Go with the Flow—Trophoblasts in Flow Culture
Abstract
:1. Hemochorial Placentation and Fluid Shear Stress
2. Flow Culture Approaches in Trophoblast Research
3. The Influence of Fluid Shear Stress on Trophoblast Turnover and Differentiation
4. The Influence of Fluid Shear Stress on Trophoblast Metabolism
5. The Influence of Fluid Shear Stress on Trophoblast Endocrine Activity
6. The Influence of Fluid Shear Stress on Trophoblast Motility
7. Outlook—Future Directions
- (1)
- Reservoir
- -
- a single reservoir intercalated in a circulating flow system
- -
- a single reservoir with fresh medium and a tank for consumed medium
- -
- additional reservoirs with buffer between pump and chamber to damp flow
- (2)
- Pump
- -
- Peristaltic pump for circulating flow loop systems
- -
- Syringe pump or electropneumatic pump for one-time inlet-to-outlet flow systems
- -
- Rotating wall vessel bioreactor (rotation is responsible for distribution of medium)
- (3)
- Chamber
- -
- Commercial flow chamber (laminar or turbulent)
- -
- Customized Chamber (laminar or turbulent)
- -
- Chambers created with 3D printers (suitable for sterilization)
- (4)
- Tubings
- -
- Size is related to flow rate
- (5)
- Culture medium
- -
- Serum-free (lower viscosity)
- -
- With serum (higher viscosity)
- (6)
- Microscope
- -
- continuous microscopic recording of cultivated cells
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
11β-HSDs | 11β-hydroxysteroid dehydrogenase enzymes |
2-NBDG | 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose |
ANGPTL4 | Angiopoietin-like 4 |
cAMP | Cyclic adenosine monophosphate |
CREB | Activated cAMP response element binding protein |
CTBs | Cytotrophoblasts |
CYP1B1 | Cytochrome P450 1B1 |
ERM | Ezrin-Radixin-Moesin |
ERVFRD-1 | Syncytin-2 |
ERVW-1 | Syncytin-1 |
EVTs | Extravillous trophoblasts |
GCM1 | Transcription factor glial cell missing 1 |
GD | Gestational day |
GLUT1 | Glucose transporter 1 |
HBMECs | Human brain microvascular endothelial cells |
hCG | Human chorionic gonadotropin |
HPVECs | Human primary placental villous endothelial cells |
HUVECs | Human umbilical vein endothelial cells |
HVTs | Human villous trophoblasts |
IVS | Intervillous space |
PGF | Placental growth factor |
PLIN2 | Perilipin 2 |
PPAR | Peroxisome proliferator-activated receptor |
rTSCs | Rabbit trophoblastic stem cells |
RWV | Rotating wall vessel |
sFlt-1 | Soluble fms-like tyrosin kinase-1 |
STB | Syncytiotrophoblast |
UtMVECs | Uterine microvascular endothelial cells |
References
- Moser, G.; Weiss, G.; Sundl, M.; Gauster, M.; Siwetz, M.; Lang-Olip, I.; Huppertz, B. Extravillous trophoblasts invade more than uterine arteries: Evidence for the invasion of uterine veins. Histochem. Cell Biol. 2017, 147, 353–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, G.; Weiss, G.; Gauster, M.; Sundl, M.; Huppertz, B. Evidence from the very beginning: Endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro. Hum. Reprod. 2015, 30, 2747–2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windsperger, K.; Dekan, S.; Pils, S.; Golletz, C.; Kunihs, V.; Fiala, C.; Kristiansen, G.; Knöfler, M.; Pollheimer, J. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum. Reprod. 2017, 32, 1208–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, V.H.J.; Morgan, T.K.; Bednarek, P.; Morita, M.; Burton, G.J.; Lo, J.O.; Frias, A.E. Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: New insights from contrast-enhanced ultrasound and tissue histopathology. Hum. Reprod. 2017, 32, 2382–2393. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Woods, A.W.; Jauniaux, E.; Kingdom, J.C.P. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009, 30, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wareing, M. Effects of oxygenation and luminal flow on human placenta chorionic plate blood vessel function. J. Obstet. Gynaecol. Res. 2012, 38, 185–191. [Google Scholar] [CrossRef]
