Next Article in Journal
NKX6.1 Represses Tumorigenesis, Metastasis, and Chemoresistance in Colorectal Cancer
Next Article in Special Issue
Aquilariae Lignum Methylene Chloride Fraction Attenuates IL-1β-Driven Neuroinflammation in BV2 Microglial Cells
Previous Article in Journal
Cbl Negatively Regulates NLRP3 Inflammasome Activation through GLUT1-Dependent Glycolysis Inhibition
Previous Article in Special Issue
Berberine Derivatives Suppress Cellular Proliferation and Tumorigenesis In Vitro in Human Non-Small-Cell Lung Cancer Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms

by
Przemysław Sitarek
1,*,
Anna Merecz-Sadowska
2,
Tomasz Kowalczyk
3,
Joanna Wieczfinska
4,
Radosław Zajdel
2 and
Tomasz Śliwiński
5
1
Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
2
Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland
3
Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
4
Department of Immunopathology, Medical University of Lodz, 90-752 Lodz, Poland
5
Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2020, 21(14), 5105; https://doi.org/10.3390/ijms21145105
Submission received: 26 June 2020 / Revised: 13 July 2020 / Accepted: 16 July 2020 / Published: 19 July 2020

Abstract

:
The skin is an important organ that acts as a physical barrier to the outer environment. It is rich in immune cells such as keratinocytes, Langerhans cells, mast cells, and T cells, which provide the first line of defense mechanisms against numerous pathogens by activating both the innate and adaptive response. Cutaneous immunological processes may be stimulated or suppressed by numerous plant extracts via their immunomodulatory properties. Several plants are rich in bioactive molecules; many of these exert antimicrobial, antiviral, and antifungal effects. The present study describes the impact of plant extracts on the modulation of skin immunity, and their antimicrobial effects against selected skin invaders. Plant products remain valuable counterparts to modern pharmaceuticals and may be used to alleviate numerous skin disorders, including infected wounds, herpes, and tineas.

Graphical Abstract

1. Introduction

Dermatological disorders are the fourth leading cause among nonfatal disability worldwide [1]. In family medicine, the prevalence of skin disease accounts for 12.4% of all disorders [2] and depends on sociodemographic circumstances [3]. Premature death associated with skin disorders is the 18th leading cause of health burden [4].
Bacteria, viruses, and fungi are common pathogens which affect skin. Fungal skin disease counts towards the top 10 most prevalent diseases globally, whereas bacterial (impetigo) and viral (molluscum contagiosum/warts) skin diseases are in the top fifteen [4]. The first line of defense is the epidermis, which acts as a physical barrier [5]. This is supported by the skin immune response, which reacts after wounding and infection [6]. The clinical manifestations and severity of skin infections varies according to disease.
Medicinal plants have been used in traditional medicine for several thousand years in virtually all cultures. About 200 years ago, our pharmacopoeia was dominated by herbal medicines [7] and about 25% of the natural compounds prescribed worldwide came from plants [8]. Historically, all medicinal preparations were derived from plants, whether as plant parts (leaf, rhizome, roots, stem, bark or fruits) or as crude extracts or mixtures. Plant extracts contain a number of bioactive compounds of different classes, including alkaloids, terpenoids, and polyphenols, possess numerous activities, such as antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory, and anti-obesity [9,10,11,12,13,14], and have been used in various disorders, such as cardiovascular diseases, rheumatoid arthritis, osteoporosis, and skin diseases [15,16,17,18,19]. During the last few decades, the use of traditional medicine has expanded globally and has gained popularity as primary health care in developing countries, and in countries where conventional medicine is predominant [20].
Plant medicines also provide a rational means of treating many diseases that are incurable in other systems of medicine [21,22,23,24]. According to the World Health Organization (WHO), about 80% of the world’s population in developing countries depends essentially on plants for their primary healthcare and lack access to modern medicine. Additionally, of the 252 drugs considered as basic and essential by the WHO, 11% are exclusively of plant origin and a significant number are synthetic drugs obtained from natural precursors [25,26,27].
In dermatology, plants can have both beneficial and adverse effects on skin. The book “Botanical Dermatology” by Mitchell and Rook lists more than 10,000 species which cause irritative or allergic contact dermatitis [28]. Phytodermatitis is defined as inflammation of the skin caused by a plant. The clinical patterns may be allergic phytodermatitis, photophytodermatitis, irritant contact dermatitis, pharmacological injury, and mechanical injury [29,30]. The data supporting the use of phytotherapy are limited and therapies may not be regulated and standardized [31]. However, with the development of technology, it has become possible to determine the pharmacology and mechanisms of action of medical plants and they have already made fruitful contributions for modern medicine [20]. Moreover, about one-third of all traditional medicines are used to heal skin diseases, compared with just 1–3% of modern drugs [32,33,34,35]. A review of the literature published over the past five years indicates a number of plant extracts that demonstrate antibacterial, antifungal or antiviral activity against skin diseases.
The aim of this study was to evaluate the role of plant extracts in the modulation of the cutaneous immunological response. It also examines their activity against selected skin pathogens, including bacteria, viruses, and fungi, with a focus on the molecular mechanisms of their action against skin invaders.

2. Immunological Response of the Skin

The skin is the largest organ of the human body, and one which plays an important role in protecting the body from harmful exposure to external and internal environments. It is not only a physical barrier but also an immunological one. The cutaneous immune response involves keratinocytes and Langerhans cells (LCs) located in the outer layer, the epidermis, as well as mast cells residing in the dermis, and T cells in both layers [6]. They are responsible for innate and adaptive immunological reactions which promote cutaneous inflammation and memory response against antigens [36]. Innate immunity is a nonspecific rapid response, whose role is to activate phagocytes to neutralize microorganisms like bacteria, viruses, and fungi by phagocytosis [37]. In contrast, adaptive immunity is a long-lived process that requires interaction between T lymphocytes; these are subdivided into two groups, CD4 and CD8, depending on the presence of cell surface molecules and the cells presenting the antigens. This creates an immunological effector pathway specific for particular pathogens and initiation of the lymphocyte immunologic memory. These processes are crucial for maintaining immune homeostasis in the body and protect against harmful pathogens [38,39].
Keratinocytes, LCs, T lymphocytes, and mast cells express pathogen-recognition receptors (PRRs). Toll-like receptors (TLRs), members of that group, are involved in the host defense process against various pathogenic microorganisms. Thus far, thirteen TLRs have been identified in mammals. Each TLR detects different microbial components. TLR2/1 recognizes lipopeptides, TLRs 3/7/8/13 identify RNA, lipopolysaccharide (LPS) for TLR4, TLR5 recognize flagellin, TLR9 identify unmethylated CpG islands in DNA, profilin and Salmonella flagellin for TLR11, and profilin for TLR 12 [40,41]. Toll signaling pathways activate a wide range of genes via induction transcription factor NF-κB, AP-1, and interferon regulatory factors 3 and 7 (IRF3/7); these stimulate the expression of a variety of biologically active molecules. The most important secreted molecules are: tumor necrosis factor α (TNF); interleukins (IL) IL-1β, IL-6, IL-12 belonging to the cytokine family; IL-8, growth-regulated oncogene-α (GRO-α); monocyte chemoattractant protein (MCP) -1, -2, -3, -4; macrophage inflammatory protein-1 (MIP1) α/β; RANTES (regulated upon activation, normal T cell expressed and secreted) chemokine members; beta-defensins and cathelicidin antimicrobial agents; CD40, CD80 and CD86 co-stimulatory compounds; ICAM-1, which takes part in cell adhesion [42]. The adapter proteins include MyD88, Toll-interleukin 1 receptor domain-containing adapter protein (TIRAP), Toll-interleukin 1 receptor domain-containing adapter-inducing interferon-β (TRIF), and TRIF-related adapter molecule (TRAM). All TLRs, except TLR3, recruit MyD88. MyD88 initiates a downstream signaling cascade that results in the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein 1 (AP-1) and IRF3/7 and the expression of pro-inflammatory cytokines and antimicrobials. TIRAP and MyD88 are necessary for TLRs 2 and TLRs 4 initiation signaling of NFκB and mitogen-activated protein (MAP) kinases. TLR3 utilizes TRIF and especially stimulated IRF3/7, involved in the production of type I interferon (i.e., IFNα and IFNβ), which is important in the immune response against viruses. These mechanisms play an important role in the cutaneous immune response against numerous pathogens [40,42,43].

3. Modulation of Skin Immunity by Plant Extracts

Natural active compounds contained in plant extracts may impact on cutaneous immunological processes. Phytochemicals may act both as factors boosting immune response, but also as anti-inflammatory ones. Most of these studies were performed in vitro using the keratinocytes and mast cells. Keratinocytes are epidermal cells that act as structural elements [44]. Mast cells are on the upper dermal layer of the skin. Both play a role in skin immunity. Mast cells are activated by numerous factors, including microbial products. This is followed by degranulation and the release of various mediators, such as serine proteinases, histamine, cytokines, chemokines, and growth factors [45,46,47].
On the one hand, activation of skin immunity responses may make the immune system reactive and effective, accounting for the clinical prevention and treatment of skin disorders through direct application. A wide range of plants may be responsible. A study performed on human keratinocytes treated with bark of Rauvolfia nukuhivensis indicated that this extract inhibits keratinocyte hyperproliferation upon stimulation with IL-22 [48]. Another study also conducted on keratinocytes treated with arabinogalactan proteins derived from Acacia senegal and Adansonia digitata seeds showed upregulation of IL-1β genes, associated with inflammation [49]. An in vitro study on guinea pig skin showed that Sinapis alba L. (white mustard) administration is responsible for a reduction in LCs density and enhanced the release of IL-1 and TNF-α [50].
On the other hand, plant extracts have been shown to exert a beneficial role in inhibiting the activation of cells taking part in cutaneous immunological response. Several lines of evidence suggest that plant extracts are able to inhibit mast cells activation. Mast cells have secretary granules containing inflammatory mediators. Activation results in degranulation. Among plant extracts, Vitex rotundifolia leaf, Prunus sargentii leaf, Lycoris aurea underground part, Hydrangea serrata for acuminata aboveground part, Prunus takesimensis stem-bark, Clintonia udensis whole plant, and Rhamnus davurica leaf are the examples that significantly impact on degranulation and inhibit the process in mouse bone marrow-derived mast cells and RBL-2H3 cells. It has also been investigated that roots of Sanguisorba officinalis have the ability to degranulate IgE/Ag-activated mouse bone marrow-derived mast cells [51,52]. A study conducted on Wistar rat peritoneal mast cells suggests inhibition of histamine release upon treatment with Schizonepeta tenuifolia whole plant extract [53]. Rhamnus davurica leaf extract demonstrated the potent inhibitory effect on Fyn factors belonging to the Src family kinase that have a role in the activation of Syk followed by activation of downstream signaling cascades, leading to mast cell activation [54]. Moreover, it has been shown that phenol-rich plants such as leaves of Camellia sinensis and Ocimum basilicumn are able to stabilize mastocytes and thus, their antioxidant activity [55]. In keratinocytes, Sanguisorba officinalis roots suppressed chemokine production triggered by TNF-α and IFN-γ [51]. Paeonia lactiflora Pallas root extract acts as an inhibitor of expression crucial cytokines in keratinocytes, such as IL-6, IL-8, and TNF-α through downregulation of the NF-κB pathway [56].
Additionally, the dysregulation of skin immunity response may result in skin inflammatory diseases often related to abnormal expression of the mediators. In such cases, a plant extract with anti-inflammatory potential is needed. Cannabis sativa flower extract takes part in the downregulation of genes strictly related to inflammation and the mode of the NF-κB pathway in a human keratinocyte line [57]. The inhibitory effect of Artemisia argyi leaf extract on IFN-γ, TNF-α, IL-6, and IL-10 and immune cell infiltration on male Balb/c mice were assessed [58]. Another study was conducted on Swiss albino mice with induced edema. Two leaf extracts from Kalanchoe brasiliensis and Kalanchoe pinnata were administered topically and both of them had an inhibitory effect on myeloperoxidase activity, the levels of IL-1β, and TNF-α (pro-inflammatory cytokines) and increased the levels of IL-10 (anti-inflammatory) [59].
These plant extracts can act as modulators of skin immunity processes and possess immunologically as well as dermatologically active compounds. They exert a beneficial effect on skin physiology and are considered promising for treating various skin diseases.

