A Pilot Study of the Predictive Potential of Chemosensitivity and Gene Expression Assays Using Circulating Tumour Cells from Patients with Recurrent Ovarian Cancer
Abstract
:1. Introduction
2. Results
2.1. Biological and Clinical Characteristics of 10 Advanced EOC Patients
2.2. Chemosensitivity and Tumour Gene Expression Assays Using EOC CTCs
2.3. RECIST 1.1 Tumour Responses Following HAP
2.4. CTC Chemosensitivity Test Accuracy in Relation to “two-drug” HAP
2.5. Treatments Following HAP, and Patient Follow-up
3. Discussion
4. Patients and Methods
4.1. Patients
4.2. Liquid Biopsy, CTC Chemosensitivity and Tumour Gene Expression Assays
4.3. HAP
4.4. Tumour Response Criteria
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
BH3 | One of the four homology domains of Bcl-2 protein family |
BRCA | Breast cancer type 1 susceptibility protein |
BRCA1 | Breast cancer type 1 susceptibility gene |
CAST | Competitive allele specific technology |
CCS | Cell culture service |
CD19 | B-lymphocyte antigen CD19 |
CD31 | Platelet endothelial cell adhesion molecule |
CD45 | Protein tyrosine phosphatase receptor C |
CD63 | Protein encoded by the CD63 gene |
CLTA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
CT | Computerised tomography |
CTCs | Circulating tumour cells |
CTCs | Circulating tumour cells |
CVE | Crystal violet dye |
DAPI | 4′,6-diamidino-2-phenylindole |
EDR | Extreme drug resistance |
EDTA | Ethylenediaminetetraacetic acid |
EOC | Epithelial ovarian cancer |
ERCC1 | Excision repair cross-complementation group 1 |
EpCAM | Epithelial cell adhesion molecule |
FBS | Foetal bovine serum |
FDA | Food and Drug Administration |
FFPE | Formalin fixed paraffin embedded |
FISH | Fluorescent in situ hybridisation |
FITC | Fluorescein isothiocyanate |
HAP | Hypoxic isolated abdominal perfusion |
HDRA | Histoculture drug response assay |
HIPEC | Hyper-thermic intraperitoneal chemotherapy |
HTCA | Human tumour cloning assay |
ICC | Immunocytochemistry |
IF | Immunofluorescence |
KHCO3 | Potassium bicarbonate |
KRT18 | Cytokeratin-18 |
KRT19 | Cytokeratin-19 |
KRT7 | Cytokeratin-7 |
MEK | Mitogen-activated protein kinase-kinase enzymes |
MRI | Magnetic resonance imaging |
MTT | Methyl-tetrazolium dye |
MUC1 | Cell surface associated protein |
MUC16 | Cancer antigen 125 |
MiCK | Micro-culture kinetic |
NH4Cl | Ammonium chloride |
OS, | Overall survival |
PARPs | Poly (ADP-ribose) polymerases |
PBL | Peripheral blood leukocytes |
PBMC | Peripheral blood mononuclear cells |
PBS | Phosphate-buffered saline |
PCR | Polymerase chain reaction |
PD-1 | Programmed cell death protein 1 |
PET | Position-emission tomography |
PFI | Platinum free interval |
PFS | Progression free survival |
PIPAC | Pressurised intraperitoneal aerosol chemotherapy |
PNV | Predictive negative value |
PPV | Predictive positive value |
RECIST | Response evaluation criteria in solid tumours |
RPMI-1640 | Roswell Park Memorial Institute 1640, cell culture medium |
RT-PCR | Real time polymerase chain reaction |
SD | Standard deviation |
SRB | Sulfo-rodhamine B |
SRCA | Subrenal capsule assay |
STRs | Short tandem repeats |
TFI | Treatment free interval |
VEGF-A | Vascular endothelial growth factor A |
WT1 | Wilms’ tumour protein |
qRT-PCR | Quantitative reverse transcription polymerase chain reaction |
References
