, Y.; Liu, B.; Shi, J.H. TRAF3 promotes ROS production and pyroptosis by targeting ULK1 ubiquitination in macrophages. FASEB J. 2020, 34, 7144–7159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naime, A.C.A.; Bonfitto, P.H.L.; Solon, C.; Lopes-Pires, M.E.; Anhê, G.F.; Antunes, E.; Marcondes, S. Tumor necrosis factor alpha has a crucial role in increased reactive oxygen species production in platelets of mice injected with lipopolysaccharide. Platelets 2019, 30, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Upadhyay, S.; Srilalitha, M.; Nandicoori, V.K.; Khosla, S. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res. 2015, 43, 3922–3937. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Yadav, V.; Das, G. Host epigenetic modifications in Mycobacteria tuberculosis infection: A boon or bane. In The Value of BCG and TNF in Autoimmunity, 2nd ed.; Faustman, D.I., Ed.; Elsevier Science Publishing Co Inc.: San Diego, CA, USA, 2018; pp. 39–55. [Google Scholar]
- Kathirvel, M.; Mahadevan, S. The role of epigenetics in tuberculosis infection. Epigenomics 2016, 8, 537–549. [Google Scholar] [CrossRef]
- Zheng, L.; Leung, E.T.; Wong, H.K.; Lui, G.; Lee, N.; To, K.F.; Choy, K.W.; Chan, R.C.; Ip, M. Unraveling methylation changes of host macrophages in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2016, 98, 139–148. [Google Scholar] [CrossRef]
- Ip, M.; Zheng, L.; Leung, E.T.; Lee, N.; Lui, G.; To, K.F.; Choy, R.; Wong, K.; Chan, E.W.; Chan, R.C. Human epigenetic alterations in Mycobacterium tuberculosis infection: A novel platform to eavesdrop interactions between M. tuberculosis and host immunity. Hong Kong Med. J. 2015, 21, 31–35. [Google Scholar]
- Pennini, M.E.; Pai, R.K.; Schultz, D.C.; Boom, W.H.; Harding, C.V. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol. 2006, 176, 4323–4330. [Google Scholar] [CrossRef] [Green Version]
- Pai, R.K.; Pennini, M.E.; Tobian, A.A.; Canaday, D.H.; Boom, W.H.; Harding, C.V. Prolonged Toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits γ interferon-induced regulation of selected genes in macrophages. Infect. Immun. 2004, 72, 6603–6614. [Google Scholar] [CrossRef] [Green Version]
- Behrouzi, A.; Hadifar, S.; Amanzadeh, A.; Riazi, F.; Vaziri, F.; Siadat, S.D. Aberrant methylation of host macrophages induced by tuberculosis infection. World J. Microbiol. Biotechnol. 2019, 35, 168. [Google Scholar] [CrossRef]
- Khan, N.; Vidyarthi, A.; Pahari, S.; Agrewala, J.N. Distinct strategies employed by dendritic cells and macrophages in restricting Mycobacterium tuberculosis infection: Different philosophies but same desire. Int. Rev. Immunol. 2016, 35, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, I.; Granucci, F. Dendritic cells and macrophages: Same receptors but different functions. Curr. Immunol. Rev. 2009, 5, 311–325. [Google Scholar] [CrossRef]
- Pacis, A.; Mailhot-Léonard, F.; Tailleux, L.; Randolph, H.E.; Yotova, V.; Dumaine, A.; Grenier, J.C.; Barreiro, L.B. Gene activation precedes DNA demethylation in response to infection in human dendritic cells. Proc. Natl. Acad. Sci. USA 2019, 116, 6938–6943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacis, A.; Tailleux, L.; Morin, A.M.; Lambourne, J.; MacIsaac, J.L.; Yotova, V.; Dumaine, A.; Danckaert, A.; Luca, F.; Grenier, J.C.; et al. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 2015, 25, 1801–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.M.; Hamon, M.A.; Cossart, P. A lasting impression: Epigenetic memory of bacterial infections? Cell Host Microbe 2016, 19, 579–582. [Google Scholar] [CrossRef] [Green Version]
- Schlech, W.F. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Pizarro-Cerdá, J.; Kühbacher, A.; Cossart, P. Entry of Listeria monocytogenes in mammalian epithelial cells: An updated view. Cold Spring Harb Perspect Med. 2012, 2, a010009. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Cresence, V.M.; Rejitha, J.S.; Lekshmi, M.U.; Dharsana, K.S.; Prasad, S.P.; Vijila, H.M. Listeria-review of epidemiology and pathogenesis. J. Microbiol. Immunol. Infect. 2007, 40, 4–13. [Google Scholar]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Weddle, E.; Agaisse, H. Principles of intracellular bacterial pathogen spread from cell to cell. PLoS Pathog. 2018, 14, e1007380. [Google Scholar] [CrossRef] [Green Version]