- Morley, L.C.; Beech, D.J.; Walker, J.J.; Simpson, N.A.B. Emerging concepts of shear stress in placental development and function. Mol. Hum. Reprod. 2019, 25, 329–339. [Google Scholar] [CrossRef]
- Chatterjee, S. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Front. Physiol. 2018, 9, 524. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, F.; Zhong, W.; Puscheck, E.; Shen, H.; Rappolee, D.A. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol. Reprod. 2006, 75, 45–55. [Google Scholar] [CrossRef]
- Pirt, S.J. Studies on cells in culture. Continuous-flow culture of mammalian cells. Proc. R. Soc. Med. 1963, 56, 1061–1062. [Google Scholar]
- Yen, E.H.; Melcher, A.H. A continuous-flow culture system for organ culture of large explants of adult tissue: Effect of oxygen tension on mouse molar periodontium. In Vitro 1978, 14, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Huber, D.; Oskooei, A.; Casadevall I Solvas, X.; Demello, A.; Kaigala, G.V. Hydrodynamics in Cell Studies. Chem. Rev. 2018, 118, 2042–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, E.W.K.; Beebe, D.J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 2010, 39, 1036–1048. [Google Scholar] [CrossRef] [PubMed]
- James, J.L.; Cartwright, J.E.; Whitley, G.S.; Greenhill, D.R.; Hoppe, A. The regulation of trophoblast migration across endothelial cells by low shear stress: Consequences for vascular remodelling in pregnancy. Cardiovasc. Res. 2012, 93, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Lanz, C.-B.; Causevic, M.; Heiniger, C.; Frey, F.J.; Frey, B.M.; Mohaupt, M.G. Fluid Shear Stress Reduces 11ss-Hydroxysteroid Dehydrogenase Type 2. Hypertension 2001, 37, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Miura, S.; Sato, K.; Kato-Negishi, M.; Teshima, T.; Takeuchi, S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat. Commun. 2015, 6, 8871. [Google Scholar] [CrossRef] [Green Version]
- Sanz, G.; Daniel, N.; Aubrière, M.-C.; Archilla, C.; Jouneau, L.; Jaszczyszyn, Y.; Duranthon, V.; Chavatte-Palmer, P.; Jouneau, A. Differentiation of derived rabbit trophoblast stem cells under fluid shear stress to mimic the trophoblastic barrier. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 1608–1618. [Google Scholar] [CrossRef]
- James, J.L.; Whitley, G.S.; Cartwright, J.E. Shear stress and spiral artery remodelling: The effects of low shear stress on trophoblast-induced endothelial cell apoptosis. Cardiovasc. Res. 2011, 90, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Fan, Y.; Deng, X.; Li, N.; Guan, Z. Effect of flow-induced shear stress on migration of human trophoblast cells. Clin. Biomech. 2008, 23 (Suppl. 1), S112–S117. [Google Scholar] [CrossRef]
- Liu, W.; Fan, Y.; Deng, X.; Guan, Z.; Li, N. Adhesion behaviors of human trophoblast cells by contact with endothelial cells. Colloids Surf. B Biointerfaces 2009, 71, 208–213. [Google Scholar] [CrossRef]
