The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease
Abstract
:1. Introduction
2. Genetic Predisposition in Patients with IgG4-RD
3. Intestinal Dysbiosis in Animal Model and Patients with IgG4-RD
3.1. Induction of AIP by Persistent Exposure to Intestinal Commensal Flora Antigens in Animal Models
3.2. Intestinal Dysbiosis-mediated AIP
4. Autoantibody Diversity in Patients with IgG4-RD
5. Development of IgG4 Antibodies by Modified Th2 Response
5.1. Modified Th2 Response for the Class-switch from IgE to IgG4
5.2. Odd Immunological Properties of IgG4 Antibody
5.2.1. Fab–arm Exchange Between 2 Different IgG4 Antibodies Resulting in Non-inflammatory Properties of IgG4 Antibody
5.2.2. A Unique Conformation of FG Loop in the CH2 Domain of IgG4 Molecule
5.2.3. Rheumatoid Factor-like Fc Binding Activity of IgG4 in the Autoimmune and Inflammatory Pathology
5.2.4. Pathologic Roles of IgG4-autoantibodies in Certain Autoimmune Diseases
5.2.5. The Glycosylation Patterns of IgG4 Molecule Induce Complement Activation in Some IgG4-RD Patients with Hypocomplementemia and Primary Sclerosing Cholangitis
6. Eosinophilia, Hyper-IgE Levels and Allergy in Patients with IgG4-RD
7. The Pathogenic Role of B Cells in Chronic Inflammation and Storiform Fibrosis in Patients with IgG4-RD
7.1. The Pathogenic Roles of CD19+ Plasmablasts in AIP Patients
7.2. The Ontogenesis of MFBs
7.3. The Fibrosis-related Inflammatory Mediators
7.4. Pathogenic Roles of B Cell Subsets, B Cell-derived Factors and Help Signals in the Tissue Fibrosis of Patients with IgG4-RD
8. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-RD
8.1. Involvement of Innate Immune Cells in Patients with IgG4-RD
8.2. The Immunopathologic Roles of Aberrant Functions of Treg, Tfh and CD4+ and CD8+Tc Subsets in Patients with IgG4-RD
8.3. Involvement of Abnormally Functioning Bre FliC g cells in Patients with IgG4-RD
9. Conclusions
10. Future Prospects
- The precise epigenetic regulations, including DNA methylation/acetylation and histone modifications for the diverse immune dysfunctions in IgG4-RD;
- The aberrant expression of non-coding RNAs in the ontogenesis of abnormal B cell biology in IgG4-RD;
- The characterization of factors involved in the induction of CD4+Tc in IgG4-RD;
- The elucidation of the sophisticated molecular mechanism underlying storiform fibrosis;
- Clarification of the interactions between H. pylori infection and other environmental factors, such as allergens for development of the disease;
- Immunopathologic roles of different IgG4 autoantibodies in its pathogenesis;
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AID | activation-induced cytidine deaminase |
AIP | autoimmune pancreatitis |
AIT | allergen-induced immunotherapy |
APC | antigen presenting cell |
APRIL | a proliferation-inducing ligand |
BAFF B | B lymphocyte-activating factor of tumor necrosis factor family |
Bφ | basophil |
Breg | regulatory B lymphocyte |
C | complement component |
CA | pancreatic carbonic anhydrase |
CCL | C-C chemokine motif ligand |
CD | cluster of differentiation |
CP | chronic pancreatitis |
CTGF | connective tissue growth factor |
CXCL | C-X-C chemokine motif ligand |
CXCR | C-X-C chemokine receptor |
DAMP | damage associated molecular pattern |
EC | endothelial cell |
Eφ | eosinophil |
FB | fibroblast |
FcγR | Immunoglobulin G fragment C gamma receptor |
FGFBP2 | fibroblast growth factor binding protein 2 |
FliC | flagellin |
GC | germinal center |
GWAS | genome-wide association study |
HLA | human leukocyte antigen |
H. pylori | Helicobacter pylori |
IgG4-RD | IgG4-related disease |
IFN | interferon |
IL | interleukin |
IRF-7 | interferon regulatory factor-7 |
K | lysine |
LF | lactoferrin |
LOXL2 | lysyl oxidase-like 2 |
MAMP | microbe-associated molecular pattern |
mCRP | monomeric C-reactive protein |
MFB | myofibroblast |
MMP | matrix metalloproteinase |
MST | mammalian STE20-like protein kinase |
Mφ | macrophage |
NLR | nucleotide-binding oligomerization domain like receptor |
P | proline |
PAMP | pathogen-associated molecular pattern |
PBMC | peripheral blood mononuclear cell |
PBP | plasminogen-binding protein |
pDC | plasmacytoid dendritic cell |
PDGF | platelet-derived growth factor |
PDGFB | platelet-derived growth factor B |
PMN | polymorphonuclear neutrophil |
Q | glutamine |
R | arginine |
RT-PCR | reverse transcriptase assisted polymerase chain reaction |
S | serine |
SIPS | systemic IgG4-related plasmacytic syndrome |
SLAMF7 | signaling lymphocytic activation molecule F7 |
SLE | systemic lupus erythematosus |
SNP | single nucleotide polymorphism |
SPINK1 | serine peptidase inhibitor, Kazal type 1 |
PST1 | pancreatic secretary trypsin inhibitor-1 |
PRSS1 | protease serine 1 (trypsin 1) |
ST2 | suppression of tumorigenicity 2 |
Tc | cytotoxic T lymphocyte |
TCN1 | transcobalamin 1 |
TEM | T cells with effector memory phenotype |
Tfh | follicular helper T cell |
TGF | transforming growth factor |
Th | helper T lymphocyte |
TIMP | tissue inhibitor of matrix metalloproteinase |
TLR | Toll-like receptor |
Treg | regulatory T lymphocyte |
UBR2 | ubiquitin–protein ligase E3 component n-region 2 |
References
- Kamisawa, T.; Zen, Y.; Pillai, S.; Stone, J.H. IgG4-related disease. Lancet 2015, 385, 1460–1471. [Google Scholar] [CrossRef]
- Yadlapati, S.; Verheyen, E.; Efthimiou, P. IgG4-related disease: A complex under-diagnosed clinical entity. Rheumatol. Int. 2018, 38, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Uchida, K. Current prospectives on autoimmune pancreatitis and IgG4-related disease. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2018, 94, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Maehara, T.; Moriyama, M.; Nakamura, S. Review of a novel disease entity, immunoglobulin G4-related disease. J. Korean Assoc. Oral Maxillofac. Surg. 2020, 46, 3–11. [Google Scholar] [CrossRef]