- Bierne, H.; Cossart, P. When bacteria target the nucleus: The emerging family of nucleomodulins. Cell Microbiol. 2012, 14, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, A.T.; Garelis, N.E.; Peterson, B.N.; Choi, P.H.; Tong, L.; Woodward, J.J.; Portnoy, D.A. c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol. Microbiol. 2017, 104, 212–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inohara, N.; Nuñez, G. NODs: Intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 2003, 3, 371–382. [Google Scholar] [CrossRef]
- Opitz, B.; Püschel, A.; Beermann, W.; Hocke, A.C.; Förster, S.; Schmeck, B.; van Laak, V.; Chakraborty, T.; Suttorp, N.; Hippenstiel, S. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J. Immunol. 2006, 176, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Hamon, M.A.; Batsché, E.; Régnault, B.; Tham, T.N.; Seveau, S.; Muchardt, C.; Cossart, P. Histone modifications induced by a family of bacterial toxins. Proc. Natl. Acad. Sci. USA 2007, 104, 13467–13472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, B.N.; Portnoy, D.A. An inducible Cre-lox system to analyze the role of LLO in Listeria monocytogenes pathogenesis. Toxins 2020, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Zenewicz, L.A.; Shen, H. Innate and adaptive immune responses to Listeria monocytogenes: A short overview. Microbes Infect. 2007, 9, 1208–1215. [Google Scholar] [CrossRef] [Green Version]
- Baltimore, D.; Boldin, M.P.; O’Connell, R.M.; Rao, D.S.; Taganov, K.D. MicroRNAs: New regulators of immune cell development and function. Nat. Immunol. 2008, 9, 839–845. [Google Scholar] [CrossRef]
- Schnitger, A.K.; Machova, A.; Mueller, R.U.; Androulidaki, A.; Schermer, B.; Pasparakis, M.; Krönke, M.; Papadopoulou, N. Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response. PLoS ONE 2011, 6, e27435. [Google Scholar] [CrossRef]
- Tili, E.; Michaille, J.J.; Cimino, A.; Costinean, S.; Dumitru, C.D.; Adair, B.; Fabbri, M.; Alder, H.; Liu, C.G.; Calin, G.A.; et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 2007, 179, 5082–5089. [Google Scholar] [CrossRef]
- Holla, S.; Kurowska-Stolarska, M.; Bayry, J.; Balaji, K.N. Selective inhibition of IFNG-induced autophagy by Mir155- and Mir31-responsive WNT5A and SHH signaling. Autophagy 2014, 10, 311–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, K.H.; Rodolakis, A. Recent advances in the understanding of Chlamydophila pecorum infections, sixteen years after it was named as the fourth species of the Chlamydiaceae family. Vet. Res. 2010, 41, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastidas, R.J.; Elwell, C.A.; Engel, J.N.; Valdivia, R.H. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect. Med. 2013, 3, a010256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, J.H.; Porcella, S.F.; McClarty, G.; Caldwell, H.D. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect. Immun. 2005, 73, 6407–6418. [Google Scholar] [CrossRef] [Green Version]
- Silmon de Monerri, N.C.; Kim, K. Pathogens hijack the epigenome: A new twist on host-pathogen interactions. Am. J. Pathol. 2014, 184, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Cazalet, C.; Rusniok, C.; Brüggemann, H.; Zidane, N.; Magnier, A.; Ma, L.; Tichit, M.; Jarraud, S.; Bouchier, C.; Vandenesch, F.; et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet. 2004, 36, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
- Stephens, R.S.; Kalman, S.; Lammel, C.; Fan, J.; Marathe, R.; Aravind, L.; Mitchell, W.; Olinger, L.; Tatusov, R.L.; Zhao, Q.; et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998, 23, 754–759. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Azuma, Y.; Miura, K.; Rahman, M.A.; Matsutani, M.; Aoyama, M.; Suzuki, H.; Sugi, K.; Shirai, M. Chlamydial SET domain protein functions as a histone methyltransferase. Microbiology 2007, 153, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Soupene, E.; Rothschild, J.; Kuypers, F.A.; Dean, D. Eukaryotic protein recruitment into the Chlamydia inclusion: Implications for survival and growth. PLoS ONE 2012, 7, e36843. [Google Scholar] [CrossRef]