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessmon, P.; Boulanger, T.; Zhou, W.; Patwardhan, P. Epidemiology and treatment patterns of epithelial ovarian cancer. Expert Rev. Anticancer Ther. 2017, 17, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Yoon, Y.S.; Kim, J.C.; Kim, Y.-M. Assessment of the applicability of Integrative Tumor Response Assays in advanced epithelial ovarian cancer. Anticancer Res. 2019, 39, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Sisay, M.; Edessa, D. PARP inhibitors as potential therapeutic agents for various cancers: Focus on niraparib and its first global approval for maintenance therapy of gynecologic cancers. Gynecol. Oncol. Res. Pract. 2017, 4, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poveda, A.M.; Selle, F.; Hilpert, F.; Reuss, A.; Savarese, A.; Vergote, I.; Witteveen, P.; Bamias, A.; Scotto, N.; Mitchell, L.; et al. Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum resistant recurrent ovarian cancer: Analysis by Chemotherapy Cohort of the Randomized Phase III AURELIA Trial. J. Clin. Oncol. 2015, 33, 3836–3838. [Google Scholar] [CrossRef]
- Armstrong, D.K.; Bundy, B.; Wenzel, L.; Huang, H.Q.; Baergen, R.; Lele, S.; Copeland, L.J.; Walker, J.L.; Burger, R.A.; Gynecologic Oncology Group. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 2006, 354, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Tewari, D.; Java, J.J.; Salani, R.; Armstrong, D.K.; Markman, M.; Herzog, T.; Monk, B.J.; Chan, J.K. Long term survival advantage and prognostic factors associated with intraperitoneal chemotherapy treatment in advanced ovarian cancer: A Gynecologic Oncology Group study. J. Clin. Oncol. 2015, 33, 1460–1466. [Google Scholar] [CrossRef]
- Wright, A.A.; Cronin, A.; Milne, D.E.; Bookman, M.A.; Burger, R.A.; Cohn, D.E.; Cristea, M.C.; Griggs, J.J.; Keating, N.L.; Levenback, C.F.; et al. Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer. J. Clin. Oncol. 2015, 33, 2841–2847. [Google Scholar] [CrossRef]
- Spiliotis, J.; Halkia, E.; Lianos, E.; Kalantzi, N.; Grivas, A.; Efstathiou, E.; Giassas, S. Cytoreductive surgery and HIPEC in recurrent epithelial ovarian cancer: A prospective randomized phase III study. Ann. Surg. Oncol. 2015, 22, 1570–1575. [Google Scholar] [CrossRef]
- Van Driel, W.J.; Koole, S.N.; Sikorska, K.; Schagen van Leeuwen, J.H.; Schreuder, H.W.R.; Hermans, R.H.M.; de Hingh, I.H.J.T.; van der Velden, J.; Arts, H.J.; Massuger, L.F.A.G.; et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N. Engl. J. Med. 2018, 378, 230–240. [Google Scholar] [CrossRef]
- Alyami, M.; Hübner, M.; Grass, F.; Bakrin, N.; Villeneuve, L.; Laplace, N.; Passot, G.; Glehen, O.; Kepenekian, V. Pressurised intraperitoneal aerosol chemotherapy: Rationale, evidence, and potential indications. Lancet Oncol. 2019, 20, e368–e377. [Google Scholar] [CrossRef]
- Tempfer, C.B.; Winnekendonk, G.; Solass, W.; Horvat, R.; Giger-Pabst, U.; Zieren, J.; Rezniczek, G.A.; Reymond, M.A. Pressurized intraperitoneal aerosol chemotherapy in women with recurrent ovarian cancer: A phase 2 study. Gynecol. Oncol. 2015, 137, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Solass, W.; Kerb, R.; Mürdter, T.; Kerb, R.; Mürdter, T.; Giger-Pabst, U.; Strumberg, D.; Tempfer, C.; Zieren, J.; Schwab, M.; et al. Intraperitoneal Chemotherapy of Peritoneal Carcinomatosis Using Pressurized Aerosol as an Alternative to Liquid Solution: First Evidence for Efficacy. Ann. Surg. Oncol. 2014, 21, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Aigner, K.R.; Selak, E.; Gailhofer, S.; Aigner, K. Hypoxic Isolated Abdominal Perfusion (HAP) chemotherapy for non-operable advanced staged ovarian cancer with peritoneal carcinosis: An experience in 45 platinum-refractory ovarian cancer patients. Indian J. Surg. Oncol. 2019, 10, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Black, M.M.; Speer, F.D.; Brenowitz, P. Effects of Cancer Chemotherapeutic Agents on Dehydrogenase Activity of Human Cancer Tissue in Vitro. AJCP 1953, 23, 218–227. [Google Scholar] [PubMed]