- Mahajan, V.S.; Mattoo, H.; Deshpande, V.; Pillai, S.S.; Stone, J.H. IgG4-related disease. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 315–347. [Google Scholar] [CrossRef]
- Stone, J.H.; Khosroshahi, A.; Deshpande, V.; Chan, J.K.C.; Heathcote, J.G.; Aalberse, R.; Azumi, A.; Bloch, D.B.; Brugge, W.R.; Carruthers, M.N.; et al. Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis Rheum. 2012, 64, 3061–3067. [Google Scholar] [CrossRef]
- Umehara, H.; Okazaki, K.; Masaki, Y.; Kawano, M.; Yamamoto, M.; Saeki, T.; Matsui, S.; Sumida, T.; Mimori, T.; Tanaka, Y.; et al. A novel clinical entity, IgG4-related disease (IgG4RD): General concept and detail. Mod. Rheumatol. 2012, 22, 1–14. [Google Scholar] [CrossRef]
- Della-Torre, E.; Mattoo, H.; Mahajan, V.S.; Deshpande, V.; Krause, D.; Song, P.; Pillai, S.; Stone, J.H. IgG4-related midline destructive lesion. Ann. Rheum. Dis. 2014, 73, 1434–1436. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, K.; Tomiyama, T.; Mitsuyama, T.; Sumimoto, K.; Uchida, K. Diagnosis and classification of autoimmune pancreatitis. Autoimmun. Rev. 2014, 13, 451–458. [Google Scholar] [CrossRef]
- Zen, Y.; Nakanuma, Y. IgG4-related disease: A cross-sectional study of 114 cases. Am. J. Surg. Pathol. 2010, 34, 1812–1819. [Google Scholar] [CrossRef]
- Deshpande, V.; Zen, Y.; Chan, J.K.C.; Yi, E.E.; Sato, Y.; Yoshino, T.; Klöppel, G.; Heathcote, J.G.; Khosroshahi, A.; Ferry, J.A.; et al. Consensus statement on the pathology of IgG4-related disease. Mod. Pathol. 2012, 25, 1181–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bledsoe, J.R.; Della-Torre, E.; Rovati, L.; Deshpande, V. IgG4-related disease: Review of the histopathologic features, differential diagnosis, and therapeutic approach. APMIS 2018, 126, 459–476. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Naden, R.P.; Chari, S.; Choi, H.K.; Della-Torre, E.; Dicaire, J.-F.; Hart, P.A.; Inoue, D.; Kawano, M.; Khosrashahi, A.; et al. The 2019 American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4 related disease. Ann. Rheum. Dis. 2019, 79, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Oguchi, T.; Ota, M.; Ito, T.; Hamano, H.; Arakura, N.; Katsuyama, Y.; Meguro, A.; Kawa, S. Investigation of susceptibility genes triggering lacrimal/salivary gland lesion complications in Japanese patients with type 1 autoimmune pancreatitis. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, F.; Tian, J.; Zhou, D.; Chen, L. Mst1 and Mst2 kinases: Regulations and diseases. Cell Biosci. 2013, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Siedel, C.; Schagdarsurengin, U.; Blumke, K.; Würl, P.; Pfeifer, G.P.; Hauptmann, S.; Taubert, H.; Dammann, R. Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol. Carcinog. 2007, 46, 865–871. [Google Scholar] [CrossRef]
- Fukuhara, T.; Tomiyama, T.; Yasuda, K.; Ueda, Y.; Ozaki, Y.; Son, Y.; Nomura, S.; Uchida, K.; Okazaki, K.; Kinashi, T. Hypermethylation of MST1 in IgG4-related autoimmune pancreatitis and rheumatoid arthritis. Biochem. Biophys. Res. Commun. 2015, 463, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Abuharbeid, S.; Czubayko, F.; Aigner, A. The fibroblasts growth factor-binding protein FGF-BP. Int. J. Biochem. Cell Biol. 2006, 38, 1463–1468. [Google Scholar] [CrossRef]
- Newman, J.H.; Shaver, A.; Sheehan, J.H.; Mallal, S.; Stone, J.H.; Pillai, S.; Bastarache, L.; Riebau, D.; Allard-Chamard, H.; Stone, W.M.; et al. IgG4-related disease: Association with a rare gene variant expression in cytotoxic T cells. Mol. Genet. Genomic Med. 2019, 7, e686. [Google Scholar] [CrossRef] [Green Version]
- Haruta, I.; Yanagisawa, N.; Kawamura, S.; Fukukawa, T.; Shimizu, K.; Kato, H.; Kobayashi, M.; Shiratori, K.; Yagi, J. A mouse model of autoimmune pancreatitis with salivary gland involvement triggered by innate immunity via persistent exposure to avirulent bacteria. Lab. Invest. 2010, 90, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, N.; Haruta, I.; Shimizu, K.; Fukukawa, T.; Higuchi, T.; Shibata, N.; Shiratori, K.; Yagi, J. Identification of commensal flora-associated antigen as a pathogenetic factor of autoimmune pancreatitis. Pancreatology 2014, 14, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Akitake, R.; Watanabe, T.; Zaima, C.; Uza, N.; Ida, H.; Tada, S.; Nishida, N.; Chiba, T. Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4-related sclerosing disease. Gut 2010, 59, 542–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Yamashita, K.; Fujikawa, S.; Sakurai, T.; Kudo, M.; Shiokawa, M.; Kodama, Y.; Uchida, K.; Okazaki, K.; Chiba, T. Involvement of activation of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis. Arthritis Rheum. 2012, 64, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Yamashita, K.; Sakurai, T.; Kudo, M.; Shiokawa, M.; Uza, N.; Kodama, Y.; Uchida, K.; Okazaki, K.; Chiba, T. Toll-like receptor activation in basophils contributes to the development of IgG4-related disease. J. Gastroenterol. 2013, 48, 247–253. [Google Scholar] [CrossRef]
- Suurmond, J.; Stoop, J.N.; Rivellese, F.; Bakker, A.M.; Huizinga, T.W.J.; Toes, R.E.M. Activation of human basophils by combined Toll-like receptor- and FcεRI-triggering can promote Th2 skewing of naïve T helper cells. Eur. J. Immunol. 2014, 44, 386–396. [Google Scholar] [CrossRef]