- Mojica, S.A.; Hovis, K.M.; Frieman, M.B.; Tran, B.; Hsia, R.; Ravel, J.; Jenkins-Houk, C.; Wilson, K.L.; Bavoil, P.M. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbours. Mol. Biol. Cell 2015, 15, 1918–1934. [Google Scholar] [CrossRef]
- Razin, S.; Yogev, D.; Naot, Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 1998, 62, 1094–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernov, A.V.; Reyes, L.; Xu, Z.; Gonzalez, B.; Golovko, G.; Peterson, S.; Peruchp, M.; Fofanov, Y.; Strongin, A.Y. Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 2015, 10, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Abdad, M.Y.; Abou Abdallah, R.; Fournier, P.E.; Stenos, J.; Vasoo, S. A concise review of the epidemiology and diagnostics of Rickettsioses: Rickettsia and Orientia spp. J. Clin. Microbiol. 2018, 56, e01728-17. [Google Scholar] [CrossRef] [Green Version]
- Curto, P.; Santa, C.; Allen, P.; Manadas, B.; Simões, I.; Martinez, J.J. A pathogen and a non-pathogen spotted fever group rickettsia trigger differential proteome signatures in macrophages. Front. Cell. Infect. Microbiol. 2019, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkouri, K.; Kowalczewska, M.; Armstrong, N.; Azza, S.; Fournier, P.E.; Raoult, D. Multi-omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp. Front. Microbiol. 2017, 8, 1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, S.P.; Goh, K.C.; Hermanas, T.M.; Cardwell, M.M.; Chan, Y.G.; Martinez, J.J. The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect. Immun. 2010, 78, 1895–1904. [Google Scholar] [CrossRef] [Green Version]
- Vellaiswamy, M.; Kowalczewska, M.; Merhej, V.; Nappez, C.; Vincentelli, R.; Renesto, P.; Raoult, D. Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb. Pathog. 2011, 50, 233–242. [Google Scholar] [CrossRef]
- Renesto, P.; Dehoux, P.; Gouin, E.; Touqui, L.; Cossart, P.; Raoult, D. Identification and characterization of a phospholipase D-superfamily gene in rickettsiae. J. Infect. Dis. 2003, 188, 1276–1283. [Google Scholar] [CrossRef]
- Merhej, V.; Raoult, D. Rickettsial evolution in the light of comparative genomics. Biol. Rev. Camb. Philos. Soc. 2011, 86, 379–405. [Google Scholar] [CrossRef]
- Speck, S.; Kern, T.; Aistleitner, K.; Dilcher, M.; Dobler, G.; Essbauer, S. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines. PLoS Negl. Trop. Dis. 2018, 12, e0006151. [Google Scholar] [CrossRef]
- Walker, D.H.; Yu, X.J. Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann. N. Y. Acad. Sci. 2005, 1063, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Ireton, K. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens. Open Biol. 2013, 3, 130079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, S.C.O.; Lamason, R.L.; Risca, V.I.; Abernathy, E.; Welch, M.D. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr. Biol. 2014, 24, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggs, H.M.; Behravesh, C.B.; Bradley, K.K.; Dahlgren, F.S.; Drexler, N.A.; Dumler, J.S.; Folk, S.M.; Kato, C.Y.; Lash, R.R.; Levin, M.L.; et al. Diagnosis and management of tickborne rickettsial diseases: Rocky mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis - United States. MMWR Recomm. Rep. 2016, 65, 1–44. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.C.; Barat, N.C.; Trembley, S.J.; Dumler, J.S. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog. 2009, 5, e1000488. [Google Scholar] [CrossRef]
- Grabiec, A.M.; Potempa, J. Epigenetic regulation in bacterial infections: Targeting histone deacetylases. Crit. Rev. Microbiol. 2018, 44, 336–350. [Google Scholar] [CrossRef] [Green Version]
- Holla, S.; Balaji, K.N. Epigenetics and miRNA during bacteria-induced host immune responses. Epigenomics 2015, 7, 1197–1212. [Google Scholar] [CrossRef]