4. Bacterial Skin Disease

Skin and soft tissue infections related to bacterial invasion are very common phenomena in emergency care settings. One of the leading risk factors is injury, resulting in disruption of the integrity of the skin [60]. The wounds are divided into acute and chronic forms caused by external damage agents or endogenous mechanisms, respectively. Acute are categorized as surgical, bites, burns, cuts and abrasions, lacerations, crush, and gunshot injuries, whereas chronic include ulcers and pressure sores. Skin damage results in colonization by microorganisms and increases the risk of infection [61], including gas gangrene and tetanus, and may, in turn, lead to even bone infection, and death [62]. Wounds can be contaminated by aerobic and anaerobic microorganisms from the surrounding skin, the environment, and the endogenous sources. The most common bacteria skin pathogens isolated from wounds are Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus spp., Escherichia coli, Gram-negative anaerobes including Prevotella, Porphyromonas spp., Bacteroides, Fusobacterium spp., Peptostreptococcus spp., and Clostridium spp. [61]. Classic signs of wound infection include redness, heat, pain, and swelling of surrounding tissue followed by exudate, poor healing, contact bleeding, epithelial bridging that provides the presence tissue breakdown, unhealthy granulation tissue, and systemic illness [63].
Numerous plant extracts possess antibacterial activities and are effective agents in the treatment of infectious skin diseases, including different types of wounds. Many pathogenic bacterial strains are resistant to antimicrobials, so there is a need to search for new sources of antibacterial agents for external use, where natural products may offer a solution to this problem. Selected plants utilized for bacterial skin ailment management are presented in Table 1.
There are various mechanisms of antibacterial action of plant extracts. The antibacterial activities of numerous phytochemicals are related to the synthesis or function of key components of bacteria and interfere in antibacterial resistance mechanisms. The first one covered disruption of cell wall and protein biosynthesis, inhibition of nucleic acid synthesis, and destruction of cell membranes, whereas the second one overlapped efflux pump interruption, modification of porins and antibiotics, destroying antibacterial agents, and altered targets [64].
The first aspect of antibacterial action is connected with blocked synthesis or function of important bacteria components. Phyllanthus emblica and Lycium shawii seed extracts were suggested to have remarkable activity against S. aureus: after exposure, the entire cells were fully lysed, disrupted or exploded after 3 and 6 h, respectively [65].
Data indicate that plant extracts from Hibiscus sabdariffa flowers, Rosmarinus officinalis leaves, Syzygium aromaticum flowers, and Thymus vulgaris leaves may significantly affect the cell membrane of both Gram-positive and Gram-negative bacteria, including S. aureus. A decrease in internal pH and membrane hyperpolarization are demonstrated after extract treatment and are indicators of bacterial cell membrane damage [66]. Another antimicrobial agent targeting bacterial cell membranes are flavonoids including glabrol, licochalcone A, licochalcone C, and licochalcone E from licorice, the root and rhizome of Glycyrrhiza spp. They exhibit activity against methicillin-resistant S. aureus (MRSA), probably via binding to peptidoglycan, phosphatidylglycerol, and cardiolipin, dissipating proton move force, and increasing membrane permeability [67].
Inhibition of amino acid synthesis via inactivation of ribosomes is another target of plants that exert antibacterial activities. It was investigated that aspidinol extracted from Dryopteris fragrans exert that effects MRSA [68].
Botanicals as sources of bioactive compounds possess the ability to modulate bacterial multidrug resistance. Alkaloid extracts from Callistemon citrinus and Vernonia adoensis leaves have shown activity against P. aeruginosa via efflux pump inhibition. Various extracts demonstrate synergy with antibiotics [69,70,71,72,73,74] and their bioactive compounds are able to inhibit the expression of bacterial genes, particularly those related to toxin release [75,76,77].
Biofilm is an architectural colony of bacteria forming a complex microbial community. These structures are usually pathogenic, and the data indicate that within all microbial and chronic infections, 65% and 80% are related to biofilm formation, respectively [78]. P. aeruginosa, S. aureus, and Enterococcus spp. are primary pathogens that are responsible for biofilm formation on chronic wounds [79]. Many plant extracts are able prevent or even inhibit formation of bacteria biofilm-positive strains and are important agents for managing biofilm-related diseases [80,81,82,83,84].
Particular plant extracts also take part in the modulation of host inflammation processes. On the one hand, Withania somnifera upregulates mRNA expression of pro-inflammatory interleukin-7 (IL-7) [85]; however, it also decreases NFκB transcription factor, which induces the expression of several pro-inflammatory genes [86] and suppresses the intercellular TNF pro-inflammatory cytokine [87]. Warbugia ugandensis, Prunus africana, and Plectrunthus barbatus extracts downregulate IL-7 mRNA expression. This antimicrobial activity may be a consequence of immunopotentiation effects (W. somnifera) but the other three act as immunomodulators [85].
Numerous secondary metabolites contained in plants such as flavonoids [88], terpenoids [89], tannins [90], and alkaloids [91] display a wide range of biological activity, including antimicrobial properties. In most cases, cytotoxicity towards mammalian cells of tested plant extracts or plant-extracted molecules was negligible.

5. Viral Skin Disease

Viruses are responsible for numerous infections of medical importance as well as a wide range of skin diseases. Among viral skin diseases, herpes simplex viruses (HSV) are ubiquitous. Worldwide, about 80 percent of the population under 50 has type 1 or 2 HSV [112]. The typical person to person transmission is via infected oral secretion or sexual activity by HSV-1 and HSV-2, respectively. The common manifestations of HSV are gingivostomatitis, keratitis, and encephalitis, mostly associated with HSV-1; genital and neonatal infections, and increases in HIV acquisition and transmission, predominantly associated with HSV-2 [113]. HSV-1, belonging to the Alphaherpesvirinae subfamily of herpesviruses, is responsible for skin-derived signs and symptoms.
Traditional antiviral pharmacotherapy is capable of inhibiting viral attachment and entry into the host cells. Specific agents also block uncoating, gene expression, genome replication, and viral maturation and release. Numerous plant extracts also possess antiviral activity. This chapter focuses on plant activity against HSV viruses (Table 2) and their mechanisms of action.
Bioactive compounds contained in plant extracts are able to inhibit virus particles in almost every step of the life cycle. HSV-1 is an enveloped virus and their capsid is surrounded by protein and phospholipids. One of the first stages is adsorption and entry into the host cells [114,115]. After the viral molecule binds to the appropriate receptor, cell membrane penetration occurs. This stage requires the delivery of the virus’ genome into host cells, which is usually done by fusion of virus and host cell membrane [116]. Numerous plant-derived natural compounds [117,118,119,120,121,122,123,124,125,126,127,128] modulate the mechanisms of virus entry through prevention of attachment and inhibition of penetration mechanisms controlled via receptors, enzymes, and several chemicals. Extract of Rheum officinale rhizomes, Paeonia suffruticosa roots, Melia toosendan fruits, and Sophora flavescent roots prevent, inhibit or modulate that step [117]. Phyllanthus orbicularis stems and leaves inhibit the binding of the cellular receptor [121], as do Azardirachta indica bark [122], Melissa officinalis leaves [123], Cissus repanda leaves and climbers [124], and Hemidesmus indicus root [125] extracts. Viral adsorption inhibitory effect was observed for Cassia sieberiana aerial parts and Guiera senegalensis aerial part extracts [129]. Moreover, lectin isolated from Euphorbia affected the virus entry to the host cells [120]. Data indicate that extracts of Rheum officinale rhizomes and Paeonia suffruticosa roots additionally enable virus penetration [117]. A similar biological effect is observed for Rhus aromatica roots/stems barks [126], Azardirachta indica barks [122], Limonium densiflorum shoots [127], Hibiscus whole plants [128], and Nepeta nuda aerial parts [119].
The HSV-1 genome consists of approximately 152 kbp double-stranded linear DNA [130] within the capsid, which encodes seven proteins taking part in synthesis of nucleic acid [131]. It was observed that many plant extracts have the ability to disrupt this process, including Senna podocarpa leaves, Cassia sieberiana roots, Guiera senegalensis aerial parts, Piliostigma thonningi aerial parts, Rhamnus glandulosa leaves, and Uvaria chamae roots [129]. Limited replication is also observed after exposure to Lychee flower extract on rabbit corneal epithelia cells [132]. Data indicated that pearl garlic extract inhibited the replication in about 70% of the acyclovir resistant HSV-1 thymidine kinase mutants [133]. Limonium brasiliense, Psidium guajava, and Phyllanthus niruri also exhibit antiherpetic activity and inhibit virus replication [134]. Suppressor effects on HSV-1 replication related to inhibition of DNA synthesis and gene expression were identified also from Nelumbo nucifera seeds extract in treated HeLa cells by disturbing the formation of α-trans-induction factor/C1/Oct-1/GARAT multiprotein/DNA complexes [135].
Some plant compounds also directly interact with virus particles and neutralize them. Aloe barbadensis leaves inactivate HSV-1 viruses by disruption of the envelope [136], whereas Orthosiphon stamineus leaves, flowers, and whole plants extracts disintegrate HSV-1 structure [137]. Virucidal mechanisms of action are also proposed for Phyllanthus orbicularis [138] stem and leaves, Allium sativum [139] cloves, Senna podocarpa leaves, Cassia sieberiana aerial parts, Guiera senegalensis aerial parts, Lippia chevalieri aerial parts, Pavetta oblongifolia steams, aerial parts and roots, Piliostigma thonningii aerial parts, Rhamnus glandulosa leaves, Sarcocephalus latifolius roots, and Terminalia macroptera roots extracts [129].
During infections caused by viruses, an important role is played by autophagy. This process is initiated by inactivation of mammalian targets to rapamycin (mTOR), a kinase that takes part in cell proliferation and protein synthesis via activation of ribosomal p70S6 kinase. Lychee flowers extract treatment inactivates mTOR by decreasing its phosphorylation and enables activation of autophagy by expression of the proteins necessary for phagophore nucleation and elongation as well as transport and maturation of the autophagosome; during HSV-1 infection without extract treatment, the phosphorylated level of mTOR increased [132].
Numerous particular plant metabolites possess antiviral properties: alkaloids, coumarins, flavonoids, lignans, miscellaneous compounds, monoterpenoids, diterpenoids and sesquiterpenoids, phenolic, phenylpropanoids, quinones, tannins, thiophenes and polyacetylenes, and triterpenoids [140]. The results demonstrate that the extracts prepared from plants possess potent phytochemical compounds that were mainly noncytotoxic to mammalian cells.