- Lecarpentier, E.; Atallah, A.; Guibourdenche, J.; Hebert-Schuster, M.; Vieillefosse, S.; Chissey, A.; Haddad, B.; Pidoux, G.; Evain-Brion, D.; Barakat, A.; et al. Fluid Shear Stress Promotes Placental Growth Factor Upregulation in Human Syncytiotrophoblast Through the cAMP-PKA Signaling Pathway. Hypertension 2016, 68, 1438–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soghomonians, A.; Barakat, A.I.; Thirkill, T.L.; Blankenship, T.N.; Douglas, G.C. Effect of shear stress on migration and integrin expression in macaque trophoblast cells. Biochim. Biophys. Acta 2002, 1589, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Soghomonians, A.; Barakat, A.I.; Thirkill, T.L.; Douglas, G.C. Trophoblast migration under flow is regulated by endothelial cells. Biol. Reprod. 2005, 73, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, T.C.; Thirkill, T.L.; Wells, M.; Barakat, A.I.; Douglas, G.C. Trophoblasts and shear stress induce an asymmetric distribution of icam-1 in uterine endothelial cells. Am. J. Reprod. Immunol. 2008, 59, 167–181. [Google Scholar] [CrossRef]
- Lecarpentier, E.; Bhatt, M.; Bertin, G.I.; Deloison, B.; Salomon, L.J.; Deloron, P.; Fournier, T.; Barakat, A.I.; Tsatsaris, V. Computational Fluid Dynamic Simulations of Maternal Circulation: Wall Shear Stress in the Human Placenta and Its Biological Implications. PLoS ONE 2016, 11, e0147262. [Google Scholar] [CrossRef] [Green Version]
- James, J.L.; Saghian, R.; Perwick, R.; Clark, A.R. Trophoblast plugs: Impact on utero-placental haemodynamics and spiral artery remodelling. Hum. Reprod. 2018, 33, 1430–1441. [Google Scholar] [CrossRef] [Green Version]
- McConkey, C.A.; Delorme-Axford, E.; Nickerson, C.A.; Kim, K.S.; Sadovsky, Y.; Boyle, J.P.; Coyne, C.B. A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance. Sci. Adv. 2016, 2, e1501462. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Romero, R.; Han, Y.M.; Kim, H.C.; Kim, C.J.; Hong, J.-S.; Huh, D. Placenta-on-a-chip: A novel platform to study the biology of the human placenta. J. Matern. Fetal Neonatal Med. 2016, 29, 1046–1054. [Google Scholar] [CrossRef]
- Blundell, C.; Tess, E.R.; Schanzer, A.S.R.; Coutifaris, C.; Su, E.J.; Parry, S.; Huh, D. A microphysiological model of the human placental barrier. Lab Chip 2016, 16, 3065–3073. [Google Scholar] [CrossRef]
- Huppertz, B.; Gauster, M. Trophoblast fusion. Adv. Exp. Med. Biol. 2011, 713, 81–95. [Google Scholar] [CrossRef]
- Gauster, M.; Siwetz, M.; Orendi, K.; Moser, G.; Desoye, G.; Huppertz, B. Caspases rather than calpains mediate remodelling of the fodrin skeleton during human placental trophoblast fusion. Cell Death Differ. 2010, 17, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Roth, C.J.; Haeussner, E.; Ruebelmann, T.; Koch, F.V.; Schmitz, C.; Frank, H.-G.; Wall, W.A. Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space - a pilot study. Sci. Rep. 2017, 7, 40771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauster, M.; Huppertz, B. The paradox of caspase 8 in human villous trophoblast fusion. Placenta 2010, 31, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Desoye, G.; Gauster, M.; Wadsack, C. Placental transport in pregnancy pathologies. Am. J. Clin. Nutr. 2011, 94, 1896S–1902S. [Google Scholar] [CrossRef] [Green Version]