- Von Hoff, D.D.; Clark, G.M.; Stogdill, B.J.; Sarosdy, M.F.; O’Brien, M.T.; Casper, J.T.; Mattox, D.E.; Page, C.P.; Cruz, A.B.; Sandbach, J.F. Prospective clinical trial of a human tumor cloning system. Cancer Res. 1983, 43, 1926–1931. [Google Scholar] [PubMed]
- Von Hoff, D.D.; Kronmal, R.; Salmon, S.E.; Turner, J.; Green, J.B.; Bonorris, J.S.; Moorhead, E.L.; Hynes, H.E.; Pugh, R.E.; Belt, R.J.; et al. A Southwest Oncology Group study on the use of a human tumor cloning assay for predicting response in patients with ovarian cancer. Cancer 1991, 67, 20–27. [Google Scholar] [CrossRef]
- Kern, D.H.; Drogemuller, C.R.; Kennedy, M.C.; Hildebrand-Zanki, S.U.; Tanigawa, N.; Sondak, V.K. Development of a miniaturized, improved nucleic acid precursor incorporation assay for chemosensitivity testing of human solid tumors. Cancer Res. 1985, 45, 5436–5441. [Google Scholar]
- Hoffman, R.M. Three-dimensional histoculture: Origins and applications in cancer research. Cancer Cells 1991, 3, 86–92. [Google Scholar]
- Mäenpää, J.U.; Heinonen, E.; Hinkka, S.M.; Karnani, P.; Klemi, P.J.; Korpijaakko, T.A.; Kuoppala, T.A.; Laine, A.M.; Lähde, M.A.; Nuoranne, E.K.; et al. The subrenal capsule assay in selecting chemotherapy for ovarian cancer: A prospective randomized trial. Gynecol. Oncol. 1995, 57, 294–298. [Google Scholar] [CrossRef]
- Kurbacher, C.M.; Cree, I.A.; Bruckner, H.W.; Brenne, U.; Kurbacher, J.A.; Müller, K.; Ackermann, T.; Gilster, T.J.; Wilhelm, L.M.; Engel, H.; et al. Use of an ex vivo ATP luminescence assay to direct chemotherapy for recurrent ovarian cancer. Anticancer Drugs 1998, 9, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Brower, S.L.; Fensterer, J.E.; Bush, J.E. The ChemoFx Assay: An Ex Vivo Chemosensitivity and Resistance Assay for Predicting Patient Response to Cancer Chemotherapy; Mor, G., Alvero, A.B., Eds.; Methods in molecular biology, apoptosis and cancer; Humana Press Inc.: Totowa, NJ, USA, 2008; pp. 57–78. [Google Scholar]
- Rutherford, T.; Orr, J., Jr.; Grendys, E., Jr.; Edwards, R.; Krivak, T.C.; Holloway, R.; Moore, R.G.; Puls, L.; Tillmanns, T.; Schink, J.C.; et al. A prospective study evaluating the clinical relevance of a chemoresponse assay for treatment of patients with persistent or recurrent ovarian cancer. Gynecol. Oncol. 2013, 131, 362–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krivak, T.C.; Lele, S.; Richard, S.; Secord, A.A.; Leath, C.A., III; Brower, S.L.; Tian, C.; Moore, R.G. A chemoresponse assay for prediction of platinum resistance in primary ovarian cancer. Am. J. Obstet. Gynecol. 2014, 211, e1–e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, C.; Sargent, D.J.; Krivak, T.C.; Powell, M.A.; Gabrin, M.J.; Brower, S.L.; Coleman, R.L. Evaluation of a chemoresponse assay as a predictive marker in the treatment of recurrent ovarian cancer: Further analysis of a prospective study. Br. J. Cancer 2014, 111, 843–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cree, I.A. Chemosensitivity and chemoresistance testing in ovarian cancer. Curr. Opin. Obstet. Gynecol. 2009, 21, 39–43. [Google Scholar] [CrossRef]