6. Fungal Skin Disease

Dermatophytes and yeast are two classes of fungal skin pathogens.
The dermatophytes invade keratinized tissues including skin, hair, and nails and mainly penetrate the nonliving cornified layers of the skin. The etiological agents are anamorphic fungi from Hyphomycetes class, including the genera Epidermophyton, Microsporum, and Trichophyton. The host reaction to dermatophyte infections is closely related to the strains of fungi, location, and environmental factors; these may be mild or severe, resulting in disease such as tinea capitis, tinea pedis, and onychomycosis [178,179]. Dermatophytosis risk factors include poor hygiene, administration of immunosuppressive drugs, and diabetes mellitus [180].
Candida species are yeast skin pathogens; Candida albicans is a dermatologically important species responsible for the largest number of skin infections related to skin thickening, hyperkeratosis, and erythema. Skin colonization by this strain is related to atopic dermatitis and psoriasis [181]. It is a commensal microorganism that is present in oral, conjunctival, likewise, gastrointestinal and genitourinary tracts in a normal human body, while infections occur in debilitated and immunocompromised patients. Candida albicans infections usually develop on mucous membranes but in some cases, can spread into the bloodstream and then, to the vital organs and be life threating. Candidiasis risk factors are as follows: malignancies, immunosuppressive disease, administration of some pharmaceuticals including broad-spectrum antibiotics, parenteral nutrition, medical management including surgery, chemotherapy, and transplantation, and in addition, central venous catheters and internal prosthetics [182,183].
The genus Malassezia is a yeast that resides on normal skin and is an important component of the mycobiome. It is unable to synthetize fatty acids. Malessezia is involved in the pathology of numerous skin disease including pityriasis versicolor, seborrheic dermatitis, folliculitis, and atopic dermatitis. The genus contains 17 species. Among the species, the most prevalent types related to both healthy and diseased skin are M. restricta, M. globosa, and M. sympodialis, whereas M. furfur is also common but strictly related to skin disorders [184,185].
Many traditionally used plants (Table 3) can be useful for relieving fungal infections and exhibit low side effects; its inhibitory effects on fungi cultures are comparable to traditional drugs. Plant-derived antifungal agents can act on different targets.
The antifungal activity of herbal compounds seems to be related to the modulation of the immune system. Leaves and tender branches of Larrea divaricate extract activate murine macrophages, which can increase its ability to phagocytose C. albicans. Extracts in the presence of fungus cells potentiate the superoxide anion and nitric oxide (NO) production [186]. A similar effect was observed for Phyllostachys bambusoides leaf extract, where elevated NO production results in improvement of macrophage phagocytose action and enables effective eradication of C. albicans from Balb/c mice as a consequence of elevated levels of IFN-γ, IL-2, and IL-4 release [187]. Allium sativum clove extract improved the removal of Sporothrix schenckii, the causal agent of sporotrichosis, common subcutaneous mycosis. Regular consumption increases the level of pro-inflammatory cytokines such as IL-1β, IL-12 in infected Swiss mice, and anti-inflammatory cytokine IL-10 in healthy animals. Excessive inflammation may be a natural approach to treating fungal infection [188].
Plant-derived compounds may also exert an influence on fungal grown and induce programmed cell death. T. rubrum and T. mentagrophytes treated with Allium sativum cloves extract show degradation of hypha components, including cell wall, membrane, and cytoplasm [189]; treatment with Panax notoginseng roots extract, particularly heat-transformed saponins, might damage the cell membrane of dermatophytes followed by decrease in membrane potential [190]. The proposed mechanism of action of Cassia fistula seeds extract on C. albicans revealed that the extract exerts an effect on cell membrane and initiate their disruption, resulting in damage to yeast cells [191]. Nyctanthes arbor tristis leaves extract affected M. restricta cell membrane [192]. Lafoensia pacari stem-bark extract and their main component ellagic acid probably exert an impact on the Candida spp. cell wall. Ellagic acids were identified as antifungal agents by acting on ergosterol [193]. Moreover, natural compounds can directly interact with fungal cells, collapsing them via overproduction of reactive oxygen species (ROS). Extract from the roots of Scutellaria baicalensis contains two main antifungal components: baicalein and wogonin. Their action is connected with an excessive level of ROS in fungal cells, which leads to induction of apoptosis [194]. Baicalein possesses potent antifungal activity against T. rubrum, T. mentagrophytes, Aspergillus fumigatus, and C. albicans, whereas wogonin does not demonstrate activity against C. albicans.
Numerous metabolites contained in plants such as polyphenols, terpenes, and nitrogenous compounds display a wide range of biological activity including antifungal properties [195].

7. Conclusions

Skin diseases occur in people of all ages, from newborns to the elderly, and are typically caused by bacteria, viruses, and fungi. The most popular skin invaders are linked to wound infection, herpes, and tinea. In addition to diagnosis, the prevention and treatment of diseases should also focus on enhancement of life quality. In this context, new strategies and novel experimental approaches for the relief of skin problems of people suffering from nonfatal disability are desired. The first line of defense against pathogens is the skin, the largest organ in the human body. Keratinocytes, Langerhans cells, mast cells, and T cells are the important immune skin cells involved in innate and adaptive reactions. The second line of defense should constitute pharmacotherapy.
Plant compounds may represent an alternative to traditional pharmaceuticals. Plant extracts can act as immunomodulators of the cutaneous response and possess both anti-inflammatory and pro-inflammatory properties. Moreover, the plant kingdom is a rich source of active ingredients that exert antibacterial, antiviral, and antifungal effects, thanks to their biologically active chemicals. The potential mechanism of action is varied and depends on the main compounds found in the plant extract, but to a large extent, the therapeutic effect focuses on the synergistic action of these compounds.
Plant extracts have been found to have inhibitory effects on the growth of bacteria, viruses, and fungi in in vitro/in vivo studies. Their activities are frequently related to the blockage of the synthesis or function of key components of particular organisms. Moreover, natural compounds may interfere with bacterial resistance mechanisms, disrupting viral attachment and entry into the host. For centuries, plants were widely used as medications.
Although more than 50% of plant species are used to treat skin diseases, many of them can be destroyed by human activities such as habitat destruction, deforestation or urbanization. Moreover, it should also be remembered, however, that plant extracts may cause skin allergies or enhance its action in some people, but in this paper, they have shown promising results.
This review helps the researchers working on skin problems to screen out the efficient or to find out new approaches in reported plants, which may be a step ahead in the drug discovery process.