- Perazzolo, S.; Lewis, R.M.; Sengers, B.G. Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure. Placenta 2017, 60, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, I.; Schaiff, W.T.; Chen, B.; Morizane, M.; Oh, S.-Y.; O’Brien, M.; Sonnenberg-Hirche, C.; Chu, T.; Barak, Y.; Nelson, D.M.; et al. PLIN2 Is Essential for Trophoblastic Lipid Droplet Accumulation and Cell Survival During Hypoxia. Endocrinology 2018, 159, 3937–3949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- Shams, M.; Kilby, M.D.; Somerset, D.A.; Howie, A.J.; Gupta, A.; Wood, P.J.; Afnan, M.; Stewart, P.M. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum. Reprod. 1998, 13, 799–804. [Google Scholar] [CrossRef] [Green Version]
- Thirkill, T.L.; Douglas, G.C. The vitronectin receptor plays a role in the adhesion of human cytotrophoblast cells to endothelial cells. Endothelium 1999, 6, 277–290. [Google Scholar] [CrossRef]
- Huppertz, B.; Gauster, M.; Orendi, K.; König, J.; Moser, G. Oxygen as modulator of trophoblast invasion. J. Anat. 2009, 215, 14–20. [Google Scholar] [CrossRef]
- Jauniaux, E.; Watson, A.L.; Hempstock, J.; Bao, Y.P.; Skepper, J.N.; Burton, G.J. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am. J. Pathol. 2000, 157, 2111–2122. [Google Scholar] [CrossRef]
Shear Stress/ Flow Rate | Cells Used | Co-Cultivation | Incubation Time | Reference |
---|---|---|---|---|
30 µL/h | JEG-3 | HUVECs | 68 h | Lee et al. (2015) [28] ** |
0.001–0.12 dyn/cm² 2–5 µL/min | BeWo | - | 15 min–12 h | Miura et al. (2015) [16] * |
HVTs | - | |||
5.2 dyn/cm² | JEG-3 | HBMECs | 10–21 days | McConkey et al. (2016) [27] *** |
1.67 µL/min | BeWo b30 | HPVECs | 72 h | Blundell et al. (2016) [29] ** |
1 dyn/cm² 5.19 mL/min | human primary term trophoblasts | - | 15 min–72 h | Lecarpentier et al. (2016) [21] * |
0.001–1 dyn/cm² ≈0.5 mL/min | BeWo | - | 96 h | Sanz et al. (2019) [17] * |
0.1, 0.2, 0.5 mL/min | rTSCs | - | 48 h |
Shear Stress/ Flow Rate | Cells Used | Co-Cultivation | Incubation Time | Reference |
---|---|---|---|---|
5 dyn/cm2 | JEG-3 | - | <48 h | Lanz et al. (2001) [15] * |
15 or 30 dyn/cm² | macaque trophoblasts (GD 40-100); human term trophoblasts | - | 24 h | Soghomonians et al. (2002) [22] * |
1–30 dyn/cm² | macaque trophoblasts (GD 40-100); human term trophoblasts | UtMVECs | 12 h | Soghomonians et al. (2005) [23] * |
0–30 dyn/cm² | human first trimester trophoblasts | - | 24 h | Liu et al. (2008) [19] * |
15 dyn/cm² | macaque trophoblasts (GD 40-65) | UtMVECs | 12 h | Cao et al. (2008) [24] * |
15 dyn/cm² | human first trimester trophoblasts | HUVECs | 12 h | Liu et al. (2009) [20] * |
0.5 and 3 dyn/cm² | JAR, SGHPL-4, HUVECs | - | 15 h | James et al. (2011) [18] ** |
0.02, 1, 2 dyn/cm² | 24 h | |||
0.5 and 3 dyn/cm² | primary EVTs, JAR | HUVECs | 31 h | |
5 and 7 dyn/cm² | JAR | 13 h | ||
0.5–6 dyn/cm² | SGHPL-4 | HUVECs | 7 h | James et al. (2012) [14] ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brugger, B.A.; Guettler, J.; Gauster, M. Go with the Flow—Trophoblasts in Flow Culture. Int. J. Mol. Sci. 2020, 21, 4666. https://doi.org/10.3390/ijms21134666
Brugger BA, Guettler J, Gauster M. Go with the Flow—Trophoblasts in Flow Culture. International Journal of Molecular Sciences. 2020; 21(13):4666. https://doi.org/10.3390/ijms21134666
Chicago/Turabian StyleBrugger, Beatrice A., Jacqueline Guettler, and Martin Gauster. 2020. "Go with the Flow—Trophoblasts in Flow Culture" International Journal of Molecular Sciences 21, no. 13: 4666. https://doi.org/10.3390/ijms21134666
APA StyleBrugger, B. A., Guettler, J., & Gauster, M. (2020). Go with the Flow—Trophoblasts in Flow Culture. International Journal of Molecular Sciences, 21(13), 4666. https://doi.org/10.3390/ijms21134666