- Yanagawa, M.; Uchida, K.; Ando, Y.; Tomiyama, T.; Yamaguchi, T.; Ikeura, T.; Fukui, T.; Nishio, A.; Uemura, Y.; Miyara, T.; et al. Basophils activated via TLR signaling may contribute to pathophysiology of type 1 autoimmune pancreatitis. J. Gastroenterol. 2018, 53, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, M.; Schwartz, D.M.; Tandon, M.; Son, A.; Zeng, M.; Swaim, W.; Eckhaus, M.; Hoffman, V.; Cui, Y.; Xiao, B.; et al. Orai 1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 2017, 25, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Hamada, S.; Masamune, A.; Nabeshima, T.; Shimosegawa, T. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J. Exp. Med. 2018, 244, 113–117. [Google Scholar] [CrossRef]
- Kamata, K.; Watanabe, T.; Minaga, K.; Hara, A.; Yoshikawa, T.; Okamoto, A.; Yamao, K.; Takenaka, M.; Park, A.-M.; Kudo, M. Intestinal dysbiosis mediates experimental autoimmune pancreatitis via activation of plasmacytoid dendritic cells. Int. Immunol. 2019, 31, 795–809. [Google Scholar] [CrossRef]
- Deutsch, H.F. Carbonic anhydrases. Int. J. Biochem. 1987, 19, 101–113. [Google Scholar] [CrossRef]
- Inagaki, Y.; Jinno-Yoshida, Y.; Hamasaki, Y.; Ueki, H. A novel autoantibody reactive with carbonic anhydrase in sera from patients with systemic lupus erythematosus and Sjögren’s syndrome. J. Dermatol. Sci. 1991, 2, 147–154. [Google Scholar] [CrossRef]
- Nishimori, I.; Bratanova, T.; Toshkov, I.; Caffrey, T.; Mogaki, M.; Shibata, Y.; Hollingsworth, M.A. Induction of experimental autoimmune sialoadenitis by immunization of PL/j mice with carbonic anhydrase II. J. Immunol. 1995, 154, 4865–4873. [Google Scholar] [PubMed]
- Kino-Ohsaki, J.; Nishimori, I.; Morita, M.; Okazaki, K.; Yamamoto, Y.; Onishi, S.; Hollingsworth, M.A. Serum antibodies to carbonic anhydrase I and II in patients with idiopathic chronic pancreatitis and Sjogren’s syndrome. Gastroenterology 1996, 110, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Uchida, K.; Ohana, M.; Nakase, H.; Uose, S.; Inai, M.; Matsushima, Y.; Katamura, K.; Ohmori, K.; Chiba, T. Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology 2000, 118, 573–581. [Google Scholar] [CrossRef]
- Aparisi, L.; Farre, A.; Gomez-Cambronero, L.; Martinez, J.; De Las Heras, G.; Corts, J.; Navarro, S.; Mora, J.; Lopez-Hoyos, M.; Sabater, L.; et al. Antibodies to carbonic anhydrase and IgG4 levels in idiopathic chronic pancreatitis: Relevance for diagnosis of autoimmune pancreatitis. Gut 2005, 54, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Nishimori, I.; Miyaji, E.; Morimoto, K.; Nagao, K.; Kamada, M.; Onishi, S. Serum antibodies to carbonic anhydrase IV in patients with autoimmune pancreatitis. Gut 2005, 54, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Asada, M.; Nishio, A.; Uchida, K.; Kido, M.; Ueno, S.; Uza, N.; Kiriya, K.; Inoue, S.; Kitamura, H.; Ohashi, S.; et al. Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas 2006, 33, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Frulloni, L.; Lunardi, C.; Simone, R.; Dolcino, M.; Scattolini, C.; Falconi, M.; Benini, L.; Vantini, I.; Corrocher, R.; Puccetti, A. Identification of a novel antibody associated with autoimmune pancreatitis. N. Engl. J. Med. 2009, 361, 2135–2142. [Google Scholar] [CrossRef] [Green Version]
- Löhr, J.-M.; Faissner, R.; Koczan, D.; Bewerunge, P.; Bassi, C.; Brors, B.; Eils, R.; Frulloni, L.; Funk, A.; Halangk, W.; et al. Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: Gene and protein expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process. Am. J. Gastroenterol. 2010, 105, 2060–2071. [Google Scholar]
- Yamamoto, M.; Naishiro, Y.; Suzuki, C.; Kodai, Y.; Suzuki, R.; Honda, S.; Abe, T.; Takahashi, H.; Shinomura, Y. Proteomics analysis in 28 patients with systemic IgG4-related plasmacytic syndrome. Rheumatol. Int. 2010, 30, 565–568. [Google Scholar] [CrossRef]
- Castañón, M.S.; Zuliani, V.; Amodio, A.; Campagnola, P.; Granato, A.; Gabbrielli, A.; Benini, L.; Hoyos, M.L.; Frulloni, L. Role of amylase-2A autoantibodies in the diagnosis of autoimmune pancreatitis. Pancreas 2015, 44, 1078–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Shi, L.; Chen, P.; Yang, W.; Xun, Y.; Yang, C.; Zhao, L.; Zhou, Y.; Chen, G. Prohibitin is involved in patients with IgG4 related disease. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Perugino, C.A.; Ghebremichael, M.; Wallace, Z.S.; Montesi, S.B.; Stone, J.H.; Pillai, S. Disease severity linked to increase in autoantibody diversity in IgG4-related disease. Arthritis Rheumatol. 2020, 72, 687–693. [Google Scholar] [CrossRef]
- Salah, A.; Yoshifuji, H.; Ito, S.; Kitagori, K.; Kiso, K.; Yamada, N.; Nakajima, T.; Haga, H.; Tsuruyama, T.; Miyagawa-Hayashino, A. High expression of galectin-3 in patients with IgG4-related disease: A proteomic approach. Pathol. Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perugino, C.A.; Al Salem, S.B.; Mattoo, H.; Della-Torre, E.; Mahajan, V.; Ganesh, G.; Allard-Chamard, H.; Wallace, Z.; Montesi, S.B.; Kreuzer, J.; et al. Identification of galectin-3 as an auto-antigen in patients with IgG4-related disease. J. Allergy Clin. Immunol. 2019, 143, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Hubers, L.M.; Vos, H.; Schuurman, A.R.; Erken, R.; Oude Elferink, R.P.; Burgering, B.; van de Graaf, S.F.J.; Beuers, U. Annexin A11 is targeted by IgG4 and IgG1 autoantibodies in IgG4-related disease. Gut 2018, 67, 728–735. [Google Scholar] [CrossRef]