Author Contributions

Conceptualization: P.S. and T.K.; Writing—Original Draft Preparation: P.S., A.M.-S.; T.K. Writing—Review and Editing: J.W., R.Z.; Supervision: T.Ś. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Seth, D.; Cheldize, K.; Brown, D.; Freeman, E.E. Global Burden of Skin Disease: Inequities and Innovations. Curr. Dermatol. Rep. 2017, 6, 204–210. [Google Scholar] [CrossRef]
  2. Verhoeven, E.W.M.; Kraaimaat, F.W.; Van Weel, C.; Van De Kerkhof, P.C.M.; Duller, P.; Van Der Valk, P.G.M.; Van Den Hoogen, H.J.M.; Bor, J.H.J.; Schers, H.J.; Evers, A.W.M. Skin diseases in family medicine: Prevalence and health care use. Ann. Fam. Med. 2008, 6, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Miguel, L.M.Z.; Jorge, M.F.S.; Rocha, B.; Miot, H.A. Incidence of skin diseases diagnosed in a public institution: Comparison between 2003 and 2014. An. Bras. Dermatol. 2017, 92, 423–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Hay, R.J.; Johns, N.E.; Williams, H.C.; Bolliger, I.W.; Dellavalle, R.P.; Margolis, D.J.; Marks, R.; Naldi, L.; Weinstock, M.A.; Wulf, S.K.; et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 2014, 134, 1527–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Natsuga, K. Epidermal barriers. Cold Spring Harb. Perspect. Med. 2014, 4, a018218. [Google Scholar] [CrossRef]
  6. Matejuk, A. Skin Immunity. Arch Immunol. Ther. Exp. (Warsz) 2018, 66, 45–54. [Google Scholar] [CrossRef] [Green Version]
  7. Erci, B. Medical Herbalism and frequency of use. In A Compendium of Essays on Alternative Therapy, Bhattacharya, A., Eds.; BoD–Books on Demand: Norderstedt, Germany, 2012; pp. 173–184. [Google Scholar]
  8. Wachtel-Galor, S.; Benzie, I.F.F. Herbal medicine. In An Introduction to its History, Usage, Regulation, Current Trends, and Research Needs, 2nd ed.; Benzie, F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 1–10. [Google Scholar]
  9. Allegra, M. Antioxidant and anti-inflammatory properties of plants extract. Antioxidants 2019, 8, 549. [Google Scholar] [CrossRef] [Green Version]
  10. Kowalczyk, T.; Sitarek, P.; Skała, E.; Rijo, P.; Andrade, J.M.; Synowiec, E.; Szemraj, J.; Krajewska, U.; Śliwiński, T. An Evaluation of the DNA-Protective Effects of Extracts from Menyanthes trifoliata L. Plants Derived from In Vitro Culture Associated with Redox Balance and Other Biological Activities. Oxid. Med. Cell Longev. 2019, 9165784. [Google Scholar] [CrossRef] [Green Version]
  11. Sitarek, P.; Kowalczyk, T.; Rijo, P.; Białas, A.J.; Wielanek, M.; Wysokińska, H.; Garcia, C.; Toma, M.; Śliwiński, T.; Skała, E. Over-Expression of AtPAP1 Transcriptional Factor Enhances Phenolic Acid Production in Transgenic Roots of Leonurus sibiricus L. and Their Biological Activities. Mol. Biotechnol. 2018, 60, 74–82. [Google Scholar] [CrossRef]
  12. Sitarek, P.; Rijo, P.; Garcia, C.; Skała, E.; Kalemba, D.; Białas, A.J.; Szemraj, J.; Pytel, D.; Toma, M.; Wysokińska, H.; et al. Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. And Their Chemical Composition. Oxid. Med. Cell Longev. 2017, 2017, 7384061. [Google Scholar] [CrossRef] [Green Version]
  13. Skała, E.; Rijo, P.; Garcia, C.; Sitarek, P.; Kalemba, D.; Toma, M.; Szemraj, J.; Pytel, D.; Wysokińska, H.; Śliwiński, T. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities. Oxid. Med. Cell Longev. 2016, 2016, 8505384. [Google Scholar] [CrossRef] [PubMed]
  14. Zielinska-Blizniewska, H.; Sitarek, P.; Merecz-Sadowska, A.; Malinowska, K.; Zajdel, K.; Jablonska, M.; Sliwinski, T.; Zajdel, R. Plant extracts and reactive oxygen species as two counteracting agents with anti- and pro-obesity properties. Int. J. Mol. Sci. 2019, 20, 4556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Abdullahi, A.A. Trends and challenges of traditional medicine in Africa. Afr. J. Tradit. Complement Altern. Med. 2011, 8, 115–123. [Google Scholar] [CrossRef] [PubMed]
  16. Chaudhary, P.H.; Khadabadi, S. Bombax ceiba Linn.: Pharmacognosy, Ethnobotany and Phyto-pharmacology. Pharmacogn. Commun. 2012, 2, 2–9. [Google Scholar] [CrossRef] [Green Version]
  17. Dubey, N.K.; Kumar, R.; Tripathi, P. Global promotion of herbal medicine: India’s opportunity. Curr. Sci. 2004, 86, 37–41. [Google Scholar]
  18. Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Lobo, J.M.S. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef] [Green Version]
  19. Sitarek, P.; Kowalczyk, T.; Wieczfinska, J.; Merecz-Sadowska, A.; Górski, K.; Śliwiński, T.; Skała, E. Plant extracts as a natural source of bioactive compounds and potential remedy for the treatment of certain skin diseases. Curr. Pharm. Des. 2020. [Google Scholar] [CrossRef]
  20. Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [Green Version]
  21. Ernst, E. The efficacy of herbal medicine-An overview. Fundam. Clin. Pharmacol. 2005, 19, 405–409. [Google Scholar] [CrossRef]
  22. Kala, C.P. Indigenous uses, population density, and conservation of threatened medicinal plants in protected areas of the Indian Himalayas. Conserv. Biol. 2005, 19, 368–378. [Google Scholar] [CrossRef]
  23. Rafieian-kopaei, M. Medicinal plants and the human needs. J. HerbMed Pharmacol. 2012, 1, 1–2. [Google Scholar] [CrossRef]
  24. Bhuchar, S.; Katta, R.; Wolf, J. Complementary and alternative medicine in dermatology: An overview of selected modalities for the practicing dermatologist. Am. J. Clin. Dermatol. 2012, 13, 311–317. [Google Scholar] [CrossRef] [PubMed]
  25. WHO Traditional Medicine Strategy: 2014–2023. Available online: https://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/ (accessed on 15 June 2020).
  26. De Wet, H.; Nciki, S.; van Vuuren, S.F. Medicinal plants used for the treatment of various skin disorders by a rural community in northern Maputaland, South Africa. J. Ethnobiol. Ethnomed. 2013, 9, 51. [Google Scholar] [CrossRef] [Green Version]
  27. Martínez, G.J.; Barboza, G.E. Natural pharmacopoeia used in traditional Toba medicine for the treatment of parasitosis and skin disorders (Central Chaco, Argentina). J. Ethnopharmacol. 2010, 132, 86–100. [Google Scholar] [CrossRef] [PubMed]
  28. Mitchell, J.; Rook, A. Botanical Dermatology: Plants and Plant Products Injurious to the Skin; Lea & Febiger: Philadelphia, PA, USA, 1979. [Google Scholar]
  29. Mark, K.A.; Brancaccio, R.R.; Soter, N.A.; Cohen, D.E. Allergic contact and photoallergic contact dermatitis to plant and pesticide allergens. Arch. Dermatol. 1999, 135, 67–70. [Google Scholar] [CrossRef] [Green Version]
  30. Aberer, W. Contact allergy and medicinal herbs. J. Dtsch. Dermatol. Ges. 2008, 6, 15–24. [Google Scholar] [CrossRef] [PubMed]
  31. Winter, R.W.; Korzenik, J.R. The Practical Pros and Cons of Complementary and Alternative Medicine in Practice: Integrating Complementary and Alternative Medicine into Clinical Care. Gastroenterol. Clin. North. Am. 2017, 46, 907–916. [Google Scholar] [CrossRef]
  32. Thomson, K.F.; Wilkinson, S.M. Allergic contact dermatitis to plant extracts in patients with cosmetic dermatitis. Br. J. Dermatol. 2000, 142, 84–88. [Google Scholar] [CrossRef]
  33. Bedi, M.K.; Shenefelt, P.D. Herbal therapy in dermatology. Arch. Dermatol. 2002, 138, 232–242. [Google Scholar] [CrossRef]
  34. Schempp, C.M.; Schöpf, E.; Simon, J.C. Plant-induced toxic and allergic dermatitis (phytodermatitis). Hautarzt 2002, 53, 93–97. [Google Scholar] [CrossRef]
  35. Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2013, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Quaresma, J.A.S. Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clin. Microbiol. Rev. 2019, 32, e00034-18. [Google Scholar] [CrossRef] [PubMed]
  37. Henneke, P.; Golenbock, D.T. Phagocytosis, Innate Immunity, and Host-Pathogen Specificity. J. Exp. Med. 2004, 199, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. J Allergy Clin. Immunol. 2010, 125, S33–S40. [Google Scholar] [CrossRef] [PubMed]
  39. Berger. A. Th1 and Th2 responses: What are they? BMJ 2000, 321, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  40. Arpaia, N.; Barton, G.M. The impact of Toll-like receptors on bacterial virulence strategies. Curr. Opin. Microbiol. 2013, 16, 17–22. [Google Scholar] [CrossRef] [Green Version]
  41. Koblansky, A.A.; Jankovic, D.; Oh, H.; Hieny, S.; Sungnak, W.; Mathur, R.; Hayden, M.S.; Akira, S.; Sher, A.; Ghosh, S. Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity 2013, 38, 119–130. [Google Scholar] [CrossRef] [Green Version]
  42. Miller, L.S. Toll-like receptors in skin. Adv. Dermatol. 2008, 24, 71–87. [Google Scholar] [CrossRef] [Green Version]
  43. Gerold, G.; Zychlinsky, A.; de Diego, J.L. What is the role of Toll-like receptors in bacterial infections? Semin. Immunol. 2007, 19, 41–47. [Google Scholar] [CrossRef]
  44. Gröne, A. Keratinocytes and cytokines. Vet. Immunol. Immunopathol. 2002, 88, 1–12. [Google Scholar] [CrossRef]
  45. Siiskonen, H.; Harvima, I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front. Cell Neurosci. 2019, 13, 422. [Google Scholar] [CrossRef] [PubMed]
  46. Theoharides, T.C.; Alysandratos, K.D.; Angelidou, A.; Delivanis, D.A.; Sismanopoulos, N.; Zhang, B.; Asadi, S.; Vasiadi, M.; Weng, Z.; Miniati, A.; et al. Mast cells and inflammation. Biochim. Biophys. Acta 2012, 1822, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Harvima, I.T.; Nilsson, G. Mast cells as regulators of skin inflammation and immunity. Acta Derm. Venereol. 2011, 91, 644–650. [Google Scholar] [CrossRef] [Green Version]
  48. Abdallah, F.; Lecellier, G.; Raharivelomanana, P.; Pichon, C.R. Nukuhivensis acts by reinforcing skin barrier function, boosting skin immunity and by inhibiting IL-22 induced keratinocyte hyperproliferation. Sci. Rep. 2019, 9, 4132. [Google Scholar] [CrossRef] [Green Version]
  49. Zahid, A.; Despres, J.; Benard, M.; Nguema-Ona, E.; Leprince, J.; Vaudry, D.; Rihouey, C.; Vicré-Gibouin, M.; Driouich, A.; Follet-Gueye, M.L. Arabinogalactan Proteins from Baobab and Acacia Seeds Influence Innate Immunity of Human Keratinocytes in Vitro. J. Cell Physiol. 2017, 232, 2558–2568. [Google Scholar] [CrossRef] [PubMed]
  50. Guo, X.; Lu, H.; Lin, Y.; Chen, B.; Wu, C.; Cui, Z.; Wang, Y.; Xu, Y. Skin penetration of topically applied white mustard extract and its effects on epidermal Langerhans cells and cytokines. Int. J. Pharm. 2013, 457, 136–142. [Google Scholar] [CrossRef]
  51. Yang, J.H.; Yoo, J.M.; Cho, W.K.; Ma, J.Y. Anti-inflammatory effects of Sanguisorbae Radix water extract on the suppression of mast cell degranulation and STAT-1/Jak-2 activation in BMMCs and HaCaT keratinocytes. BMC Complement. Altern. Med. 2016, 16, 347. [Google Scholar] [CrossRef] [Green Version]
