Special Issue on “The Tight Junction and Its Proteins: More than Just a Barrier”
Abstract
:1. Introduction
2. Tight Junction Barriers and Structures
2.1. Pathogens Affecting the TJ and Regulation via Immune Cells
2.2. The TJ and Its Regulators as Therapeutic Targets
2.3. Molecular Structure of TJ Networks and Proteins
3. Tight Junctions as Regulators of Cellular Processes
3.1. TJ and Cell Polarity
3.2. TJ and Cell Proliferation
3.3. Regulatory Functions of Tricellular TJ Proteins
4. Organ- and Tissue-Specific Functions
4.1. Sensory Organs
4.2. Barriers of the Brain and Nerves
4.3. Gastrointestinal Organs
4.4. The Kidney
5. Tight Junctions Sense and React to Environmental Conditions
6. TJ Proteins and Cancer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AQP | Aquaporin |
CPE | Clostridium perfringens enterotoxin |
KD | Knock-down |
KO | Knock-out |
SGLT | Sodium-glucose-linked transporter |
TAMP | Tight junction-associated MARVEL protein |
TER | Transepithelial resistance |
TJ | Tight junction |
bTJ | Bicellular tight junction |
tTJ | Tricellular tight junction |
TM | Transmembrane |
TNF-α | Tumor necrosis factor-α |
References
- Hering, N.A.; Fromm, A.; Bucker, R.; Gorkiewicz, G.; Zechner, E.; Hogenauer, C.; Fromm, M.; Schulzke, J.D.; Troeger, H. Tilivalline- and tilimycin-independent effects of klebsiella oxytoca on tight junction-mediated intestinal barrier impairment. Int. J. Mol. Sci. 2019, 20, 5595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beier, L.S.; Rossa, J.; Woodhouse, S.; Bergmann, S.; Kramer, H.B.; Protze, J.; Eichner, M.; Piontek, A.; Vidal, Y.S.S.; Brandner, J.M.; et al. Use of modified clostridium perfringens enterotoxin fragments for claudin targeting in liver and skin cells. Int. J. Mol. Sci. 2019, 20, 4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, Y.; Tachibana, K.; Krug, S.M.; Kunisawa, J.; Fromm, M.; Kondoh, M. Potential for tight junction protein-directed drug development using claudin binders and angubindin-1. Int. J. Mol. Sci. 2019, 20, 4016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, H.; Braubach, P.; Schilpp, C.; Lochbaum, R.; Neuland, K.; Thompson, K.; Jonigk, D.; Frick, M.; Dietl, P.; Wittekindt, O.H. Il-13 impairs tight junctions in airway epithelia. Int. J. Mol. Sci. 2019, 20, 3222. [Google Scholar] [CrossRef] [Green Version]
- Brewer, M.G.; Yoshida, T.; Kuo, F.I.; Fridy, S.; Beck, L.A.; De Benedetto, A. Antagonistic effects of il-4 on il-17a-mediated enhancement of epidermal tight junction function. Int. J. Mol. Sci. 2019, 20, 4070. [Google Scholar] [CrossRef] [Green Version]
- Delbue, D.; Cardoso-Silva, D.; Branchi, F.; Itzlinger, A.; Letizia, M.; Siegmund, B.; Schumann, M. Celiac disease monocytes induce a barrier defect in intestinal epithelial cells. Int. J. Mol. Sci. 2019, 20, 5597. [Google Scholar] [CrossRef] [Green Version]
- He, W.-Q.; Wang, J.; Sheng, J.-Y.; Zha, J.-M.; Graham, W.V.; Turner, J.R. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int. J. Mol. Sci. 2020, 21, 993. [Google Scholar] [CrossRef] [Green Version]
- Gamero-Estevez, E.; Andonian, S.; Jean-Claude, B.; Gupta, I.; Ryan, A.K. Temporal effects of quercetin on tight junction barrier properties and claudin expression and localization in mdck ii cells. Int. J. Mol. Sci. 2019, 20, 4889. [Google Scholar] [CrossRef] [Green Version]
- Lobo de Sa, F.D.; Butkevych, E.; Nattramilarasu, P.K.; Fromm, A.; Mousavi, S.; Moos, V.; Golz, J.C.; Stingl, K.; Kittler, S.; Seinige, D.; et al. Curcumin mitigates immune-induced epithelial barrier dysfunction by campylobacter jejuni. Int. J. Mol. Sci. 2019, 20, 4830. [Google Scholar] [CrossRef] [Green Version]
- Radloff, J.; Cornelius, V.; Markov, A.G.; Amasheh, S. Caprate modulates intestinal barrier function in porcine peyer’s patch follicle-associated epithelium. Int. J. Mol. Sci. 2019, 20, 1418. [Google Scholar] [CrossRef] [Green Version]
- Gonschior, H.; Haucke, V.; Lehmann, M. Super-resolution imaging of tight and adherens junctions: Challenges and open questions. Int. J. Mol. Sci. 2020, 21, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostrewa, D.; Brockhaus, M.; D’Arcy, A.; Dale, G.E.; Nelboeck, P.; Schmid, G.; Mueller, F.; Bazzoni, G.; Dejana, E.; Bartfai, T.; et al. X-ray structure of junctional adhesion molecule: Structural basis for homophilic adhesion via a novel dimerization motif. Embo J. 2001, 20, 4391–4398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Fanning, A.S.; Anderson, J.M.; Lavie, A. Structure of the conserved cytoplasmic c-terminal domain of occludin: Identification of the zo-1 binding surface. J. Mol. Biol. 2005, 352, 151–164. [Google Scholar] [CrossRef]