- Montero, J.; Sarosiek, K.A.; DeAngelo, J.D.; Maertens, O.; Ryan, J.; Ercan, D.; Piao, H.; Horowitz, N.S.; Berkowitz, R.S.; Matulonis, U.; et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 2015, 160, 977–989. [Google Scholar] [CrossRef] [Green Version]
- Papasotiriou, I.; Chatziioannou, M.; Pessiou, K.; Retsas, I.; Dafouli, G.; Kyriazopoulou, A.; Toloudi, M.; Kaliara, I.; Vlachou, I.; Kourtidou, E.; et al. Detection of circulating tumor cells in patients with breast, prostate, pancreatic, colon and melanoma cancer: A blinded comparative study using healthy donors. JCT 2015, 6, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.C. Circulating tumor cells. PNAS 2013, 110, 4861. [Google Scholar] [CrossRef] [Green Version]
- Asante, D.; Calaprea, L.; Ziman, L.; Meniawy, T.M.; Gray, E.S. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020, 468, 59–71. [Google Scholar] [CrossRef]
- Zhou, Y.; Bian, B.; Yuan, X.; Xie, G.; Ma, Y.; Shen, L. Prognostic Value of Circulating Tumor Cells in Ovarian Cancer: A Meta-Analysis. PLoS ONE 2015, 10, e0130873. [Google Scholar] [CrossRef] [Green Version]
- Obermayr, E.; Bednarz-Knoll, N.; Orsetti, B.; Weier, H.U.; Lambrechts, S.; Castillo-Tong, D.C.; Reinthaller, A.; Braicu, E.I.; Mahner, S.; Sehouli, J.; et al. Circulating tumor cells: Potential markers of minimal residual disease in ovarian cancer? A study of the OVCAD consortium. Oncotarget 2017, 8, 106415–106428. [Google Scholar] [CrossRef] [PubMed]
- Stott, S.L.; Hsu, C.-H.; Tsukrov, D.I.; Yu, M.; Miyamoto, D.T.; Waltman, B.A.; Rothenberg, S.M.; Shah, A.M.; Smas, M.E.; Korir, G.K.; et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. PNAS 2010, 107, 18392–18397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristofanilli, M. The biological information obtainable from circulating tumor cells. Breast 2009, 18, S38–S40. [Google Scholar] [CrossRef]
- Kolostova, K.; Pinkas, M.; Jakabova, A.; Pospisilova, E.; Svobodova, P.; Spicka, J.; Cegan, M.; Matkowski, R.; Bobek, V. Molecular characterization of circulating tumor cells in ovarian cancer. Am. J. Cancer Res. 2016, 6, 973–980. [Google Scholar] [PubMed]
- Kuhlmann, J.D.; Wimberger, P.; Bankfalvi, A.; Keller, T.; Schöler, S.; Aktas, B.; Buderath, P.; Hauch, S.; Otterbach, F.; Kimmig, R.; et al. ERCC1-Positive Circulating Tumor Cells in the Blood of Ovarian Cancer Patients as a Predictive Biomarker for Platinum Resistance. Clin. Chem. 2014, 60, 1282–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karachaliou, N.; Mayo-de-Las-Casas, C.; Molina-Vila, M.A.; Rosell, R. Real-time liquid biopsies become a reality in cancer treatment. Ann. Transl. Med. 2015, 3, 36. [Google Scholar]
- Guadagni, S.; Fiorentini, G.; De Simone, M.; Masedu, F.; Zoras, O.; Mackay, A.R.; Sarti, D.; Papasotiriou, I.; Apostolou, P.; Catarci, M.; et al. Precision oncotherapy based on liquid biopsies in multidisciplinary treatment of unresectable recurrent rectal cancer: A retrospective cohort study. J. Cancer Res. Clin. Oncol. 2020, 146, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Guadagni, S.; Fiorentini, G.; Papasotiriou, I.; Apostolou, P.; Masedu, F.; Sarti, D.; Farina, A.-R.; Mackay, A.R.; Clementi, M. Circulating tumour cell liquid biopsy in selecting therapy for recurrent cutaneous melanoma with locoregional pelvic metastases: A pilot study. BMC Res. Notes 2020, 13, 176. [Google Scholar] [CrossRef] [Green Version]