  52. Yang, J.H.; Yoo, J.M.; Cho, W.K.; Ma, J.Y. Ethanol Extract of Sanguisorbae Radix Inhibits Mast Cell Degranulation and Suppresses 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions. Mediat. Inflamm. 2016, 2016, 2947390. [Google Scholar] [CrossRef] [Green Version]
  53. Shin, T.Y.; Jeong, H.J.; Jun, S.M.; Chae, H.J.; Kim, H.R.; Baek, S.H.; Kim, H.M. Effect of Schizonepeta tenuifolia extract on mast cell-mediated immediate-type hypersensitivity in rats. Immunopharmacol. Immunotoxicol. 1999, 21, 705–715. [Google Scholar] [CrossRef]
  54. Kim, J.H.; Kim, A.R.; Kim, H.S.; Kim, H.W.; Park, Y.H.; You, J.S.; Park, Y.M.; Her, E.; Kim, H.S.; Kim, Y.M.; et al. Rhamnus davurica leaf extract inhibits Fyn activation by antigen in mast cells for anti-allergic activity. BMC Complement. Altern. Med. 2015, 15, 80. [Google Scholar] [CrossRef] [Green Version]
  55. Kaur, M.; Singh, V.; Shri, R. Evaluation of mast cell stabilizing activity of Camellia sinensis and Ocimum basilicum and correlation with their antioxidant property. Pharma Innov. J. 2018, 7, 69–73. [Google Scholar]
  56. Choi, M.R.; Choi, D.K.; Sohn, K.C.; Lim, S.K.; Kim, D.I.; Lee, Y.H.; Im, M.; Lee, Y.; Seo, Y.J.; Kim, C.D.; et al. Inhibitory effect of Paeonia lactiflora Pallas extract (PE) on poly (I:C)-induced immune response of epidermal keratinocytes. Int. J. Clin. Exp. Pathol. 2015, 8, 5236–5241. [Google Scholar] [PubMed]
  57. Sangiovanni, E.; Fumagalli, M.; Pacchetti, B.; Piazza, S.; Magnavacca, A.; Khalilpour, S.; Melzi, G.; Martinelli, G.; Dell’Agli, M. Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury. Phytother. Res. 2019, 33, 2083–2093. [Google Scholar] [CrossRef] [PubMed]
  58. Yun, C.; Jung, Y.; Chun, W.; Yang, B.; Ryu, J.; Lim, C.; Kim, J.H.; Kim, H.; Cho, S.I. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis in Vitro and in Vivo. Mediat. Inflamm. 2016, 2016, 8027537. [Google Scholar] [CrossRef] [Green Version]
  59. de Araújo, E.R.D.; Félix-Silva, J.; Xavier-Santos, J.B.; Fernandes, J.M.; Guerra, G.C.B.; de Araújo, A.A.; de SouzaAraújo, D.F.; de Santis Ferreira, L.; da Silva Júnior, A.A.; de Freitas Fernandes-Pedrosa, M.; et al. Local anti-inflammatory activity: Topical formulation containing Kalanchoe brasiliensis and Kalanchoe pinnata leaf aqueous extract. Biomed. Pharmacother. 2019, 113, 108721. [Google Scholar] [CrossRef] [PubMed]
  60. Ki, V.; Rotstein, C. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 173–184. [Google Scholar] [CrossRef] [Green Version]
  61. Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [Green Version]
  62. Prevention and Management of Wound Infection. Guidance from WHO’s Department of Violence and Injury Prevention and Disability and the Department of Essential Health Technologies. Available online: https://www.who.int/hac/techguidance/tools/guidelines_prevention_and_management_wound_infection.pdf?ua=1 (accessed on 20 June 2020).
  63. Healy, B.; Freedman, A. Infections. BMJ 2006, 332, 838–841. [Google Scholar] [CrossRef]
  64. Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
  65. Tayel, A.A.; Shaban, S.M.; Moussa, S.H.; Elguindy, N.M.; Diab, A.M.; Mazrou, K.E.; Ghanema, R.A.; El-Sabbaghb, S.L. Bioactivity and application of plant seeds’ extracts to fight resistant strains of Staphylococcus aureus. Ann. Agric. Sci. 2018, 63, 47–53. [Google Scholar] [CrossRef]
  66. Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
  67. Wu, S.C.; Yang, Z.Q.; Liu, F.; Peng, W.J.; Qu, S.Q.; Li, Q.; Song, X.B.; Zhu, K.; Shen, J.Z. Antibacterial Effect and Mode of Action of Flavonoids From Licorice Against Methicillin-Resistant Staphylococcus aureus. Front. Microbiol. 2019, 10, 2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Hua, X.; Yang, Q.; Zhang, W.; Dong, Z.; Yu, S.; Schwarz, S.; Liu, S. Antibacterial activity and mechanism of action of aspidinol against multi-drug-resistant methicillin-resistant Staphylococcus aureus. Front. Pharmacol. 2018, 9, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Dickson, R.A.; Houghton, P.J.; Hylands, P.J.; Gibbons, S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother. Res. 2006, 20, 41–45. [Google Scholar] [CrossRef] [PubMed]
  70. Aqil, F.; Khan, M.S.; Owais, M.; Ahmad, I. Effect of certain bioactive plant extracts on clinical isolates of beta-lactamase producing methicillin resistant Staphylococcus aureus. J. Basic Microbiol. 2005, 45, 106–114. [Google Scholar] [CrossRef] [PubMed]
  71. Kondo, K.; Takaishi, Y.; Shibata, H.; Higuti, T. ILSMRs (intensifier of beta-lactam-susceptibility in methicillin-resistant Staphylococcus aureus) from Tara [Caesalpinia spinosa (Molina) Kuntze]. Phytomedicine 2006, 13, 209–212. [Google Scholar] [CrossRef] [PubMed]
  72. Rodrigues, F.F.; Costa, J.G.; Coutinho, H.D. Synergy effects of the antibiotics gentamicin and the essential oil of Croton zehntneri. Phytomedicine 2009, 16, 1052–1055. [Google Scholar] [CrossRef]
  73. Grande, M.J.; López, R.L.; Abriouel, H.; Valdivia, E.; Omar, N.B.; Maqueda, M.; Martínez-Cañamero, M.; Gálvez, A. Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J. Food Prot. 2007, 70, 405–411. [Google Scholar] [CrossRef]
  74. Chan, B.C.L.; Ip, M.; Lau, C.B.S.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 2011, 137, 767–773. [Google Scholar] [CrossRef]
  75. Doughari, J.H.; Ndakidemi, P.A.; Human, I.S.; Benade, S. Antioxidant, antimicrobial and antiverotoxic potentials of extracts of Curtisia dentata. J. Ethnopharmacol. 2012, 141, 1041–1050. [Google Scholar] [CrossRef]
  76. Heredia, N.; Escobar, M.; Rodríguez-Padilla, C.; García, S. Extracts of Haematoxylon brasiletto inhibit growth, verotoxin production, and adhesion of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. J. Food Prot. 2005, 68, 1346–1351. [Google Scholar] [CrossRef]
  77. Baskaran, S.A.; Upadhyay, A.; Kollanoor-Johny, A.; Upadhyaya, I.; Mooyottu, S.; Amalaradjou, M.A.R.; Schreiber, D.; Venkitanarayanan, K. Efficacy of plant-derived antimicrobials as antimicrobial wash treatments for reducing enterohemorrhagic Escherichia coli O157:H7 on apples. J. Food. Sci. 2013, 78, M1399–M1404. [Google Scholar] [CrossRef] [PubMed]
  78. Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
  79. James, G.A.; Swogger, E.; Wolcott, R.; Pulcini, E.D.; Secor, P.; Sestrich, J.; Costerton, J.W.; Stewart, P.S. Biofilms in chronic wounds. Wound Repair Regen. 2008, 16, 37–44. [Google Scholar] [CrossRef] [PubMed]
  80. Stefanović, O.D.; Tešić, J.D.; Čomić, L.R. Melilotus albus and Dorycnium herbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials. J. Food. Drug Anal. 2015, 23, 417–424. [Google Scholar] [CrossRef] [Green Version]
  81. Famuyide, I.M.; Aro, A.O.; Fasina, F.O.; Eloff, J.N.; McGaw, L.J. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement. Altern. Med. 2019, 19, 141. [Google Scholar] [CrossRef] [Green Version]
  82. Muruzović, M.Ž.; Mladenović, K.G.; Stefanović, O.D.; Vasić, S.M.; Čomić, L.R. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal. 2016, 24, 539–547. [Google Scholar] [CrossRef] [Green Version]
  83. Sánchez, E.; Rivas Morales, C.; Castillo, S.; Leos-Rivas, C.; García-Becerra, L.; Ortiz Martínez, D.M. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms. Evid. Based Complement. Alternat. Med. 2016, 2016, 1572697. [Google Scholar] [CrossRef] [Green Version]
  84. Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019, 14, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. Mwitari, P.G.; Ayeka, P.A.; Ondicho, J.; Matu, E.N.; Bii, C.C. Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus. PLoS ONE 2013, 8, e65619. [Google Scholar] [CrossRef] [PubMed]
  86. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef]
  89. Wang, C.Y.; Chen, Y.W.; Hou, C.Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
  90. Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
  91. Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 2014, 44, 377–386. [Google Scholar] [CrossRef]
  92. Omeke, P.O.; Obi, J.O.; Orabueze, N.A.I.; Ike, A.C. Antibacterial activity of leaf extract of Chromolaena odorata and the effect of its combination with some conventional antibiotics on Pseudomonas aeruginosa isolated from wounds. J. Appl. Biol. Biotechnol. 2019, 7, 36–40. [Google Scholar] [CrossRef] [Green Version]
  93. Hanphanphoom, S.; Krajangsang, S. Antimicrobial Activity of Chromolaena odorata Extracts against Bacterial Human Skin Infections. Mod. Appl. Sci. 2016, 10, 159–171. [Google Scholar] [CrossRef] [Green Version]
  94. Sagbo, I.J.; Afolayan, A.J.; Bradley, G. Antioxidant, antibacterial and phytochemical properties of two medicinal plants against the wound infecting bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 817–825. [Google Scholar] [CrossRef]
  95. Gopalan, H.K.; Md Hanafiah, N.F.; Chean Ring, L.; Tan, W.N.; Wahidin, S.; Hway, T.S.; Yenn, T.W. Chemical Composition and Antimicrobial Efficiency of Swietenia macrophylla Seed Extract on Clinical Wound Pathogens. Nat. Prod. Sci. 2019, 25, 38–43. [Google Scholar] [CrossRef] [Green Version]
  96. Hamedi, E.; Amanpour, R.; Ghiyamirad, M. Evaluation of Antimicrobial Effect of the Pimpinella Anisumpolar Extract on Some Bacteria in Skin Diseases. J. Ski. Stem. Cell. 2018, 5, e81409. [Google Scholar] [CrossRef] [Green Version]
  97. Kilani, M.; Hassan, A.; Fadason, S.; Obalowu, A.; Aliyu, A.; Kilani, H.B. In-vitro and in-vivo antibacterial effect of Croton lobatus Linnaeus L. on two days post surgical wounds in rats. Bangladesh J. Sci. Ind. Res. 2019, 54, 139–146. [Google Scholar] [CrossRef]
  98. Ekawati, E.R.; Pradana, M.S.; Darmanto, W.I.N. Lime (Citrus aurantifolia) peel as natural antibacteria for wound skin infection caused by Staphylococcus aureus. Int. J. Pharm. Res. 2019. [Google Scholar] [CrossRef]
  99. Adeniyi, P.O.; Olasunkanmi, O.O.; Akinpelu, D.A.; Ajayi, O.F.; Omololu-Aso, J.; Olorunmola, F.O. Studies of Bioactive Potentials of the Root Extracts of Elaeis guineensis Jacq. against Pathogens Implicated in Wound Infections. J. Adv. Microbiol. 2018, 10, 1–13. [Google Scholar] [CrossRef]
  100. Pourali, P.; Yahyaei, B. Wound healing property of a gel prepared by the combination of Pseudomonas aeruginosa alginate and Alhagi maurorum aqueous extract in rats. Dermatol. Ther. 2019, 32, e12779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  101. Kang, B.Y.; Lee, S.S.; Bang, M.H.; Jeon, H.; Kim, H.; Chung, D.K. Water-based extracts of Zizania latifolia inhibit Staphylococcus aureus infection through the induction of human beta-defensin 2 expression in HaCaT cells. J. Microbiol. 2018, 56, 910–916. [Google Scholar] [CrossRef]
  102. Ammar, I.; Bardaa, S.; Mzid, M.; Sahnoun, Z.; Rebaii, T.; Attia, H.; Ennouri, M. Antioxidant, antibacterial and in vivo dermal wound healing effects of Opuntia flower extracts. Int. J. Biol. Macromol. 2015, 81, 483–490. [Google Scholar] [CrossRef]