- Curto, P.; Riley, S.P.; Simões, I.; Martinez, J.J. Macrophages infected by a pathogen and a non-pathogen spotted fever group rickettsia reveal differential reprogramming signatures early in infection. Front. Cell. Infect. Microbiol. 2019, 9, 97. [Google Scholar] [CrossRef]
- Asrat, S.; Davis, K.M.; Isberg, R.R. Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cell Microbiol. 2015, 17, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Ray, J.P.; de Boer, C.G.; Fulco, C.P.; Lareau, C.A.; Kanai, M.; Ulirsch, J.C.; Tewhey, R.; Ludwig, L.S.; Reilly, S.K.; Bergman, D.T.; et al. Prioritizing disease and trait causal variants at the TNFAIP3 locus using functional and genomic features. Nat. Commun. 2020, 11, 1237. [Google Scholar] [CrossRef]
- Onitsuka, M.; Kinoshita, Y.; Nishizawa, A.; Tsutsui, T.; Omasa, T. Enhanced IgG1 production by overexpression of nuclear factor kappa B inhibitor zeta (NFKBIZ) in Chinese hamster ovary cells. Cytotechnology 2018, 70, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Luckey, M.A.; Kim, T.H.; Prakhar, P.; Keller, H.R.; Crossman, A.; Choi, S.; Love, P.E.; Walsh, S.T.R.; Park, J.H. SOCS3 is a suppressor of γc cytokine signaling and constrains generation of murine Foxp3+ regulatory T cells. Eur. J. Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tindall, E.A.; Hayes, V.M. Comprehensive sequence analysis of the human IL23A gene defines new variation content and high rate of evolutionary conservation. DNA Res. 2010, 17, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Hermanns, H.M. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev. 2015, 26, 545–558. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Cairo, L.V.; Compston, C.A.; Phan, W.L.; Mueller, T.F. Oncostatin M pathway plays a major role in the renal acute phase response. Am. J. Physiol. Renal. Physiol. 2009, 296, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Richards, C.D.; Botelho, F. Oncostatin M in the regulation of connective tissue cells and macrophages in pulmonary disease. Biomedicines 2019, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012, 15, 813–826. [Google Scholar] [CrossRef] [Green Version]
- Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity 2013, 38, 633–643. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, L.A.; Pearce, E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 2016, 213, 15–23. [Google Scholar] [CrossRef]
- Shehata, H.M.; Murphy, A.J.; Lee, M.K.S.; Gardiner, C.M.; Crowe, S.M.; Sanjabi, S.; Finlay, D.K.; Palmer, C.S. Sugar or fat? Metabolic requirements for immunity to viral infections. Front Immunol. 2017, 8, 1311. [Google Scholar] [CrossRef] [Green Version]
- Sikora, A.; Wójtowicz-Bobin, M.; Kozioł-Montewka, M.; Magryś, A.; Gładysz, I. Prevalence of Legionella pneumophila in waterdistribution systems in hospitals and publicbuildings of the Lublin region of eastern Poland. Ann. Agric. Enviro. Med. 2015, 22, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, R.F.; Butler, J.C. Legionnaires’disease: Clinical, epidemiological, and public health perspectives. Semin. Respir. Infect. 1998, 13, 84–89. [Google Scholar] [PubMed]
- Nishida, T.; Nakagawa, N.; Watanabe, K.; Shimizu, T.; Watarai, M. Attenuated Legionella pneumophila survives for a long period in an environmental water site. Bio. Med. Res. Int. 2019, 2019, 8601346. [Google Scholar] [CrossRef] [Green Version]
- Hubber, A.; Roy, C.R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell. Dev. Biol. 2010, 26, 261–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolando, M.; Buchrieser, C. Post-translational modifications of host proteins by Legionella pneumophila: A sophisticated survival strategy. Future Microbiol. 2012, 7, 369–381. [Google Scholar] [CrossRef]
- Kubori, T.; Hyakutake, A.; Nagai, H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 2008, 67, 1307–1319. [Google Scholar] [CrossRef]
- Kubori, T.; Shinzawa, N.; Kanuka, H.; Nagai, H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog. 2010, 6, e1001216. [Google Scholar] [CrossRef] [Green Version]