- Shiokawa, M.; Kodama, Y.; Sekiguchi, K.; Kuwada, T.; Tomono, T.; Kuriyama, K.; Yamazaki, H.; Morita, T.; Marui, S.; Sogabe, Y.; et al. Laminin 511 is a target antigen in autoimmune pancreatitis. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Pu, L.; Zhang, P.; Li, G. IgG4-related acute interstitial nephritis and the potential role of mCRP autoantibodies: A case report. Renal Fail. 2019, 41, 657–661. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S.; Nakazawa, T.; Ohara, H.; Sano, H.; Nakao, H.; Joh, T.; Murase, T.; Eimoto, T.; Itoh, M. Immunohistochemical study of autoimmune pancreatitis using anti-IgG4 antibody and patients’ sera. Histopathology 2005, 47, 147–158. [Google Scholar] [CrossRef]
- Shiokawa, M.; Kodama, Y.; Kuriyama, K.; Yoshimura, K.; Tomono, T.; Morita, T.; Kakiuchi, N.; Matsumori, T.; Mima, A.; Nishikawa, Y.; et al. Pathogenicity of IgG in patients with IgG4-related disease. Gut 2016, 65, 1322–1332. [Google Scholar] [CrossRef]
- Aalberse, R.C.; Stapel, S.O.; Schuurman, J.; Rispens, T. Immunoglobulin G4: An odd antibody. Clin. Exp. Allergy 2009, 39, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Punnonen, J.; Aversa, G.; Cocks, B.G.; McKenzie, A.N.; Menon, S.; Zurauski, G.; de Waal Malefyt, R.; de Vries, J.E. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc. Natl. Acad. Sci. USA 1993, 90, 3730–3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aalberse, R.C.; van der Gaag, R.; van Leeuwen, J. Serologic aspects of IgG4 antibodies. I. prolonged immunization results in an IgG4-restricted response. J Immunol. 1983, 130, 722–726. [Google Scholar] [PubMed]
- Platts-Mills, T.; Vaughan, J.; Squillace, S.; Woodfolk, J.; Sporik, R. Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: A population-based cross-sectional study. Lancet 2001, 357, 752–756. [Google Scholar] [CrossRef]
- Aalberse, R.C.; Platts-Mills, T.A.; Rispens, T. The developmental history of IgE and IgG4 antibodies in relation to atopy, eosinophilic esophagitis, and the modified TH2 response. Curr. Allergy Asthma Rep. 2016, 16, 45. [Google Scholar] [CrossRef]
- Jeannin, P.; Lecoanet, S.; Delneste, Y.; Gauchat, J.F.; Bonnefoy, J.Y. IgE versus IgG4 production can be differentially regulated by IL-10. J. Immunol. 1998, 160, 3555–3561. [Google Scholar]
- Van der Neut Kolfschoten, M.; Schuurman, J.; Losen, M.; Bleeker, W.K.; Martínez-Martínez, P.; Vermeulen, E.; den Bleker, T.H.; Wiegman, L.; Vink, T.; Aarden, L.A.; et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab-arm exchange. Science 2007, 317, 1554–1557. [Google Scholar] [CrossRef] [Green Version]
- Wood, N.; Bourque, K.; Donaldson, D.D.; Collins, M.; Vercelli, D.; Goldman, S.J.; Kasaian, M.T. IL-21 effects on human IgE production in response to IL-4 or IL-13. Cell Immunol. 2004, 231, 133–145. [Google Scholar] [CrossRef]
- Avery, D.T.; Bryant, V.L.; Ma, C.S.; de Waal Malefyt, R.; Tangye, S.G. IL-21-induced isotype switching to IgG and IgA by human naïve B cells is differentially regulated by IL-4. J. Immunol. 2008, 181, 1767–1779. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, M.; Yasuoka, H.; Yoshimoto, K.; Takeuchi, T. Interleukin-4 contributes to the shift of balance of IgG subclasses toward IgG4 in IgG4-related disease. Cytokine 2018, 110, 416–419. [Google Scholar] [CrossRef]
- Van der Zee, J.S.; van Swieten, P.; Aalberse, R.C. Serological aspects of IgG4 antibodies. II. IgG4 antibodies form small nonprecipitating immune complexes due to functional monovalency. J. Immunol. 1986, 137, 3566–3571. [Google Scholar]
- Van der Zee, J.S.; van Swieten, P.; Aalberse, R.C. Inhibition of complement activation by IgG4 antibodies. Clin. Exp. Immunol. 1986, 64, 415–422. [Google Scholar] [PubMed]
- Lei, D.K.; Saltoun, C. Allergen immunotherapy: Definition indications, and reactions. Allergy Asthma Proc. 2019, 40, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Sutton, B.J.; Davies, A.M.; Bax, H.J.; Karagiannis, S.N. IgE antibodies: From structure to function and clinical translation. Antibodies 2019, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.-R.; Song, A.; Bergelson, S.; Arroll, T.; Parekh, B.; May, K.; Chung, S.; Strouse, R.; Mire-Sluis, A.; Schenerman, M. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat. Rev. Drug Discov. 2011, 10, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Herbener, P.; Schönfeld, K.; König, M.; Germer, M.; Przyborski, J.M.; Bernöster, K.; Schüttrumpf, J. Functional relevance of in vivo half antibody exchange of an IgG4 therapeutic antibody-drug conjugate. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Aalberse, R.C.; Schuurman, J. IgG4 breaking the rules. Immunology 2002, 105, 9–19. [Google Scholar] [CrossRef]
- Schuurman, J.; van Ree, R.; Perdok, G.J.; van Doom, H.R.; Tan, K.Y.; Aalberse, R.C. Normal human immunoglobulin G4 is bispecific: It has two different antigen-combining sites. Immunology 1999, 97, 693–698. [Google Scholar] [CrossRef]
- Davies, A.M.; Rispens, T.; Ooijevaar-de Heer, P.; Gould, H.J.; Jefferis, R.; Aalberse, R.C.; Sutton, B.J. Structural determinants of unique properties of human IgG4-Fc. J. Mol. Biol. 2014, 426, 630–644. [Google Scholar] [CrossRef] [Green Version]
- Rispens, T.; Qoijevaar-de Heer, P.; Bende, O.; Aablerse, R.C. Mechanism of immunoglobulin G4 Fab-arm exchange. J. Am. Chem. Soc. 2011, 133, 10302–10311. [Google Scholar] [CrossRef]