- Guadagni, S.; Clementi, M.; Mackay, A.R.; Ricevuto, E.; Fiorentini, G.; Sarti, D.; Palumbo, P.; Apostolou, P.; Papasotiriou, I.; Masedu, F.; et al. Real-life multidisciplinary treatment for unresectable colorectal cancer liver metastases including hepatic artery infusion with chemo-filtration and liquid biopsy precision oncotherapy. Observational cohort study. J. Cancer Res. Clin. Oncol. 2020, 146, 1273–1290. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, P.; Ntanovasilis, D.A.; Papasotiriou, I. Evaluation of a simple method for storage of blood samples that enables isolation of circulating tumor cells 96 h after sample collection. J. Biol. Res. Thessalon. 2017, 24, 11. [Google Scholar] [CrossRef] [Green Version]
- Toloudi, M.; Apostolou, P.; Chatziioannou, M.; Papasotiriou, I. Correlation between cancer stem cells and circulating tumour cells and their value. Case Rep. Oncol. 2011, 4, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Toloudi, M.; Ioannou, E.; Chatziioannou, M.; Apostolou, P.; Kiristis, C.; Manta, S.; Komiotis, D.; Papasotiriou, I. Comparison of the growth curves of cancer cells and cancer stem cells. Curr. Stem Cell Res. Ther. 2014, 9, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2017, 8, 8921–8946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Kanwar, S.S.; Patel, B.B.; Nautiyal, J.; Sarkar, F.H.; Majumdar, A.P.N. Elimination of Colon Cancer Stem-Like Cells by the Combination of Curcumin and FOLFOX. Transl. Oncol. 2009, 2, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.A.; Vainer, B.; Witton, C.J.; Jørgensen, J.T.; Sørensen, J.B. Prognostic Significance of Numeric Aberrations of Genes for Thymidylate Synthase, Thymidine Phosphorylase and Dihydrofolate Reductase in Colorectal Cancer. Acta Oncol. 2008, 47, 1054–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Paolo, A.; Chu, E. The Role of Thymidylate Synthase as a Molecular Biomarker. Clin. Cancer Res. 2004, 10, 411–412. [Google Scholar] [CrossRef] [Green Version]
- Leon, A.C.; Davis, L.L.; Kraemer, H.C. The role and interpretation of pilot studies in clinical research. J. Psychiatr. Res. 2011, 45, 626–629. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, M.; Hatzidaki, E.; Papasotiriou, I. Linearity comparison of three colorimetric cytotoxicity assays. JCT 2019, 10, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, P.; Iliopoulos, A.C.; Parsonidis, P.; Papasotiriou, I. Gene expression profiling as a potential predictor between normal and cancer samples in gastrointestinal carcinoma. Oncotarget 2019, 10, 3328–3338. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Guadagni, S.; Kanavos, E.; Schietroma, M.; Fiorentini, G.; Amicucci, G. Selected hypoxic stop-flow perfusions: Indication and limits. Tumori 2006, 92, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Guadagni, S.; Clementi, M.; Valenti, M.; Fiorentini, G.; Cantore, M.; Kanavos, E.; Caterino, G.P.; Di Giuro, G.; Amicucci, G. Hypoxic abdominal stop-flow perfusion in the treatment of advanced pancreatic cancer: A phase II evaluation/trial. Eur. J. Surg. Oncol. 2007, 33, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Cantore, M.; Montagnani, F.; Mambrini, A.; D’Alessandro, M.; Guadagni, S. The role of hypoxia and hyperthermia in chemotherapy. In Induction Chemotherapy. Systemic and Locoregional, 2nd ed.; Aigner, K.R., Stephens, F.O., Eds.; Springer: Berlin, Germany, 2016; pp. 61–71. [Google Scholar]