- Suzuki, H.; Nishizawa, T.; Tani, K.; Yamazaki, Y.; Tamura, A.; Ishitani, R.; Dohmae, N.; Tsukita, S.; Nureki, O.; Fujiyoshi, Y. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 2014, 344, 304–307. [Google Scholar] [CrossRef]
- Heinemann, U.; Schuetz, A. Structural features of tight-junction proteins. Int. J. Mol. Sci. 2019, 20, 6020. [Google Scholar] [CrossRef] [Green Version]
- Fuladi, S.; Jannat, R.-W.; Shen, L.; Weber, C.R.; Khalili-Araghi, F. Computational modeling of claudin structure and function. Int. J. Mol. Sci. 2020, 21, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajagopal, N.; Irudayanathan, F.J.; Nangia, S. Computational nanoscopy of tight junctions at the blood-brain barrier interface. Int. J. Mol. Sci. 2019, 20, 5583. [Google Scholar] [CrossRef] [Green Version]
- Stremmel, W.; Staffer, S.; Weiskirchen, R. Phosphatidylcholine passes by paracellular transport to the apical side of the polarized biliary tumor cell line mz-cha-1. Int. J. Mol. Sci. 2019, 20, 4034. [Google Scholar] [CrossRef] [Green Version]
- Tsukita, K.; Yano, T.; Tamura, A.; Tsukita, S. Reciprocal association between the apical junctional complex and ampk: A promising therapeutic target for epithelial/endothelial barrier function? Int. J. Mol. Sci. 2019, 20, 6012. [Google Scholar] [CrossRef] [Green Version]
- Tapia, R.; Kralicek, S.E.; Hecht, G.A. Enteropathogenic escherichia coli (epec) recruitment of par polarity protein atypical pkcζ to pedestals and cell–cell contacts precedes disruption of tight junctions in intestinal epithelial cells. Int. J. Mol. Sci. 2020, 21, 527. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Coránguez, M.; Liu, X.; Antonetti, D.A. Tight junctions in cell proliferation. Int. J. Mol. Sci. 2019, 20, 5972. [Google Scholar] [CrossRef] [Green Version]
- González-Mariscal, L.; Gallego-Gutiérrez, H.; González-González, L.; Hernández-Guzmán, C. Zo-2 is a master regulator of gene expression, cell proliferation, cytoarchitecture, and cell size. Int. J. Mol. Sci. 2019, 20, 4128. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Torres, C.; Krug, S.M.; Schulzke, J.D.; Rosenthal, R.; Fromm, M. Tricellulin effect on paracellular water transport. Int. J. Mol. Sci. 2019, 20, 5700. [Google Scholar] [CrossRef] [Green Version]
- Janke, S.; Mittag, S.; Reiche, J.; Huber, O. Apoptotic fragmentation of tricellulin. Int. J. Mol. Sci. 2019, 20, 4882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohno, T.; Konno, T.; Kojima, T. Role of tricellular tight junction protein lipolysis-stimulated lipoprotein receptor (lsr) in cancer cells. Int. J. Mol. Sci. 2019, 20, 3555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seker, M.; Fernández-Rodríguez, C.; Martínez-Cruz, L.A.; Müller, D. Mouse models of human claudin-associated disorders: Benefits and limitations. Int. J. Mol. Sci. 2019, 20, 5504. [Google Scholar] [CrossRef] [Green Version]
- Søfteland, J.M.; Casselbrant, A.; Biglarnia, A.-R.; Linders, J.; Hellström, M.; Pesce, A.; Padma, A.M.; Jiga, L.P.; Hoinoiu, B.; Ionac, M.; et al. Intestinal preservation injury: A comparison between rat, porcine and human intestines. Int. J. Mol. Sci. 2019, 20, 3135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitano, T.; Kitajiri, S.-i.; Nishio, S.-y.; Usami, S.-i. Detailed clinical features of deafness caused by a claudin-14 variant. Int. J. Mol. Sci. 2019, 20, 4579. [Google Scholar] [CrossRef] [Green Version]
- Naylor, A.; Hopkins, A.; Hudson, N.; Campbell, M. Tight junctions of the outer blood retina barrier. Int. J. Mol. Sci. 2019, 21, 211. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Li, Y.; Polster, S.P.; Weber, C.R.; Awad, I.A.; Shen, L. Cerebral cavernous malformation proteins in barrier maintenance and regulation. Int. J. Mol. Sci. 2020, 21, 675. [Google Scholar] [CrossRef] [Green Version]