- Davies, A.M.; Sutton, B.J. Human IgG4: A structural perspective. Immunol. Rev. 2015, 268, 139–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trampert, D.C.; Hubers, L.M.; van de Graaf, S.F.J.; Beuers, U. On the role of IgG4 in inflammatory conditions: Lessons for IgG4-related disease. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hao, M. Unique properties of IgG4 antibody and its clinical application in autoimmune pancreatitis. Scand. J. Gastroenterol. 2018, 53, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.-H.; Smith, R.I.; Morrison, S.L. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J. Exp. Med. 1993, 178, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Zack, D.J.; Stempniak, M.; Wong, A.L.; Weisbart, R.H. Localization of an Fc-binding reactivity to the constant region of human IgG4.Implications for the pathogenesis of rheumatoid arthritis. J. Immunol. 1995, 155, 5057–5063. [Google Scholar] [PubMed]
- Rock, B.; Martins, C.R.; Theofilopoulos, A.N.; Balderas, R.S.; Anhalt, G.J.; Labib, R.S.; Futamura, S.; Rivitti, E.A.; Diaz, L.A. The pathogenic effect of IgG4 autoantibodies in endemic pemphigus foliaceus (Fogo Selvagem). N. Engl. J. Med. 1989, 320, 1463–1469. [Google Scholar] [CrossRef]
- Huijbers, M.G.; Querol, L.A.; Niks, E.H.; Plomp, J.J.; van der Maarel, S.M.; Graus, F.; Dalmau, J.; Illa, I.; Verschuuren, J.J. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur. J. Neurol. 2015, 22, 1151–1161. [Google Scholar] [CrossRef]
- Liu, L.; Chang, B.; Wu, X.; Guo, Y.; Pan, Y.; Yang, L. Expression of phospholipase A2 receptor and IgG4 in patients with membranous nephropathy. Vasc. Health Risk Manag. 2018, 14, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Huijbers, M.G.; Plomp, J.J.; van der Maarel, S.M.; Verschuuren, J.J. IgG4-mediated autoimmune diseases: A niche of antibody-mediated disorders. Ann. N.Y. Acad. Sci. 2018, 1413, 92–103. [Google Scholar] [CrossRef]
- Kawano, M.; Saeki, T.; Nakashima, H.; Nishi, S.; Yamaguchi, Y.; Hisano, S.; Yamanaka, N.; Inoue, D.; Yamamoto, M.; Takahashi, H.; et al. Proposal for diagnostic criteria for IgG4-related kidney disease. Clin. Exp. Nephrol. 2011, 15, 615–626. [Google Scholar] [CrossRef]
- Muraki, T.; Hamano, H.; Ochi, Y.; Komatsu, K.; Komiyama, Y.; Arakura, N.; Yoshizawa, K.; Ota, M.; Kawa, S.; Kiyosawa, K. Autoimmune pancreatitis and complement activation system. Pancreas 2006, 32, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, V.; Chicano, S.; Finkelberg, D.; Selig, M.K.; Mino-Kenudson, M.; Brugge, W.R.; Colvin, R.B.; Lauwers, G.Y. Autoimmune pancreatitis: A systemic immune complex mediated disease. Am. J. Surg. Pathol. 2006, 30, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Cornell, L.D.; Chicano, S.L.; Deshpande, V.; Collins, A.B.; Selig, M.K.; Lauwers, G.Y.; Barisoni, L.; Colvin, R.B. Pseudotumors due to IgG4 immune-complex tubulointerstitial nephritis associated with autoimmune pancreatocentric disease. Am. J. Surg. Pathol. 2007, 31, 1586–1597. [Google Scholar] [CrossRef]
- Sugimoto, M.; Watanabe, H.; Asano, T.; Sato, S.; Takagi, T.; Kobayashi, H.; Ohira, H. Possible participation of IgG4 in the activation of complement in IgG4-related disease with hypocomplementemia. Mod. Rheumatol. 2016, 26, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konno, N.; Sugimoto, M.; Takagi, T.; Furuya, M.; Asano, T.; Sato, S.; Kobayashi, H.; Migita, K.; Miura, Y.; Aihara, T.; et al. Changes in N-glycans of IgG4 and its relationship with the existence of hypocomplementemia and individual organ involvement in patients with IgG4- related disease. PLoS ONE 2018, 13, e0196163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culver, E.L.; van de Bovenkamp, F.S.; Derksen, N.I.L.; Koers, J.; Cargill, T.; Barnes, E.; de Neef, L.A.; Koeleman, C.A.M.; Aelberse, R.C.; Wuhrer, M.; et al. Unique patterns of glycosylation in immunoglobulin subclass G4-related disease and primary sclerosing cholangitis. J. Gastroenterol. Hepatol. 2019, 34, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Kamisawa, T.; Anjiki, H.; Egawa, N.; Kubota, N. Allergic manifestations in autoimmune pancreatitis. Eur. J. Gastroenterol. Hepatol. 2009, 21, 1136–1139. [Google Scholar] [CrossRef]
- Van Toorenenbergen, A.W.; van Heerde, M.J.; van Buuren, H.R. Potential value of serum total IgE for differentiation between autoimmune pancreatitis and pancreatic cancer. Scand. J. Immunol. 2010, 72, 444–448. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, L.; Huang, Y.; Wang, T.; Shi, X.; Chang, H.; Yao, W.; Huang, X. Allergic diseases, immunoglobulin E, and autoimmune pancreatitis: A retrospective study of 22 patients. Chin. Med. J. 2014, 127, 4104–4109. [Google Scholar]
- Della-Torre, E.; Mattoo, H.; Mahajan, V.S.; Carruthers, M.; Pillai, S.; Stone, J.H. Prevalence of atopy, eosinophilia, and IgE elevation in IgG4-related disease. Allergy 2014, 69, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Punnonen, J.; de Waal Malefyt, R.; van Vlasselaer, P.; Gauchat, J.F.; de Vries, J.E. IL-10 and viral IL-10 prevent IL-4-induced IgE synthesis by inhibiting the accessory cell function of monocytes. J. Immunol. 1993, 151, 1280–1289. [Google Scholar]
- Lin, A.A.; Freeman, A.F.; Nutman, T.B. IL-10 indirectly downregulates IL-4-induced IgE production by human B cells. Immunohorizons 2018, 2, 398–406. [Google Scholar] [CrossRef]
- Schülke, S. Induction of interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Front. Immunol. 2018, 9, 455. [Google Scholar] [CrossRef]
- Saeki, T.; Kobayashi, D.; Ito, T.; Tamura, M.; Yoshikawa, S.; Yamazaki, H. Comparison of clinical and laboratory features of patients with and without allergic conditions in IgG4-related disease: A single-center experience in Japan. Mod. Rheumatol. 2018, 28, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Culver, E.L.; Sadler, R.; Bateman, A.C.; Makuch, M.; Cargill, T.; Ferry, B.; Aalberse, R.; Barnes, E.; Rispens, T. Increases in IgE, eosinophils, and mast cells can be used in diagnosis and to predict relapse of IgG4-related disease. Clin. Gastroenterol. Hepatol. 2017, 15, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Della-Torre, E.; Germanò, T.; Ramirez, G.A.; Dagna, L.; Yacoub, M.R. IgG4-related disease and allergen-specific immunotherapy. Ann. Allergy Asthma Immunol. 2020, 124, 631–633. [Google Scholar] [CrossRef]