  103. Aburjai, T.; Al-Janabi, R.; Al-Mamoori, F.; Azzam, H. In vivo wound healing and antimicrobial activity of Alkanna strigose. Wound Med. 2019, 25, 100152. [Google Scholar] [CrossRef]
  104. Güzel, S.; Özay, Y.; Kumaş, M.; Uzun, C.; Özkorkmaz, E.G.; Yıldırım, Z.; Ülger, M.; Güler, G.; Çelik, A.; Çamlıca, Y.; et al. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed. Pharmacother. 2019, 111, 1260–1276. [Google Scholar] [CrossRef]
  105. Khalid, S.A.; Jaafar, N.A. Antibacterial Effect of Alcoholic Extract of Juglans regia L. stem bark and Inner Stratum of Oak Fruit (Jaft) on Staphylococcus aureus isolated from wound infection. Tikrit J. Pure Sci. 2019, 24, 19–22. [Google Scholar] [CrossRef]
  106. Tatiya-Aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. Biomed. Pharmacother. 2019, 111, 705–713. [Google Scholar] [CrossRef] [PubMed]
  107. Morenike, C.; Veronica, A.; Emikpe, B.O.; Oyebanji, V.O.; Jarikre, T.A. Investigations on the antimicrobial and wound healing activity of Ficus thonningii Blume extracts. Comp. Clin. Path. 2019, 28, 1113–1118. [Google Scholar] [CrossRef]
  108. Anani, K.; Adjrah, Y.; Ameyapoh, Y.; Karou, S.D.; Agbonon, A.; De Souza, C.; Gbeassor, M. Effects of hydroethanolic extracts of Balanites aegyptiaca (L.) Delile (Balanitaceae) on some resistant pathogens bacteria isolated from wounds. J. Ethnopharmacol. 2015, 164, 16–21. [Google Scholar] [CrossRef] [PubMed]
  109. dos Santos, D.P.; Lopes, D.P.S.; de Melo Calado, S.P.; Gonçalves, C.V.; Muniz, I.P.R.; Ribeiro, I.S.; Galantini, M.P.L.; da Silva, R.A.A. Efficacy of photoactivated Myrciaria cauliflora extract against Staphylococcus aureus infection–A pilot study. J. Photochem. Photobiol. B 2019, 191, 107–115. [Google Scholar] [CrossRef]
  110. Abdurahim, S.A.; Mohammed, N.B.; Almagboul, A.Z. In vivo antibacterial and wound healing activities of Acacia ehrenbergiana. Mediterr. J. Biosci. 2016, 1, 147–152. [Google Scholar]
  111. Aremu, O.; Olayemi, O.; Ajala, T.; Isimi, Y.; Oladosu, P.; Ekere, K.; John, J.; Emeje, M. Antibacterial evaluation of Acacia nilotica Lam (Mimosaceae) seed extract in dermatological preparations of the manuscript. J. Res. Pharm. 2020, 24, 170–181. [Google Scholar] [CrossRef] [Green Version]
  112. WHO: Herpes Simplex Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus (accessed on 20 June 2020).
  113. Wilson, S.S.; Fakioglu, E.; Herold, B.C. Novel approaches in fighting herpes simplex virus infections. Expert Rev. Ant. Infect. Ther. 2009, 7, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Knebel-Mörsdorf, D. Nectin-1 and HVEM: Cellular receptors for HSV-1 in skin. Oncotarget 2016, 7, 19087–19088. [Google Scholar] [CrossRef]
  115. Their, K.; Möckel, M.; Palitzsch, K.; Döhner, K.; Sodeik, B.; Knebel-Mörsdorf, D. Entry of Herpes Simplex Virus 1 into Epidermis and Dermal Fibroblasts Is Independent of the Scavenger Receptor MARCO. J. Virol. 2018, 92, e00490-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  116. Greber, U.F. Virus and Host Mechanics Support Membrane Penetration and Cell Entry. J. Virol. 2016, 90, 3802–3805. [Google Scholar] [CrossRef] [Green Version]
  117. Hsiang, C.Y.; Hsieh, C.L.; Wu, S.L.; Lai, I.L.; Ho, T.Y. Inhibitory effect of anti-pyretic and anti-inflammatory herbs on herpes simplex virus replication. Am. J. Chin. Med. 2001, 29, 459–467. [Google Scholar] [CrossRef] [PubMed]
  118. Thompson, K.D.; Ather, A.; Khan, M.T.H. Antiviral activities of three Bangladeshi medicinal plant extracts against herpes simplex viruses. Minerva Biotecnol. 2005, 17, 193–1909. [Google Scholar]
  119. Todorov, D.; Shishkova, K.; Dragolova, D.; Hinkov, A.; Kapchina-Toteva, V.; Shishkov, S. Antiviral activity of medicinal plant Nepeta nuda. Biotechnol. Biotechnol. Equip. 2015, 29, S39–S43. [Google Scholar] [CrossRef] [Green Version]
  120. Torky, Z.A. Antiviral Activity of Euphorbia Lectin Against Herpes Simplex Virus 1 and its Antiproliferative Activity Against Human Cancer Cell-Line. J. Antivir. Antiretrovir. 2017, 8, 4. [Google Scholar] [CrossRef] [Green Version]
  121. Del Barrio, G.; Parra, F. Evaluation of the antiviral activity of an aqueous extract from Phyllanthus orbicularis. J. Ethnopharmacol. 2000, 72, 317–322. [Google Scholar] [CrossRef]
  122. Tiwari, V.; Darmani, N.A.; Yue, B.Y.; Shukla, D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother. Res. 2010, 24, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
  123. Astani, A.; Reichling, J.; Schnitzler, P. Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy 2012, 58, 70–77. [Google Scholar] [CrossRef] [Green Version]
  124. Nikomtat, J.; Thongwai, N.; Lumyong, S.; Tragoolpua, Y. Anti-Viral Activity of Cissus repanda Vahl. Plant Extract on Herpes Simplex Virus. Res. J. Microbiol. 2009, 3, 588–594. [Google Scholar] [CrossRef]
  125. Bonvicini, F.; Lianza, M.; Mandrone, M.; Poli, F.; Gentilomi, G.A.; Antognoni, F. Hemidesmus indicus (L.) R. Br. extract inhibits the early step of herpes simplex type 1 and type 2 replication. New Microbiol. 2018, 41, 187–194. [Google Scholar]
  126. Reichling, J.; Neuner, A.; Sharaf, M.; Harkenthal, M.; Schnitzler, P. Antiviral activity of Rhus aromatica (fragrant sumac) extract against two types of herpes simplex viruses in cell culture. Pharmazie 2009, 64, 538–541. [Google Scholar]
  127. Medini, F.; Legault, J.; Pichette, A.; Abdelly, C.; Ksouri, R. Antiviral efficacy of Limonium densiflorum against HSV-1 and influenza viruses. S. Afr. J. Bot. 2014, 92, 65–72. [Google Scholar] [CrossRef] [Green Version]
  128. Torky, Z.A.; Hossain, M.M. Pharmacological evaluation of the Hibiscus herbal extract against Herpes Simplex Virus-type 1 as an antiviral drug in vitro. Int. J. Virol. 2017, 13, 68–79. [Google Scholar] [CrossRef]
  129. Silva, O.; Barbosa, S.; Diniz, A.; Valdeira, M.L.; Gomes, E. Plant Extracts Antiviral Activity against Herpes simplex Virus Type 1 and African Swine Fever Virus. Int. J. Pharmacogn. 2008, 35, 12–16. [Google Scholar] [CrossRef]
  130. Smith, S.; Reuven, N.; Mohni, K.N.; Schumacher, A.J.; Weller, S.K. Structure of the herpes simplex virus 1 genome: Manipulation of nicks and gaps can abrogate infectivity and alter the cellular DNA damage response. J. Virol. 2014, 88, 10146–10156. [Google Scholar] [CrossRef] [Green Version]
  131. Weller, S.K.; Coen, D.M. Herpes simplex viruses: Mechanisms of DNA replication. Cold Spring Harb. Perspect. Biol. 2012, 4, a013011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Hsu, C.M.; Chiang, S.T.; Chang, Y.Y.; Chen, Y.C.; Yang, D.J.; Chen, Y.Y.; Lin, H.W.; Tseng, J.K. Lychee flower extract inhibits proliferation and viral replication of HSV-1-infected corneal epithelial cells. Mol. Vis. 2016, 22, 129–137. [Google Scholar] [PubMed]
  133. Qavi, H.B.; Hessel, T. The Efficacy of Antiviral Components from Plant Products against Herpes Simplex Virus Type 1. Ann. Virol. Res. 2015, 1, 1001. [Google Scholar]
  134. Faral-Tello, P.; Mirazo, S.; Dutra, C.; Pérez, A.; Geis-Asteggiante, L.; Frabasile, S.; Koncke, E.; Davyt, D.; Cavallaro, L.; Heinzen, H.; et al. Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. Sci. World J. 2012, 2012, 174837. [Google Scholar] [CrossRef] [Green Version]
  135. Kuo, Y.C.; Lin, Y.L.; Liu, C.P.; Tsai, W.J. Herpes simplex virus type 1 propagation in HeLa cells interrupted by Nelumbo nucifera. J. Biomed. Sci. 2005, 12, 1021–1034. [Google Scholar] [CrossRef]
  136. Sydiskis, R.J.; Owen, D.G.; Lohr, J.L.; Rosler, K.H.A.; Blomster, R.N. Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob. Agents Chemother. 1991, 35, 2463–2466. [Google Scholar] [CrossRef] [Green Version]
  137. Ripim, N.S.M.; Fazil, N.; Ibrahim, S.N.K.; Bahtiar, A.A.; Wai, Y.C.; Ibrahim, N.; Nor, N.S.M. Antiviral properties of Orthosiphon stamineus aqueous extract in herpes simplex virus type 1 infected cells. Sains Malays. 2018, 47, 1725–1730. [Google Scholar] [CrossRef]
  138. Alvarez, A.L.; del Barrio, G.; Kourí, V.; Martínez, P.A.; Suárez, B.; Parra, F. In vitro anti-herpetic activity of an aqueous extract from the plant Phyllanthus orbicularis. Phytomedicine 2009, 16, 960–966. [Google Scholar] [CrossRef] [Green Version]
  139. Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med. 1992, 58, 417–423. [Google Scholar] [CrossRef] [PubMed]
  140. Perez, G.R.M. Antiviral activity of compounds isolated from plants. Pharm. Biol. 2003, 41, 107–157. [Google Scholar] [CrossRef]
  141. El-Toumy, S.A.; Salib, J.Y.; El-Kashak, W.A.; Marty, C.; Bedoux, G.; Bourgougnon, N. Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Sci. Hum. Wellness 2018, 7, 91–101. [Google Scholar] [CrossRef]
  142. Goswami, D.; Mukherjee, P.K.; Kar, A.; Ojha, D.; Roy, S.; Chattopadhyay, D. Screening of ethnomedicinal plants of diverse culture for antiviral potentials. Indian J. Tradit. Knowl. 2016, 15, 474–481. [Google Scholar]
  143. Lavoie, S.; Côté, I.; Pichette, A.; Gauthier, C.; Ouellet, M.; Nagau-Lavoie, F.; Mshvildadze, V.; Legault, J. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complement. Altern. Med. 2017, 17, 123. [Google Scholar] [CrossRef] [PubMed]
  144. Iberahim, R.; Yaacob, W.A.; Ibrahim, N. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau). AIP Conf. Proc. 2015, 1678, 030013-1–030013-4. [Google Scholar] [CrossRef]
  145. Benzekri, R.; Limam, F.; Bouslama, L. Combination effect of three anti-HSV-2 active plant extracts exhibiting different modes of action. Adv. Tradit. Med. 2020, 20, 223–231. [Google Scholar] [CrossRef]
  146. Abdelwahed, W.; Alkaby, J.; Falah, S.; Hasan, R.M. Antiviral activity of different misai kucing extracts against herpes simplex virus type 1. Eurasia J. Biosci. 2020, 14, 1003–1012. [Google Scholar]
  147. Dias, M.M.; Zuza, O.; Riani, L.R.; de Faria Pinto, P.; Pinto, P.L.S.; Silva, M.P.; de Moraes, J.; Ataíde, A.C.Z.; de Oliveira Silva, F.; Cecílio, A.B.; et al. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomed. Pharmacother. 2017, 94, 489–498. [Google Scholar] [CrossRef]
  148. Tahir, M.M.; Hassan, N.S.; Dyari, H.R.E.; Yaacob, W.A.; Ibrahim, N. Phytochemistry, antibacterial and antiviral effects of the fractions of Asplenium nidus leaves aqueous extract. Malays. Appl. Biol. 2017, 46, 207–212. [Google Scholar]
  149. Hafiz, T.A.; Mubaraki, M.A.; Dkhil, M.A.; Al-Quraishy, S. Antiviral activities of Capsicum annuum methanolic extract against herpes simplex virus 1 and 2. Pak. J. Zool. 2017, 49, 251–255. [Google Scholar] [CrossRef]
  150. Mohammad, S.; Amin, G.; Pouriayevali, M.H.; Parsania, M. International Journal of Molecular and Clinical Microbiology Comparison of Antiviral Effects of Chelidonium majus L. Hexane and Aqueous Extracts against Herpes Simplex Virus Type 1. Int. J. Mol. Clin. Microbiol. 2018, 8, 993–1000. [Google Scholar]