- Lomma, M.; DervinsRavault, D.; Rolando, M.; Nora, T.; Newton, H.J.; Sansom, F.M.; Sahr, T.; GomezValero, L.; Jules, M.; Hartland, E.L.; et al. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell. Microbiol. 2010, 12, 1272–1291. [Google Scholar] [CrossRef]
- Ensminger, A.W.; Isberg, R.R. E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect. Immun. 2010, 78, 3905–3919. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Xu, H.; Li, T.; Zhou, Y.; Zhang, Z.; Li, S.; Liu, L.; Shao, F.A. Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc. Natl. Acad. Sci. USA 2009, 106, 3725–3730. [Google Scholar] [CrossRef] [Green Version]
- Hervet, E.; Charpentier, X.; Vianney, A.; Lazzaroni, J.C.; Gilbert, C.; Atlan, D.; Doublet, P. Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect. Immun. 2011, 79, 1936–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateyak, M.K.; Kinzy, T.G. eEF1A: Thinking outside the ribosome. J. Biol. Chem. 2010, 285, 21209–21213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidtman, M.; Chen, E.J.; Moy, M.Y.; Isberg, R.R. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol. 2009, 11, 230–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribet, D.; Cossart, P. Pathogen-mediated posttranslational modifications: A re-emerging field. Cell 2010, 143, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.P.; Peters, H.; Blümer, J.; Blankenfeldt, W.; Goody, R.S.; Itzen, A. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 2010, 329, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Kagan, J.C.; Stein, M.P.; Pypaert, M.; Roy, C.R. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J. Exp. Med. 2004, 199, 1201–1211. [Google Scholar] [CrossRef] [Green Version]
- Derré, I.; Isberg, R.R. Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect. Immun. 2004, 72, 3048–3053. [Google Scholar] [CrossRef] [Green Version]
- Goody, P.R.; Heller, K.; Oesterlin, L.K.; Müller, M.P.; Itzen, A.; Goody, R.S. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 2012, 31, 1774–1784. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Arnold, R.J.; Luo, Z.Q. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc. Natl. Acad. Sci. USA 2011, 108, 21212–21217. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.; Tam, C.; Elli, D.; Charlton, T.; Osei-Owusu, P.; Fazlollahi, F.; Faull, K.; Schneewind, O. Glutathionylation of Yersinia pestis LcrV and its effects on plague pathogenesis. mBio 2017, 8, e00646-17. [Google Scholar] [CrossRef] [Green Version]
- Marketon, M.M.; DePaolo, R.W.; DeBord, K.L.; Jabri, B.; Schneewind, O. Plague bacteria target immune cells during infection. Science 2005, 309, 1739–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, V.T.; Tam, C.; Schneewind, O. LcrV, a substrate for Yersinia enterocolitica type III secretion, is required for toxin targeting into the cytosol of HeLa cells. J. Biol. Chem. 2000, 275, 36869–36875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, M.W.; Marre, M.L.; Lesser, C.F.; Mecsas, J. The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect. Immun. 2010, 78, 2584–2598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, C.; Vacratsis, P.O.; Bliska, J.B.; Dixon, J.E. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 2003, 278, 18514–18523. [Google Scholar] [CrossRef] [Green Version]
- Soundararajan, V.; Patel, N.; Subramanian, V.; Sasisekharan, V.; Sasisekharan, R. The many faces of the YopM effector from plague causative bacterium Yersinia pestis and its implications for host immune modulation. Innate Immun. 2011, 17, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Berneking, L.; Schnapp, M.; Rumm, A.; Trasak, C.; Ruckdeschel, K.; Alawi, M.; Grundhoff, A.; Kikhney, A.G.; Koch-Nolte, F.; Buck, F.; et al. Immunosuppressive Yersinia effector YopM binds DEAD box helicase DDX3 to control ribosomal S6 kinase in the nucleus of host cells. PLoS Pathog. 2016, 14, e1005660. [Google Scholar] [CrossRef]