- Gabr, A.; Kuin, A.; Aalders, M.; El-Gawly, H.; Smets, L.A. Cellular pharmacokinetics and cytotoxicity of camptothecin and topotecan at normal and acidic pH. Cancer Res. 1997, 57, 4811–4816. [Google Scholar]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J. New response valuation criteria in solid tumors: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Connelly, L.M. Pilot studies. Medsurg. Nurs. 2008, 17, 411–412. [Google Scholar] [PubMed]
- Popova, A.A.; Levkin, P.A. Precision Medicine in Oncology: In Vitro Drug Sensitivity and Resistance Test (DSRT) for Selection of Personalized Anticancer Therapy. Adv. Therap. 2020, 3, 1900100. [Google Scholar] [CrossRef] [Green Version]
Patient- Age | BRCA1 Status | -FIGO -Type -Concomitant Diseases | Previous Surgery | Previous Systemic Chemotherapy | HAP [Number of Cycles] -Drugs (Dosages) | RECIST 1.1 Response | Progression Free Survival from 1st HAP | Further Therapy [Number of Cycles] | Censor at March 2020 -OS from 1st HAP |
---|---|---|---|---|---|---|---|---|---|
1 -58 | NM | -Stage IIIC -High grade serous carcinoma | 2013: Bilateral hystero-annectectomy, partial omentectomy. 2015: HIPEC (cisplatin and doxorubicin) followed by PD (peritoneal) after 3 months. | 2013: 1st line with carboplatin and docetaxel followed by PD (peritoneal) after 7 months. 2014: 2nd line with cyclophosphamide and methotrexate followed by PD (peritoneal) after 4 months. | 2016 HAP [3] with carboplatin (100 mg/m2), vinorelbine (30 mg/m2) | SD | 6 months | Best supportive care | Dead -12 months |
2 -44 | NM | -Stage IIIC -High grade serous carcinoma -HIV | 2010: Bilateral hystero-annectectomy, partial omentectomy. 2012: Palliative cytoreductive surgery. | 2011: 1st line with carboplatin and docetaxel followed by PD (peritoneal) after 8 months. 2013: 2nd line with carboplatin, docetaxel and bevacizumab followed by PD (peritoneal) after 5 months. | 2014 HAP [1] with carboplatin (100 mg/m2), paclitaxel (55 mg/m2) | SD | 8 months | 2015 HAP [2] with cisplatin (65 mg/m2), 5 FU (700 mg/m2) | Dead -15 months |
3 -55 | MT | -Stage IIIC -High grade serous carcinoma | 2004: Bilateral hystero-annectectomy, partial omentectomy. 2012: Cytoreductive surgery (pelvic unresectable residual). | 2012: 1st line with carboplatin and docetaxel. PD (peritoneal) after 8 years. | 2013 HAP [1] with cisplatin (65 mg/m2), doxorubicin (30 mg/m2) | CR | 84 months | 2013 Bevacizumab (5 mg/kg) 2017: Rucaparib (250 mg) | Alive -84 months |
4 -60 | NM | -Stage IIIC -High grade serous carcinoma | 2010: Bilateral hystero-annectectomy, partial omentectomy. | 2010: 1st line with carboplatin and docetaxel followed by PD (peritoneal) after 7 months. 2011: 2nd line with cisplatin and docetaxel followed by PD (peritoneal) after 7 months. 2012: 3rd line with liposomal-doxorubicin and trabectedin followed by PD (peritoneal) after 4 months. 2013: 4th line with topotecan and gemcitabine followed by PD (peritoneal) after 9 months. | 2014 HAP [2] with cisplatin (65 mg/m2), docetaxel (65 mg/m2) | SD | 4 months | 2014: HIPEC with cisplatin and doxorubicin | Dead -10 months |
5 -65 | NM | -Stage IIIC -High grade serous carcinoma | 2009: Bilateral hystero-annectectomy, partial omentectomy. 2010: Omentectomy, palliative peritonectomy. | 2009: 1st line with carboplatin and docetaxel followed by PD (peritoneal) after 8 months. 08/2010: Re-treatment with carboplatin and docetaxel followed by PD (peritoneal) after 8 months. | 2011 HAP [2] with cisplatin (65 mg/m2), doxorubicin (30 mg/m2) | SD | 9 months | 2012: Liposomal-doxorubicin and trabectedin. PD after 60 months. 2017: NIPEC with Irinotecan. PD after 2 months | Dead -66 months |