  151. Simon, A.O.; Festus, M.T.; Makokha, A.O. Preclinical anti-HSV-1 activity of aqueous and methanol extracts of Kenya grown pyrethrum (Chrysanthemum cinerariaefolium). J. Med. Plants Res. 2016, 10, 811–817. [Google Scholar] [CrossRef] [Green Version]
  152. Moshaverinia, M.; Rastegarfar, M.; Moattari, A.; Lavaee, F. Evaluation of the effect of hydro alcoholic extract of cinnamon on herpes simplex virus-1. Dent. Res. J. 2020, 17, 114–119. [Google Scholar] [CrossRef]
  153. Kim, J.H.; Weeratunga, P.; Kim, M.S.; Nikapitiya, C.; Lee, B.H.; Uddin, M.B.; Kim, T.H.; Yoon, J.E.; Park, C.; Ma, J.Y.; et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement. Altern. Med. 2016, 16, 265. [Google Scholar] [CrossRef] [Green Version]
  154. Nikomtat, J.; Pinnak, P.; Lapmak, K.; Tammalungka, P.; Thiankhanithikun, T.; Tragoolpua, Y. Inhibition of Herpes Simplex Virus Type 2 In Vitro by Durian (Durio zibethinus Murray) Seed Coat Crude Extracts. Appl. Mech. Mater. 2016, 855, 60–64. [Google Scholar] [CrossRef] [Green Version]
  155. Karimi, A.; Mohammadi-Kamalabadi, M.; Rafieian-Kopaei, M.; Amjad, L.; Salimzadeh, L. Determination of antioxidant activity, phenolic contents and antiviral potential of methanol extract of Euphorbia spinidens Bornm (Euphorbiaceae). Trop. J. Pharm. Res. 2016, 15, 759–764. [Google Scholar] [CrossRef] [Green Version]
  156. Ghosh, M.; Civra, A.; Rittà, M.; Cagno, V.; Mavuduru, S.G.; Awasthi, P.; Lembo, D.; Donalisio, M. Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch. Virol. 2016, 161, 3509–3514. [Google Scholar] [CrossRef]
  157. Brandão, G.C.; Kroon, E.G.; Souza Filho, J.D.; Oliveira, A.B. Antiviral Activity of Fridericia formosa (Bureau) L. G. Lohmann (Bignoniaceae) Extracts and Constituents. J. Trop. Med. 2017, 2017, 6106959. [Google Scholar] [CrossRef]
  158. Zaharieva, M.M.; Genova-Kalou, P.; Dincheva, I.; Badjakov, I.; Krumova, S.; Enchev, V.; Najdenski, H.; Markova, N. Anti-Herpes Simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: A pilot study. Biotechnol. Biotechnol. Equip. 2019, 33, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
  159. Chaliewchalad, P.; Chansakaow, S.; Tragoolpua, Y. Efficacy of Houttuynia cordata Lour extracts against herpes simplex virus infection. Chiang Mai J. Sci. 2015, 42, 317–330. [Google Scholar]
  160. Wang, Y.Q.; Cai, L.; Zhang, N.; Zhang, J.; Wang, H.H.; Zhu, W. Protective effect of total flavonoids from Ixeris Sonchifolia on herpes simplex virus keratitis in mice. BMC Complement. Med. Ther. 2020, 20, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  161. Chokchaisiri, R.; Srijun, J.; Chaichompoo, W.; Cheenpracha, S.; Ganranoo, L.; Suksamrarn, A. Anti-herpes simplex type-1 (HSV-1) activity from the roots of Jatropha multifida L. Med. Chem. Res. 2020, 29, 328–333. [Google Scholar] [CrossRef]
  162. Fukuchi, K.; Okudaira, N.; Adachi, K.; Odai-Ide, R.; Watanabe, S.; Ohno, H.; Yamamoto, M.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; et al. Antiviral and Antitumor Activity of Licorice Root Extracts. In Vivo 2016, 30, 777–785. [Google Scholar] [CrossRef] [Green Version]
  163. Dkhil, M.A.; Al-Quraishy, S.; Delic, D. The antioxidant and anti-herpes simplex viruses activity of Morus alba leaves extract. Pak. J. Zool. 2015, 47, 1563–1569. [Google Scholar]
  164. Benzekri, R.; Bouslama, L.; Papetti, A.; Hammami, M.; Smaoui, A.; Limam, F. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microb. Pathog. 2018, 114, 291–298. [Google Scholar] [CrossRef]
  165. Ismaeel, M.Y.Y.; Dyari, H.R.E.; Yaacob, W.A.; Ibrahim, N. In vitro antiviral activity of aqueous extract of Phaleria macrocarpa fruit against herpes simplex virus type 1. AIP Conf. Proc. 2018, 1940, 020076. [Google Scholar] [CrossRef]
  166. Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Smeriglio, A.; Mandalari, G.; Sciortino, M.T. In Vitro Anti-HSV-1 Activity of Polyphenol-Rich Extracts and Pure Polyphenol Compounds Derived from Pistachios Kernels (Pistacia vera L.). Plants 2020, 9, 267. [Google Scholar] [CrossRef] [Green Version]
  167. Arunkumar, J.; Rajarajan, S. Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus-2 (HSV-2). Microb. Pathog. 2018, 118, 301–309. [Google Scholar] [CrossRef] [PubMed]
  168. Thongchuai, B.; Trisuwan, K.; Roytrakul, S.; Tragoolpua, Y.; Sangthong, P. Anti-herpes simplex virus type 2 activity from Rhinacanthus nasutus (Linn.) Kurz. extracts as affected by different extraction solvents. Chiang Mai Univ. J. Nat. Sci. 2019, 18, 14–26. [Google Scholar] [CrossRef]
  169. Guo, H.; Wan, X.; Niu, F.; Sun, J.; Shi, C.; Ye, J.M.; Zhou, C. Evaluation of antiviral effect and toxicity of total flavonoids extracted from Robinia pseudoacacia cv. Idaho. Biomed. Pharmacother. 2019, 118, 109335. [Google Scholar] [CrossRef]
  170. Di Sotto, A.; Di Giacomo, S.; Amatore, D.; Locatelli, M.; Vitalone, A.; Toniolo, C.; Rotino, G.L.; Scalzo, R.L.; Palamara, A.T.; Marcocci, M.E.; et al. A Polyphenol Rich Extract from Solanum melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex Virus Type 1 Activity In Vitro. Molecules 2018, 23, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  171. Boff, L.; Silva, I.T.; Argenta, D.F.; Farias, L.M.; Alvarenga, L.F.; Pádua, R.M.; Braga, F.C.; Leite, J.P.V.; Kratz, J.M.; Simões, C.M.O. Strychnos pseudoquina A. St. Hil.: A Brazilian medicinal plant with promising in vitro antiherpes activity. J. Appl. Microbiol. 2016, 121, 1519–1529. [Google Scholar] [CrossRef]
  172. Benassi-Zanqueta, É.; Marques, C.F.; Valone, L.M.; Pellegrini, B.L.; Bauermeister, A.; Ferreira, I.C.P.; Lopes, N.P.; Nakamura, C.V.; Filho, B.P.D.; Natali, M.R.M.; et al. Evaluation of anti-HSV-1 activity and toxicity of hydroethanolic extract of Tanacetum parthenium (L.) Sch.Bip. (Asteraceae). Phytomedicine 2019, 55, 249–254. [Google Scholar] [CrossRef]
  173. Kesharwani, A.; Polachira, S.K.; Nair, R.; Agarwal, A.; Mishra, N.N.; Gupta, S.K. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement. Altern. Med. 2017, 17, 110. [Google Scholar] [CrossRef] [Green Version]
  174. Sharifi-Rad, J.; Iriti, M.; Setzer, W.N.; Sharifi-Rad, M.; Roointan, A.; Salehi, B. Antiviral activity of Veronica persica Poir. on herpes virus infection. Cell Mol. Biol. (Noisy-le-grand) 2018, 64, 11–17. [Google Scholar] [CrossRef] [Green Version]
  175. Wahab, N.Z.A.; Bunawan, H.; Ibrahim, N. Cytotoxicity and antiviral activity of methanol extract from Polygonum minus. AIP Conf. Proc. 2015, 1678, 030036. [Google Scholar] [CrossRef]
  176. Todorov, D.; Hinkov, A.; Dimitrova, M.; Shishkova, K.; Dragolova, D.; Kapchina-Toteva, V.; Shishkov, S. Anti-herpes effects of in vitro and in vivo extracts derived from Lamium album L. Annu. lUniversité Sofia St. Kliment Ohridski 2015, 100, 177–183. [Google Scholar]
  177. El-Serehy, H.A.; Al-Misned, F.A.; Irshad, R.; Ismail, M.M. In vitro antioxidant and anti-herpes activities of Cuminum cyminum seeds extract. Biomed. Res. 2016, 27, 1255–1260. [Google Scholar]
  178. Weitzman, I.; Summerbell, R.C. The dermatophytes. Clin. Microbiol. Rev. 1995, 8, 240–259. [Google Scholar] [CrossRef] [PubMed]
  179. Gupta, A.K.; Ryder, J.E.; Melody, C.; Cooper, E. Dermatophytosis: The Management of Fungal Infections. SKINmed. 2007, 4, 305–310. [Google Scholar] [CrossRef]
  180. Hasan, K.M.A.; Al-Shibly, M.K.A. The effect of risk factors and etiology on the distribution of clinical cases with dermatomycoses. Int. J. Innov. Appl. Stud. 2016, 14, 581–586. [Google Scholar]
  181. Kühbacher, A.; Burger-Kentischer, A.; Rupp, S. Interaction of Candida Species with the Skin. Microorganisms 2017, 5, 32. [Google Scholar] [CrossRef] [Green Version]
  182. Spampinato, C.; Leonardi, D. Candida infections, causes, targets, and resistance mechanisms: Traditional and alternative antifungal agents. Biomed. Res. Int. 2013, 2013, 204237. [Google Scholar] [CrossRef] [Green Version]
  183. Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [Green Version]
  184. Difonzo, E.M.; Faggi, E. Skin diseases associated with Malassezia species in humans. Clinical features and diagnostic criteria. Parassitologia 2008, 50, 69–71. [Google Scholar]
  185. Theelen, B.; Cafarchia, C.; Gaitanis, G.; Bassukas, I.D.; Boekhout, T.; Dawson, T.L., Jr. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 2018, 56, S10–S25. [Google Scholar] [CrossRef] [Green Version]
  186. Martino, R.F.; Davicino, R.C.; Mattar, M.A.; Casali, Y.A.; Correa, S.G.; Micalizzi, B. In vivo effect of three fractions of Larrea divaricata Cav. (jarilla) on the innate immune system: Macrophage response against Candida albicans. Mycoses 2011, 54, e718–e725. [Google Scholar] [CrossRef]
  187. Kumar, S.; Sharma, G.; Sidiq, T.; Khajuria, A.; Jain, M.; Bhagwat, D.; Dhar, K.L. Immunomodulatory potential of a bioactive fraction from the leaves of Phyllostachys bambusoides (bamboo) in BALB/c mice. EXCLI J. 2014, 13, 137–150. [Google Scholar] [PubMed]
  188. Burian, J.P.; Sacramento, L.V.S.; Carlos, I.Z. Fungal infection control by garlic extracts (Allium sativum L.) and modulation of peritoneal macrophages activity in murine model of sporotrichosis. Braz. J. Biol. 2017, 77, 848–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  189. Aala, F.; Yusuf, U.K.; Nulit, R.; Rezaie, S. Inhibitory effect of allicin and garlic extracts on growth of cultured hyphae. Iran J. Basic Med. Sci. 2014, 17, 150–154. [Google Scholar] [PubMed]
  190. Xue, P.; Yang, X.; Sun, X.; Ren, G. Antifungal activity and mechanism of heat-transformed ginsenosides from notoginseng against Epidermophyton floccosum, Trichophyton rubrum, and Trichophyton mentagrophytes. RSC Adv. 2017, 7, 10939–10946. [Google Scholar] [CrossRef] [Green Version]
  191. Jothy, S.L.; Zakariah, Z.; Chen, Y.; Sasidharan, S. In vitro, in situ and in vivo studies on the anticandidal activity of Cassia fistula seed extract. Molecules 2012, 17, 6997–7009. [Google Scholar] [CrossRef] [PubMed]
  192. Mishra, R.K.; Mishra, V.; Pandey, A.; Tiwari, A.K.; Pandey, H.; Sharma, S.; Pandey, A.C.; Dikshit, A. Exploration of anti-Malassezia potential of Nyctanthes arbor-tristis L. and their application to combat the infection caused by Mala s1 a novel allergen. BMC Complement. Altern. Med. 2016, 16, 114. [Google Scholar] [CrossRef] [Green Version]
  193. Silva Junior, I.F.; Raimondi, M.; Zacchino, S.; Filho, V.C.; Noldin, V.F.; Rao, V.S.; Lima, J.C.S.; Martins, D.T.O. Evaluation of the antifungal activity and mode of action of Lafoensia pacari A. St.-Hil., Lythraceae, stem-bark extracts, fractions and ellagic acid. Rev. Bras. Farmacogn. 2010, 20, 422–428. [Google Scholar] [CrossRef]
  194. Da, X.; Nishiyama, Y.; Tie, D.; Hein, K.Z.; Yamamoto, O.; Morita, E. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Sci. Rep. 2019, 9, 1683. [Google Scholar] [CrossRef]