- Castro Dias, M.; Mapunda, J.A.; Vladymyrov, M.; Engelhardt, B. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int. J. Mol. Sci. 2019, 20, 5372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lux, T.J.; Hu, X.; Ben-Kraiem, A.; Blum, R.; Chen, J.T.-C.; Rittner, H.L. Regional differences in tight junction protein expression in the blood–drg barrier and their alterations after nerve traumatic injury in rats. Int. J. Mol. Sci. 2019, 21, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roehlen, N.; Roca Suarez, A.A.; El Saghire, H.; Saviano, A.; Schuster, C.; Lupberger, J.; Baumert, T.F. Tight junction proteins and the biology of hepatobiliary disease. Int. J. Mol. Sci. 2020, 21, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slifer, Z.M.; Blikslager, A.T. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int. J. Mol. Sci. 2020, 21, 972. [Google Scholar] [CrossRef] [Green Version]
- Leiz, J.; Schmidt-Ott, K.M. Claudins in the renal collecting duct. Int. J. Mol. Sci. 2019, 21, 221. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Tatum, R.; Hoggard, J.; Chen, Y.-H. Claudin-7 modulates cl− and na+ homeostasis and wnk4 expression in renal collecting duct cells. Int. J. Mol. Sci. 2019, 20, 3798. [Google Scholar] [CrossRef] [Green Version]
- Ziemens, A.; Sonntag, S.R.; Wulfmeyer, V.C.; Edemir, B.; Bleich, M.; Himmerkus, N. Claudin 19 is regulated by extracellular osmolality in rat kidney inner medullary collecting duct cells. Int. J. Mol. Sci. 2019, 20, 4401. [Google Scholar] [CrossRef] [Green Version]
- Plain, A.; Pan, W.; O’Neill, D.; Ure, M.; Beggs, M.R.; Farhan, M.; Dimke, H.; Cordat, E.; Alexander, R.T. Claudin-12 knockout mice demonstrate reduced proximal tubule calcium permeability. Int. J. Mol. Sci. 2020, 21, 2074. [Google Scholar] [CrossRef] [Green Version]
- Milatz, S. A novel claudinopathy based on claudin-10 mutations. Int. J. Mol. Sci. 2019, 20, 5396. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, S.; Anwer, S.; Szászi, K. Claudin-2: Roles beyond permeability functions. Int. J. Mol. Sci. 2019, 20, 5655. [Google Scholar] [CrossRef] [Green Version]
- Marunaka, K.; Kobayashi, M.; Shu, S.; Matsunaga, T.; Ikari, A. Brazilian green propolis rescues oxidative stress-induced mislocalization of claudin-1 in human keratinocyte-derived hacat cells. Int. J. Mol. Sci. 2019, 20, 3869. [Google Scholar] [CrossRef] [Green Version]
- Tipsmark, C.K.; Nielsen, A.M.; Bossus, M.C.; Ellis, L.V.; Baun, C.; Andersen, T.L.; Dreier, J.; Brewer, J.R.; Madsen, S.S. Drinking and water handling in the medaka intestine: A possible role of claudin-15 in paracellular absorption? Int. J. Mol. Sci. 2020, 21, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuda, S.; Yu, A.S.L. Regulation of epithelial cell functions by the osmolality and hydrostatic pressure gradients: A possible role of the tight junction as a sensor. Int. J. Mol. Sci. 2019, 20, 3513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costea, L.; Meszaros, A.; Bauer, H.; Bauer, H.C.; Traweger, A.; Wilhelm, I.; Farkas, A.E.; Krizbai, I.A. The blood-brain barrier and its intercellular junctions in age-related brain disorders. Int. J. Mol. Sci. 2019, 20, 5472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowrikumar, S.; Singh, A.B.; Dhawan, P. Role of claudin proteins in regulating cancer stem cells and chemoresistance-potential implication in disease prognosis and therapy. Int. J. Mol. Sci. 2019, 21, 53. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.A.; Syed, N.; Therachiyil, L.; Nisar, S.; Hashem, S.; Macha, M.A.; Yadav, S.K.; Krishnankutty, R.; Muralitharan, S.; Al-Naemi, H.; et al. Claudin-1, a double-edged sword in cancer. Int. J. Mol. Sci. 2020, 21, 569. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krug, S.M.; Fromm, M. Special Issue on “The Tight Junction and Its Proteins: More than Just a Barrier”. Int. J. Mol. Sci. 2020, 21, 4612. https://doi.org/10.3390/ijms21134612
Krug SM, Fromm M. Special Issue on “The Tight Junction and Its Proteins: More than Just a Barrier”. International Journal of Molecular Sciences. 2020; 21(13):4612. https://doi.org/10.3390/ijms21134612
Chicago/Turabian StyleKrug, Susanne M., and Michael Fromm. 2020. "Special Issue on “The Tight Junction and Its Proteins: More than Just a Barrier”" International Journal of Molecular Sciences 21, no. 13: 4612. https://doi.org/10.3390/ijms21134612
APA StyleKrug, S. M., & Fromm, M. (2020). Special Issue on “The Tight Junction and Its Proteins: More than Just a Barrier”. International Journal of Molecular Sciences, 21(13), 4612. https://doi.org/10.3390/ijms21134612