6 -56 | NM | -Stage IIIC -High grade serous carcinoma -Diabetes | 2011: Bilateral hystero-annectectomy, partial omentectomy 2012: Omentectomy, palliative peritonectomy. | 2011: 1st line with carboplatin and docetaxel followed by PD (peritoneal) after 9 months. 2013: 2nd line with cisplatin and paclitaxel followed by PD (peritoneal and hepatic) after 7 months. | 2014 HAP [2] with cisplatin (65 mg/m2), doxorubicin (30 mg/m2) | SD | 3 months | 2014: Liposomal-doxorubicin and trabectedin. PD after 6 months | Dead -12 months |
7 -58 | NM | -Stage IV -High grade serous carcinoma -Partial bowel obstruction -Gallbladder stones | 2005: Bilateral hystero-annectectomy, partial omentectomy, aortic lymphadenectomy. 2012: Omentectomy, palliative peritonectomy. 2016: Colostomy. | 2005: 1st line with carboplatin and docetaxel (allergy to carboplatin) 2005: 2nd line with cisplatin and paclitaxel followed by PD (hepatic and peritoneal) after 6 years. 2012: 3rd line re-treatment with cisplatin and paclitaxel (G2 neurotoxicity) followed by PD (hepatic and peritoneal) after 8 months. 2013: 4th line with liposomal-doxorubicin and trabectedin followed by PD (hepatic) after 10 months. 2015: 5th line with carboplatin associated to modulated electro-hyperthermia followed by PD (hepatic and peritoneal) after 9 months. | 2016 HAP [1] with cisplatin (65 mg/m2), doxorubicin (30 mg/m2) | SD | 8 months | Best supportive care | Dead -18 months |
8 -71 | NM | -Stage IIIC -High grade serous carcinoma | 2013: Bilateral hystero-annectectomy, partial omentectomy, aortic lymphadenectomy. 2015: Colostomy. | 2014: 1st line with carboplatin, docetaxel and bevacizumab followed by PD (peritoneal) after 9 months. 2014: 2nd line with cisplatin and paclitaxel followed by PD (peritoneal) after 7 months. | 2016 HAP [1] with cisplatin (65 mg/m2), doxorubicin (30 mg/m2) | SD | 9 months | Best supportive care | Dead -15 months |
9 -75 | NM | -Stage IIIC -High grade serous carcinoma | 2013: Bilateral hystero-annectectomy, partial omentectomy, palliative peritonectomy. | 2014: 1st line with carboplatin and docetaxel followed by PD (peritoneal) after 4 months. 2014: 2nd line with cisplatin and paclitaxel followed by PD (peritoneal) after 3 months. | 2015 HAP [1] with etoposide (30 mg/m2), paclitaxel (55 mg/m2) | SD | 4 months | Best supportive care | Dead -8 months |
10 -68 | NM | -Stage IIIC -High grade serous carcinoma | 2008: Bilateral hystero-annectectomy, partial omentectomy. 2010: Omentectomy, palliative peritonectomy. | 2010: 1st line with carboplatin and docetaxel followed by PD (peritoneal) after 7 months. 2011: 2nd line with cisplatin and paclitaxel followed by PD (peritoneal) after 9 months. | 2012 HAP [1] with vinorelbine (30 mg/m2), topotecan (1.5 mg/m2) | PR | 15 months | 2012 Bevacizumab (5 mg/kg) | Dead -24 months |
Pt. | IV-CTCs | 5-FU (%) | Gem (%) | L-doxo (%) | Epi (%) | Doxo (%) | MMC (%) | Eto (%) | Carbo (%) | Cis (%) | Ox (%) | Paclit (%) | Doce (%) | Vino (%) | Topo (%) | Iri (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 9.6/mL, SD +/- 0.3 cells | 24 | 76 | 68 | 56 | 58 | 45 | 84 | 83 | 55 | 35 | 58 | 63 | 95 | 70 | 44 |
2 | 16.8/mL, SD +/- 0.3 cells | 81 | 21 | 20 | 28 | 26 | 40 | 25 | 81 | 70 | 50 | 80 | 65 | 32 | 61 | 43 |