- Margolis, D.M. Histone deacetylase inhibitors and HIV latency. Curr. Opin. HIV AIDS 2011, 6, 25–29. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.L.; Wang, C.F.; Su, B.Q.; Wu, H.T.; Zeng, L.; Han, Y.Q.; Liu, Z.; Jiang, D.W.; Du, Y.K.; et al. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog. 2020, 16, e1008429. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.C.; Morris, P.; Dickman, M.J.; Dockrell, D.H. The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol. Ther. 2016, 167, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Rusek, P.; Wala, M.; Druszczyńska, M.; Fol, M. Infectious agents as stimuli of trained innate immunity. Int. J. Mol. Sci. 2018, 19, 456. [Google Scholar] [CrossRef] [Green Version]
- Włodarczyk, M.; Druszczyńska, M.; Fol, M. Trained innate immunity not always amicable. Int. J. Mol. Sci. 2019, 20, 2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacterial Factor | Mechanism | ||
---|---|---|---|
Mycobacterium tuberculosis [19,25,30,31,32] | |||
Tuberculosis | |||
Rv1988 | methyltransferase | dimethylation of H3 (H3R42me2) | |
Rv2966c | secretory protein | non-CpG methylation, methylation of H3 and H4 | |
Rv3763 | lipoprotein | acetylation of histones H3 and H4, methylation of Traf6 gene, hypomethylation of Irak-2 gene | |
Listeria monocytogenes [41,43,44,45,46,47,48] | |||
Listeriosis | |||
LntA | Listeria nuclear targeted protein A | activation of BAHD1 | |
c-di-AMP | cyclic small dinucleotide | activation of STING | |
PG | peptidoglycan | Nod-dependent activation of NF-κB, p38 MAPK phosphorylation | |
LLO | listeriolysin O | Induction of MAPK, dephosphorylation of H3, deacetylation of H4 | |
Chlamydia spp. [58,59,60,62] | |||
Sexually transmitted diseases, ocular infections and atypical pneumonia | |||
C. trachomatis | NUE | SET-containing protein, methyltransferase | methylation of lysine in the amino-terminal tail of histones, methylation of H2B, H3 and H4 |
cpnSET | methyltransferase | methylation of H3 and H4 and chlamydial histone H1-like proteins Hc1 and Hc2 | |
C. psittaci | SinC | secretory protein | binding DNA and chromatin factors |
Mycoplasma hyorhinis [64] | |||
Pneumonia, mild infections of respiratory system | |||
Mhy | DNA methyltransferase | methylation of CG-dinucleotides | |
Rickettsiae [37,66,78,79,91,92] | |||
Spotted fever, typhus fever rickettsioses | |||
R. conorii R. montanensis | post-translational histone modifications, methylation of CpG dinucleotides in chromosomal DNA, modulation of host metabolic processes, accumulation of proteins involved in the electron transport chain, modulation of lipid metabolic processes | ||
Legionella pneumonia [97,98,100,102,103,104,105,107,108,109,110,111] | |||
Atypical pneumonia (Legionnaires’ disease) | |||
LubX | ligase Cdc2-like kinase 1, degradation SidH | ||
AnkB | F-box-containing protein | promotion of bacterial intracellular replication | |
AnkB | F-box-containing protein | modulation of the ubiquitination of ParvB | |
LegK1 | kinase | activation of NF-κβ | |
LegK2 | kinase | phosphorylation of MBP | |
Lgt1, Lgt2, Lgt3 | glycosyltransferases | Inhibition of the eukaryotic protein translation process | |
DrrA/SidM | modulation of adenylylation of Rab1b | ||
SidD | modulation of deadenylylation of Rab1 | ||
AnkX, Lem3 | modification of Rab1 and Rab35 GTPases | ||
Yersinia pestis [114,115,116,117,118] Plague | |||
Yops | Yersinia effector proteins | formation of a complex between two RSK1 and PRK2 | |
binding DDX3 and controlling RSK1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fol, M.; Włodarczyk, M.; Druszczyńska, M. Host Epigenetics in Intracellular Pathogen Infections. Int. J. Mol. Sci. 2020, 21, 4573. https://doi.org/10.3390/ijms21134573
Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. International Journal of Molecular Sciences. 2020; 21(13):4573. https://doi.org/10.3390/ijms21134573
Chicago/Turabian StyleFol, Marek, Marcin Włodarczyk, and Magdalena Druszczyńska. 2020. "Host Epigenetics in Intracellular Pathogen Infections" International Journal of Molecular Sciences 21, no. 13: 4573. https://doi.org/10.3390/ijms21134573
APA StyleFol, M., Włodarczyk, M., & Druszczyńska, M. (2020). Host Epigenetics in Intracellular Pathogen Infections. International Journal of Molecular Sciences, 21(13), 4573. https://doi.org/10.3390/ijms21134573