- Touzani, F.; Pozdzik, A. New insights into immune cells cross-talk during IgG4-related disease. Clin. Immunol. 2019, 198, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Maehara, T.; Moriyama, M.; Nakashima, H.; Miyake, K.; Hayashida, J.-N.; Tanaka, A.; Shinozaki, S.; Kubo, Y.; Nakamura, S. Interleukin-21 contributes to germinal center formation and immunoglobulin G4 production in IgG4-related dacryoadenitis and sialoadenitis, so-called Mikulicz’s disease. Ann. Rheum. Dis. 2012, 71, 2011–2019. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Zhang, P.; Chen, H.; Chen, Y.; Yang, H.; Zheng, W.; Zhang, X.; Zhang, F.; Zhang, W.; Lipsky, P.E. Circulating plasmablasts/plasma cells: A potential biomarker for IgG4-related disease. Arthritis Res. Ther. 2017, 19, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carruthers, M.N.; Topazian, M.D.; Khosroshahi, A.; Witzig, T.E.; Wallace, Z.S.; Hart, P.A.; Deshpande, V.; Smyrk, T.C.; Chari, S.; Stone, J.H. Rituximab for IgG4-related disease: A prospective, open-label trial. Ann. Rheum. Dis. 2015, 74, 1171–1177. [Google Scholar] [CrossRef]
- Xiao, X.; Lian, M.; Zhang, W.; Gershwin, M.E.; Ma, X. The immunologic paradoxes of IgG4-related disease. Clin. Rev. Allergy Immunol. 2018, 54, 344–351. [Google Scholar] [CrossRef]
- Sumimoto, K.; Uchida, K.; Kusuda, T.; Mitsuyama, T.; Sakaguchi, Y.; Fukui, T.; Matushita, M.; Takaoka, M.; Nishio, A.; Okazaki, K. The role of CD19+CD24highCD38high and CD19+CD24highCD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis. Pancreatology 2014, 14, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Jin, L.; Chen, H.; Wu, Q.; Fei, Y.; Zheng, W.; Wang, Q.; Li, P.; Li, Y.; Zhang, W.; et al. B cell subsets and dysfunction of regulatory B cells in IgG4-related diseases and primary Sjögren’s syndrome: The similarities and differences. Arthritis Res. Ther. 2014, 16, R118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, K.; Clauder, A.-K.; Manz, R.A. Targeting B cells and plasma cells in autoimmune diseases. Front. Immunol. 2018, 9, 835. [Google Scholar] [CrossRef] [PubMed]
- Lanzillotta, M.; Della-Torre, E.; Milani, R.; Bozzolo, E.; Bozzalla-Cassione, E.; Rovati, L.; Arcidiacono, P.G.; Pattelli, S.; Falconi, M.; Ciceri, F.; et al. Effects of glucocorticoids on B-cell subpopulations in patients with IgG4-related disease. Clin. Exp. Rheumatol. 2019, 37, S159–S166. [Google Scholar]
- Fukui, M.; Ogawa, Y.; Shimmura, S.; Hatou, S.; Ichihashi, Y.; Yaguchi, S.; Hirayama, M.; Kawakita, T.; Tsubota, K. Possible involvement of epithelial-mesenchymal transition in fibrosis associated with IgG4-related Mikulicz’s disease. Mod. Rheumatol. 2015, 25, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, L.A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 2016, 38, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Masunaga, A.; Ishibashi, F.; Koh, E.; Oide, T.; Sekine, Y.; Hiroshima, K. Possible relationship between fibrosis of IgG4-related thymitis and the profibrotic cytokines, transforming growth factor beta 1, interleukin 1 beta and interferon gamma: A case report. Diagn. Pathol. 2018, 13, 6. [Google Scholar] [CrossRef]
- Sziksz, E.; Pap, D.; Lippai, R.; Béres, N.J.; Fekete, A.; Szabó, A.; Vannay, A. Fibrosis related inflammatory mediators: Role of the IL-10 cytokine family. Mediat. Inflamm. 2015. [Google Scholar] [CrossRef]
- Kotsiou, O.S.; Gourgoulianis, K.I.; Zarogiannis, S.G. IL-33/ST2 axis in organ fibrosis. Front. Immunol. 2018, 9, 2432. [Google Scholar] [CrossRef] [Green Version]
- Kawashiri, S.-Y.; Origuchi, T.; Umeda, M.; Nishino, A.; Shimizu, T.; Fukui, S.; Koga, T.; Iwamoto, N.; Ichinose, K.; Tamai, M.; et al. Association of serum levels of fibrosis-related biomarkers with disease activity in patients with IgG4-related disease. Arthritis Res. Ther. 2018, 20, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francois, A.; Chatelus, E.; Wachsmann, D.; Sibilia, J.; Bahram, S.; Alsaleh, G.; Gottenberg, J.-E. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res. Ther. 2013, 15, R168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della-Torre, E.; Feeney, E.; Deshpande, V.; Mattoo, H.; Mahajan, V.; Kulikova, M.; Wallace, Z.S.; Carruthers, M.; Chung, R.T.; Pillai, S.; et al. B-cell depletion attenuates serological biomarkers of fibrosis and myofibroblast activation in IgG4-related disease. Ann. Rheum. Dis. 2015, 74, 2236–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della-Torre, E.; Rigamonti, E.; Perugino, C.; Baghai-Sain, S.; Sun, N.; Kaneko, N.; Maehara, T.; Rovati, L.; Ponzoni, M.; Milani, R.; et al. B lymphocytes directly contribute to tissue fibrosis in patients with IgG4-related disease. J. Allergy Clin. Immunol. 2020, 145, 968–981. [Google Scholar] [CrossRef] [Green Version]
- Puente, A.; Fortea, J.I.; Cabezas, J.; Loste, M.T.A.; Iruzubieta, P.; Llerena, S.; Huelin, P.; Fábrega, E.; Crespo, J. LOXL2—A new target in antifibrogenic therapy? Int. J. Mol. Sci. 2019, 20, 1634. [Google Scholar] [CrossRef] [Green Version]