3 | 6.9/mL, SD +/- 0.3 cells | 77 | 50 | 81 | 77 | 80 | 52 | 71 | 70 | 81 | 52 | 55 | 52 | 67 | 60 | 55 |
4 | 9.4/mL, SD +/- 0.3 cells | 75 | 82 | 60 | 65 | 65 | 60 | 70 | 75 | 82 | 65 | 70 | 75 | 60 | 75 | 65 |
5 | 9.4/mL, SD +/- 0.3 cells | 91 | 22 | 86 | 42 | 50 | 35 | 23 | 52 | 82 | 61 | 38 | 42 | 64 | 62 | 82 |
6 | 9.8/mL, SD +/- 0.3 cells | 92 | 25 | 88 | 42 | 50 | 36 | 24 | 53 | 67 | 61 | 38 | 45 | 64 | 62 | 82 |
7 | 9.6/mL, SD +/- 0.3 cells | 40 | 70 | 82 | 65 | 80 | 22 | 70 | 65 | 80 | 60 | 70 | 65 | 55 | 40 | 40 |
8 | 8.2/mL, SD +/- 0.3 cells | 25 | 90 | 64 | 43 | 91 | 53 | 44 | 64 | 60 | 38 | 75 | 82 | 44 | 82 | 60 |
9 | 8.4/mL, SD +/- 0.3 cells | 38 | 26 | 44 | 23 | 35 | 47 | 91 | 22 | 24 | 21 | 92 | 58 | 48 | 36 | 38 |
10 | 8.2/mL, SD +/- 0.3 cells | 31 | 24 | 41 | 42 | 53 | 46 | 62 | 58 | 52 | 28 | 62 | 58 | 88 | 91 | 62 |
Pt. | EGFR (%) | VEGFR (%) | p53 (%) | MDR1 (%) | TYMS (%) | DHFR (%) | SHMT1 (%) | ERCC1 (%) | GST (%) |
---|---|---|---|---|---|---|---|---|---|
1 | 55 | 50 | 75 | 58 | 0 | 0 | 0 | 0 | 16 |
2 | 45 | 45 | 35 | 65 | 0 | 0 | 0 | 0 | 5 |
3 | 60 | 75 | 10 | 50 | 0 | 0 | 0 | 0 | 20 |
4 | 45 | 60 | 15 | 60 | 0 | 0 | 0 | 0 | 10 |
5 | 55 | 65 | 45 | 64 | 0 | 0 | 0 | 0 | 14 |
6 | 55 | 55 | 45 | 63 | 0 | 0 | 0 | 0 | 12 |
7 | 55 | 55 | 35 | 55 | 25 | 10 | 0 | 10 | 20 |
8 | 40 | 40 | 60 | 60 | 0 | 0 | 0 | 0 | 10 |
9 | 40 | 55 | 55 | 70 | 0 | 0 | 0 | 25 | 10 |
10 | 55 | 65 | 65 | 46 | 0 | 0 | 0 | 26 | 10 |
RECIST 1.1 Response | |||
---|---|---|---|
Chemosensitivity of CTCs | Positive (CR + PR) | Negative (SD + PD) | Total |
Positive (>80%) | 2 | 4 | 6 |
Negative (≤80%) | 0 | 4 | 4 |
Total | 2 | 8 | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guadagni, S.; Clementi, M.; Masedu, F.; Fiorentini, G.; Sarti, D.; Deraco, M.; Kusamura, S.; Papasotiriou, I.; Apostolou, P.; Aigner, K.R.; et al. A Pilot Study of the Predictive Potential of Chemosensitivity and Gene Expression Assays Using Circulating Tumour Cells from Patients with Recurrent Ovarian Cancer. Int. J. Mol. Sci. 2020, 21, 4813. https://doi.org/10.3390/ijms21134813
Guadagni S, Clementi M, Masedu F, Fiorentini G, Sarti D, Deraco M, Kusamura S, Papasotiriou I, Apostolou P, Aigner KR, et al. A Pilot Study of the Predictive Potential of Chemosensitivity and Gene Expression Assays Using Circulating Tumour Cells from Patients with Recurrent Ovarian Cancer. International Journal of Molecular Sciences. 2020; 21(13):4813. https://doi.org/10.3390/ijms21134813
Chicago/Turabian StyleGuadagni, Stefano, Marco Clementi, Francesco Masedu, Giammaria Fiorentini, Donatella Sarti, Marcello Deraco, Shigeki Kusamura, Ioannis Papasotiriou, Panagiotis Apostolou, Karl Reinhard Aigner, and et al. 2020. "A Pilot Study of the Predictive Potential of Chemosensitivity and Gene Expression Assays Using Circulating Tumour Cells from Patients with Recurrent Ovarian Cancer" International Journal of Molecular Sciences 21, no. 13: 4813. https://doi.org/10.3390/ijms21134813
APA StyleGuadagni, S., Clementi, M., Masedu, F., Fiorentini, G., Sarti, D., Deraco, M., Kusamura, S., Papasotiriou, I., Apostolou, P., Aigner, K. R., Zavattieri, G., Farina, A. R., Vizzielli, G., Scambia, G., & Mackay, A. R. (2020). A Pilot Study of the Predictive Potential of Chemosensitivity and Gene Expression Assays Using Circulating Tumour Cells from Patients with Recurrent Ovarian Cancer. International Journal of Molecular Sciences, 21(13), 4813. https://doi.org/10.3390/ijms21134813