- Perugino, C.A.; Kaneko, N.; Maehara, T.; Mattoo, H.; Kers, J.; Allard-Chamard, H.; Mahajan, V.S.; Liu, H.; Della-Torre, E.; Murphy, S.J.H.; et al. CD4+ and CD*+ cytotoxic T lymphocytes may induce mesenchymal cell apoptosis in IgG4-related disease. J. Allergy Clin. Immunol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Watamabe, T.; Minaga, K.; Kamata, K.; Kudo, M. Cytokines produced by innate immune cells in IgG4-related disease. Mod. Rheumatol. 2019, 29, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, Y.; Yamashita, K.; Kuriyama, K.; Shiokawa, M.; Kodama, Y.; Sakurai, T.; Mizugishi, K.; Uchida, K.; Kadowaki, N.; Takaori-Kondo, A.; et al. Plasmacytoid dendritic cell activation and IFN-α production are prominent production are prominent features of murine autoimmune pancreatitis and human IgG4-related autoimmune pancreatitis. J. Immunol. 2015, 195, 3033–3044. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Yamashita, K.; Arai, Y.; Minaga, K.; Kamata, K.; Nagai, T.; Komeda, Y.; Takenaka, M.; Hagiwara, S.; Ida, H.; et al. Chronic fibro-inflammatory responses in autoimmune pancreatitis depend on IFN-α production are prominent features of murine autoimmune pancreatitis and human IgG4-related autoimmune pancreatitis. J. Immunol. 2017, 198, 3886–3896. [Google Scholar] [CrossRef] [Green Version]
- Minaga, K.; Watanabe, T.; Arai, Y.; Shiokawa, M.; Hara, A.; Yoshikawa, T.; Kamata, K.; Yamashita, K.; Kudo, M. Activation of interferon regulatory factor 7 in plasmacytoid dendritic cells promotes experimental autoimmune pancreatitis. J. Gastroenterol. 2020, 55, 565–576. [Google Scholar] [CrossRef]
- Furukawa, S.; Moriyama, M.; Miyake, K.; Nakashima, H.; Tanaka, A.; Maehara, T.; Iizuka-Koga, M.; Tsuboi, H.; Hayashida, J.-N.; Ishiguro, N.; et al. Interleukin-33 produced by M2 macrophages and other immune cells contributes to Th2 immune reaction of IgG4-related disease. Sci. Rep. 2017, 7, 42413. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, N.; Moriyama, M.; Furusho, K.; Furukawa, S.; Shibata, T.; Murakami, Y.; Chinju, A.; Rafiul Haque, A.S.M.; Gion, Y.; Ohta, M.; et al. Activated M2 mcrophages contribute to the pathogenesis of IgG4-related disease via Toll-like receptor 7/interleukin-33 signaling. Arthritis Rheumatol. 2020, 72, 166–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuboi, H.; Matsuo, N.; Iizuka, M.; Tsuzuki, S.; Kondo, Y.; Tanaka, A.; Moriyama, M.; Matsumoto, I.; Nakamura, S.; Sumida, T. Analysis of IgG4 class switch-related molecules in IgG4-related disease. Arthritis Res. Ther. 2012, 14, R171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, H.; Uchida, K.; Taniguchi, T.; Yazumi, S.; Matsushita, M.; Takaoka, M.; Okazaki, K. Circulating naïve and CD4+CD25high regulatory T cells in patients with autoimmune pancreatitis. Pancreas 2008, 36, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Wurster, A.L.; Rodgers, V.L.; Satoskar, A.R.; Whitters, M.J.; Young, D.A.; Collins, M.; Grusby, M.J. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naïve Th cells into interferon gamma-producing Th1 cells. J. Exp. Med. 2002, 196, 969–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, S.; Nakayamada, S.; Zhao, J.; Yashikawa, M.; Miyazaki, Y.; Nawata, A.; Hirata, S.; Nakano, K.; Saito, K.; Tanaka, Y. Correlation of T follicular helper cells and plasmablasts with the development of organ involvement in patients with IgG4-related disease. Rheumatology 2018, 57, 514–524. [Google Scholar] [CrossRef] [Green Version]
- Cargill, T.; Makuch, M.; Sadler, R.; Lighaam, L.C.; Peters, R.; van Ham, M.; Klenerman, P.; Bateman, A.; Rispens, T.; Barnes, E.; et al. Activated T-follicular helper 2 cells are associated with disease activity in IgG4-related sclerosing cholangitis and pancreatitis. Clin. Transl. Gastroenterol. 2019, 10. [Google Scholar] [CrossRef]
- Grados, A.; Ebbo, M.; Piperoglou, C.; Groh, M.; Regent, A.; Samson, M.; Terrier, B.; Loundou, A.; Morel, N.; Audia, S.; et al. T cell polarization toward TH2/TFH2 and TH17/TFH17 in patients with IgG4-related disease. Front. Immunol. 2017, 8, 235. [Google Scholar] [CrossRef]
- Mattoo, H.; Mahajan, V.S.; Maehara, T.; Deshpande, V.; Della-Torre, E.; Wallace, Z.S.; Kulikova, M.; Drijvers, J.M.; Daccache, J.; Carruthers, M.N.; et al. Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related disease. J. Allergy Clin. Immunol. 2016, 138, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Maehara, T.; Mattoo, H.; Ohta, M.; Mahajan, V.S.; Moriyama, M.; Yamauchi, M.; Drijvers, J.; Nakamura, S.; Stone, J.H.; Pillai, S.S. Lesional CD4+IFN-γ cytotoxic T lymphocytes in IgG4-related dacryoadenitis and sialoadenitis. Ann. Rheum. Dis. 2017, 76, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Mattoo, H.; Stone, J.H.; Pillai, S. Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease. Autoimmunity 2017, 50, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, T.M.; Li, C.K.F.; Chiu, C.S.C.; Huang, A.K.Y.; Perkins, M.; Liebner, J.C.; Lambkin-Williams, R.; Gilbert, A.; Oxford, J.; Nicholas, B.; et al. Pre-existing influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 2012, 18, 274–280. [Google Scholar] [CrossRef]
- Della-Torre, E.; Bozzalla-Cassione, E.; Sciorati, C.; Ruggiero, E.; Lanzillotta, M.; Bonfiglio, S.; Mattoo, H.; Perugino, C.A.; Bozzolo, E.; Rovati, L.; et al. A CD8α- subset of CD4+SLAMF7+ cytotoxic T cells is expanded in patients with IgG4-related disease and decreases following glucocorticoid treatment. Arthritis Rheumatol. 2018, 70, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Kessel, A.; Haj, T.; Peri, R.; Snir, A.; Melamed, D.; Sabo, E.; Toubi, E. Human CD19+CD25high B regulatory cells suppress proliferation of CD4+ T cell and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun. Rev. 2012, 11, 670–677. [Google Scholar] [CrossRef] [PubMed]
(1) Clinical manifestations [1,2,3,4,5,6,7,8] | |
Type 1 autoimmune pancreatitis | IgG4-related pachymeningitis |
IgG4-related dacryoadenitis | IgG4-related hypophysitis |
IgG4-related sialoadenitis | IgG4-related aortitis/periaortitis/arteritis /mediastinitis/mesenteritis |
Küttner’s tumor (submandibular sialodenitis) | IgG4-related pleuritis/pericarditis |
Mikulicz’s disease (sialoadenitis +dacryoadenitis) | InG4-related mastitis |
IgG4-related orbital myositis | Ormond’s disease (retroperitoneal fibrosis) |
Riedel’s thyroiditis | IgG4-related membranous glomerulonephritis |
IgG4-related allergic rhinitis | IgG4-related ureteritis/urethritis |
IgG4-related asthma | IgG4-related prostatitis |
IgG4-related chronic rhinosinusitis | IgG4-related skin diseases |
IgG4-related lung disease / pseudotumor | IgG4-related lymphadenopathy IgG4-related midline destruction lesion |
IgG4-related sclerosing cholangitis | |
IgG4-related cholecystitis | |
IgG4-related hepatitis | |
(2) Characteristic histopathologicalfeatures [9,10,11,12] | |
Lymphoplasmacytic infiltration: IgG4 (+) plasma cell/IgG (+) plasma cell ratio >40% | |
Storiform fibrosis: irregular whorled organization of the collagen bundles throughout the tissue led by the activation of myofibroblasts after profibrotic stimuli of inflammation | |
Eosinophil, but not neutrophil infiltration, is commonly present Absence of granuloma or tissue necrosis | |
Obliterative phlebitis: partial or complete obliteration of medium-sized veins by lymphoplasmacytic cell infiltration appearing as an inflammatory nodule next to a patent artery |
(1) Genetic loci |
KLF7, FRMD4B, LOC101928923, MPPED2 in Japanese AIP associated with lacrimal/salivary gland lesions [14] Decreased MST1 of regulatory T in Japanese AIP with extra-pancreatic lesions [17] |
FGFBP2 (fibroblast growth factor binding protein type 2): single base deletion in IgG4-RD [19] |
(2) Persistent exposure of intestinal commensal flora antigen in mouse AIP model |
Avirulent E. coli (as PAMP activator) induces anti-CA II, anti-LF and ANA in mouse AIP with salivary gland involvement [20] |
Commensal E. coli-derived membrane protein flagellin (FliC) induces AIP-like inflammation in mouse model [21] |
Intestinal microflora can activate TLRs and NLRs on basophils to promote Th2 skewing and IgG4 production in the presence of BAFF [22,23,24,25,26] |
(3) Intestinal dysbiosis-mediated AIP development via pDC activation |
Decrease in gut Bacteroides, Streptococcus and Clostridium species in patients with AIP, compared to chronic pancreatitis [28] |
Activation of pDC by innate immune responses against intestinal dysbiosis in experimental mouse AIP [29] |
Anti-carbonic anhydrase II [33,34,35] |
Anti-carbonic anhydrase I [33] and IV [36] |
Anti-pancreatic secretary trypsin inhibitor-1 (PST1) [37] |
Anti-plasminogen-binding protein (PBP) of H. pylori [38] |
Anti-pancreatic trypsinogens PRSS1 and PRSS2 [39] |
Anti-13.1 kDa protein in systemic IgG4-related plasmacytic syndrome (SIPS) [40] |
Anti-amylase-2A [41] |
Anti-prohibitin [42,43] |
Anti-galectin-3 [43,45] |
Anti-annexin A11 [43,46] |
Anti-laminin 511-E8 [43,47] |
Anti-monomeric C-reactive protein (mCRP) in acute interstitial nephritis [48] |
Parameters | IgE | IgG4 |
---|---|---|
Class-switch by | IL-4, IL-13 [52] | IL-4, IL-13 [52], IL-10 |
Enhanced secretion by | IL-5, IL-6, IL-7, IL-9 & IL-13 [52,55,57] | IL-10 [56], IL-21 [58,59,60] |
Surface receptor binding | FcγR on mast cells and basophils | Low binding to FcγR on immune cells [51,66,67] |
Precipitating immune complexes formation | (+) | (-) [61,62,66,67] |
Complement activation | (+) | (-) [62,66,67] |
Unique immunological effects | Allergic reaction | Anti-allergen antibody [51,53,54,64] |
Therapeutic application | Anti-cancer IgE antibody [54] | Non-inflammatory monoclonal antibody [57,62,63,64,65,73] |
IgG4 antibodies undergo a process of “Fab–arm exchange” to become half-antibodies with monovalency incapable of C1q activation and with low binding affinity to FcγRII and FcγRIII resulting in non-inflammatory property [51,62,67,68,69,70,71,72,73] |
Anti-allergic effect by attenuation of Th2 cytokine-mediated inflammation and immunosuppression [51,53,54,63,72] |
Exhibition of rheumatoid factor-like activity by Fc–Fc aggregation to resume activating complements [51,75] |
IgG4 obtained from IgG4-RD subjects binds to normal epithelial cells of pancreato–hepatobiliary tissues and salivary glands in vitro [49] |
Pathologic effects in certain autoimmune diseases including pemphigus foliaceus, muscle-specific kinase myasthenia gravis (MuSK MG) and idiopathic membranous nephropathy [76,77,78,79,80] |
Complement activation and hypocomplementemia in IgG4-RD with unique-pattern glycosylation [81,82,83,84,85,86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, S.-C.; Shen, C.-Y.; Liao, H.-T.; Chen, M.-H.; Wu, C.-H.; Li, K.-J.; Lu, C.-S.; Kuo, Y.-M.; Tsai, H.-C.; Tsai, C.-Y.; et al. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease. Int. J. Mol. Sci. 2020, 21, 5082. https://doi.org/10.3390/ijms21145082
Hsieh S-C, Shen C-Y, Liao H-T, Chen M-H, Wu C-H, Li K-J, Lu C-S, Kuo Y-M, Tsai H-C, Tsai C-Y, et al. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease. International Journal of Molecular Sciences. 2020; 21(14):5082. https://doi.org/10.3390/ijms21145082
Chicago/Turabian StyleHsieh, Song-Chou, Chieh-Yu Shen, Hsien-Tzung Liao, Ming-Han Chen, Cheng-Han Wu, Ko-Jen Li, Cheng-Shiun Lu, Yu-Min Kuo, Hung-Cheng Tsai, Chang-Youh Tsai, and et al. 2020. "The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease" International Journal of Molecular Sciences 21, no. 14: 5082. https://doi.org/10.3390/ijms21145082