  195. Castillo, F.; Hernandez, D.; Gallegos, G.; Rodriguez, C.R.; Aguilar, C.N. Antifungal Properties of Bioactive Compounds from Plants. In Fungicides for Plant and Animal Diseases; Dhanasekaran, D., Thajuddin, N., Annamalai, P.S., Eds.; IntechOpen: London, UK, 2012. [Google Scholar]
  196. Liu, X.; Liu, J.; Jiang, T.; Zhang, L.; Huang, Y.; Wan, J.; Song, G.; Lin, H.; Shen, Z.; Tang, C. Analysis of chemical composition and in vitro antidermatophyte activity of ethanol extracts of Dryopteris fragrans (L.) Schott. J. Ethnopharmacol. 2018, 43, 36–43. [Google Scholar] [CrossRef]
  197. Tamokou, J.D.; Tala, M.F.; Wabo, H.K.; Kuiate, J.R.; Tane, P. Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. J. Ethnopharmacol. 2009, 124, 571–575. [Google Scholar] [CrossRef]
  198. Tiwari, R.; Singh, S.K.; Choudhury, S.; Garg, S.K. Antifungal activity of methanolic extracts of leaves of Eucalyptus citriodora and Saraca indica against fungal isolates from dermatological disorders in canines. Int. J. Pharmacol. 2017, 13, 643–648. [Google Scholar] [CrossRef]
  199. Dongmo, A.J.F.; Yetendje, L.C.; Njateng, G.S.S.; Gatsing, D.; Kuiate, J.R. Antidermatophytic activity and adverse side effects of the methanolic extract from leaves of Ageratum conyzoides (Asteraceae). Investig. Med. Chem. Pharmacol. 2018, 1, 19. [Google Scholar]
  200. Lin, H.C.; Kuo, Y.L.; Lee, W.J.; Yap, H.Y.; Wang, S.H. Antidermatophytic Activity of Ethanolic Extract from Croton tiglium. Biomed. Res. Int. 2016, 2016, 3237586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  201. Mercy, K.A.; Ijeoma, I.; Emmanuel, K.J. Anti-Dermatophytic Activity of Garlic (Allium sativum) Extracts on some Dermatophytic Fungi. Int. Lett. Nat. Sci. 2014, 19, 34–40. [Google Scholar] [CrossRef]
  202. Mebude, O.O.; Lawal, T.O.; Adeniyi, B.A. Anti-Dermatophytic Potential of Formulated Extract of Cola nitida (Vent.) Schott& Endl. (Stem Bark). J. Clin. Exp. Dermatol. Res. 2017, 8, 3. [Google Scholar] [CrossRef]
  203. Imanirampa, L.; Alele, P.E. Antifungal activity of Cleome gynandra L. aerial parts for topical treatment of Tinea capitis: An in vitro evaluation. BMC Complement. Altern. Med. 2016, 16, 194. [Google Scholar] [CrossRef] [Green Version]
  204. Al-qertani, Y.M. Antifungal Activity of Solanum nigrum Extract Against Microsporum canis, The Causative Agent of Ring Worm Disease. Ibn AL-Haitham J. Pure Appl. Sci. 2018, 105–111. [Google Scholar] [CrossRef]
  205. Jahani, S.; Bazi, S.; Shahi, Z.; Asadi, M.S.; Mosavi, F.; Baigi, G.S. Antifungal Effect of the Extract of the Plants Against Candida albicans. Int. J. Infect. 2017, 4, e36807. [Google Scholar] [CrossRef]
  206. Thebo, N.K.; Simair, A.A.; Mangrio, G.S.; Ansari, K.A.; Bhutto, A.A.; Lu, C.; Sheikh, W.A. Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos nucifera (L.) (Arecaceae) against Pathogenic Dermal Mycosis. Medicines 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
  207. Goswami, S.; Jain, R.; Masih, H. Antifungal, antioxidant and DNA protection potential of Grewia asiatica L. leaves acetone extract. J. Pharmacog. Phytoch. 2018, SP1, 212–217. [Google Scholar]
  208. Sepahvand, A.; Ezatpour, B.; Niazi, M.; Rashidipour, M.; Aflatoonian, M.Z.; Soleimani, M.M. Chemical composition and antifungal activity of Nectaroscordum tripedale extract against some pathogenic dermatophyte strains. Entomol. Appl. Sci. Lett. 2018, 5, 10–15. [Google Scholar]
  209. Rhimi, W.; Salem, I.B.; Immediato, D.; Saidi, M.; Boulila, A.; Cafarchia, C. Chemical Composition, Antibacterial and Antifungal Activities of Crude Dittrichia viscosa (L.) Greuter Leaf Extracts. Molecules 2017, 22, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  210. Ayatollahi Mousavi, S.A.; Kazemi, A. In vitro and in vivo antidermatophytic activities of some Iranian medicinal plants. Med. Mycol. 2015, 53, 852–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  211. Galehdar, N.; Rezaeifar, M.; Rezaeifar, M.; Rezaeifar, M. Antinociceptive and anti-inflammatory effects of Amygdalus eburnea shell root extract in mice. Biomed. Res. Ther. 2018, 5, 2746–2751. [Google Scholar] [CrossRef]
  212. Kumari, S.; Jain, P.; Sharma, B.; Kadyan, P.; Dabur, R. In vitro antifungal activity and probable fungicidal mechanism of aqueous extract of Barleria grandiflora. Appl. Biochem. Biotechnol. 2015, 175, 3571–3584. [Google Scholar] [CrossRef]
  213. Lalitha, S.G.; Ramachandrappa, L.T.; Krishnamurthy, S.; Basavaraju, J.; Thirumale, S. Insignificant antifungal activity of plant extracts on Malassezia furfur. J. Pharm. Negat. Results 2016, 7, 16–20. [Google Scholar]
  214. Adeniyi, B.A.; Mebude, O.O.; Lawal, T.O.; Nwanekwu, K.E. In-vitro Antifungal Activities of Cola nitida Schott & Endl. (Sterculiaceae) against Five Candida species and Four Dermatophytes. Microbiol. Res. J. Int. 2016, 14, 1–8. [Google Scholar] [CrossRef]
  215. Babu, A.; Noor Mohamed, M.S.; Jaikumar, K.; Anand, D.; Saravanan, P. In-Vitro Antifungal Activity of Leaf Extracts of Leucas Aspera and Leucas Zeylanica. Int. J. Pharm. Sci. Res. 2016, 7, 752–756. [Google Scholar] [CrossRef]
  216. Mohaddese, M.; Kashani, L.M. The anti-dermatophyte activity of Commiphora molmol. Pharm. Biol. 2016, 54, 720–725. [Google Scholar] [CrossRef] [Green Version]
  217. Asong, J.A.; Amoo, S.O.; McGaw, L.J.; Nkadimeng, S.M.; Aremu, A.O.; Otang-Mbeng, W. Antimicrobial Activity, Antioxidant Potential, Cytotoxicity and Phytochemical Profiling of Four Plants Locally Used against Skin Diseases. Plants 2019, 8, 350. [Google Scholar] [CrossRef] [Green Version]
  218. Aneke, C.I.; Nwogwugwu, C.C.; Ugochukwu, I.C.I.; Chah, K.F. Antifungal activity of ethanolic extracts of Ocimum gratissimum and Vernonia amygdalina leaves against dermatomycotic agents isolated from domestic animals in South Eastern Nigeria. Comp. Clin. Path. 2019, 28, 1791–1795. [Google Scholar] [CrossRef]
  219. Kulkarni, M.; Hastak, V.; Jadhav, V.; Date, A.A. Fenugreek Leaf Extract and Its Gel Formulation Show Activity Against Malassezia furfur. Assay Drug Dev. Technol. 2020, 18, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  220. Padmalochana, K.; Indumathi, P. Discovering the Dandruff Remidial Property of Albizia saman Leaf Extract Towards Malassezia Species. Res. J. Pharm. Techol. 2016, 9, 1211–1216. [Google Scholar] [CrossRef]
  221. Gebremedhin, G.; Tesfay, T.; Chaithanya, K.K.; Kamalakararao, K.; Kamalakararao, K. Phytochemical screening and in vitro anti-dandruff activities of bark extracts of neem (Azadirachta indica). Drug. Invent. Today 2020, 13, 707–713. [Google Scholar]
  222. Safeena, S. Effect of crude extract mixtures of five selected medicinal plant species on Malassezia sp. In Proceedings of the 9th International Symposium (Full Paper), South Eastern University of Sri Lanka, Oluvil, Sri Lanka, 27–28 November 2019; pp. 365–372. [Google Scholar]
  223. Gomes, N.G.M.; Oliveira, A.P.; Cunha, D.; Pereira, D.M.; Valentão, P.; Pinto, E.; Araújo, L.; Andrade, P.B. Flavonoid Composition of Salacia senegalensis (Lam.) DC. Leaves, Evaluation of Antidermatophytic Effects, and Potential Amelioration of the Associated Inflammatory Response. Molecules 2019, 24, 2530. [Google Scholar] [CrossRef] [Green Version]
  224. Raksamat, W.; Khanthorng, T.; Augkumpan, N. Antifungal Activity of Red-stemmed Ipomoea aquatica Forsk. Extracts against Dermatophytes and Malassezia sp. Thai Pharm. Health Sci. J. 2018, 13, 75–79. [Google Scholar]
  225. Singla, C.; Ali, M. Antidandruff activity and chemical constituents of the leaves of Betula cylindrostachya Lindl. ex Wall. J. Med. Plants Stud. 2018, 6, 189–193. [Google Scholar]
  226. Zakaria, A.; Abdel-Motaal, F.; Mahalel, U. Antifungal activity of Ficus sycomorus L. extracts against dermatophytes and other associated fungi isolated from Camels ringworm lesions. J. Biol. Stud. 2018, 1, 116–132. [Google Scholar]
  227. Rajapaksha, R.S.C.G.; Wickramarachchi, W.J.; Hansini, K.G.D.M. Evaluation of the Antifungal Activity of the Extracts of the Rhizome of Alpinia Nigra. Int. J. Adv. Agric. Environ. Eng. 2017, 4, 86–88. [Google Scholar] [CrossRef]
  228. Kaur, D.; Prasad, S.B. Anti-acne activity of acetone extract of Plumbago indica root. Asian J. Pharm. Clin. Res. 2016, 9, 285–287. [Google Scholar]
  229. Mahendra, C.; Gowda, D.V.; Babu, U.V. Insignificant activity of extracts of Gmelina asiatica and Ipomoea digitata against skin pathogens. J. Pharm. Negat. Res. 2015, 6, 27–32. [Google Scholar] [CrossRef]
  230. Do Nascimento, M.N.G.; Machado Martins, M.; Scalon Cunha, L.C.; de Souza Santos, P.; Goulart, L.R.; de Souza Silva, T.; Gomes Martins, C.H.; Lemos de Morais, S.A.; Pivatto, M. Antimicrobial and cytotoxic activities of Senna and Cassia species (Fabaceae) extracts. Ind. Crops Prod. 2020, 148, 112081. [Google Scholar] [CrossRef]
Table 1. Antibacterial effect of plant extracts.
Table 1. Antibacterial effect of plant extracts.
Name of The Species/FamilyPart of the Plant Type of ExtractActive Compounds/
Class of Compounds
PathogensRef.
Chromolaena odorata L./Asteraceaeleafmethanolic -Pseudomonas aeruginosa[92]
Chromolaena odorata L./Asteraceaeleaf, stem, rootsethanolic, methanolic and hexanephenolics and flavonoidsBacillus cereus, Enterococcus faecalis, Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pyogenes Propionibacterium acnes, Proteus vulgaris[93]
Brachylaena elliptica (Thunb.) DC./Asteraceae, Brachylaen ilicifolia (Thunb.) DC./Asteraceaeleafethanolic tannins, phenols, flavonoids, flavonols, proanthocyanidins, alkaloids, saponinsPseudomonas aeruginosa, Proteus vulgaris, Proteus mirabilis, Staphylococcus aureus
Streptococcus pyogenes
[94]
Swietenia macrophylla King./Meliaceae seedmethanolic21 compounds with oleic acid and linoleic acid were the main components Staphylococcus
aureus, Bacillus cereus, Bacillus subtilis, Proteus mirabilis, Yersinia spp., Escherichia coli, Klebsiella
pneumoniae, Shigella boydii and Acinobacter anitratus
[95]
Pimpinella anisum L./Apiaceaewhole plantmethanolicphytoestrogen, flavonoidsStaphylococcus aureus,
Pseudomonas aeruginosa
[96]
Croton lobatus L./Euphorbiaceaeleafwater tannins, triterpenoids, flavonoids, saponinsStaphylococcus aureus, Streptococcus spp; Pseudomonas aeruginosa, Proteus vulgaris; Escherichia coli[97]
Citrus aurantifolia Hort. ex Tanaka/Rutaceaelime peelethanolic-Staphylococcus aureus[98]
Elaeis guineensis Jacq./Arecaceaerootn-hexane, chloroform, ethyl acetate
and butanol
tannins, saponins, steroids and flavonoids Staphylococcus aureus, Pseudomonas aeruginosa[99]
Alhagi maurorum Medik./Fabaceaeleaf, stemwater-Nineteen Pseudomonas aeruginosa strains [100]
Zizania latifolia (Griseb.) Turcz. ex Stapf./Poaceaeaerial partswater -Staphylococcus aureus[101]
Opuntia ficus-indica Mill./CactaceaeflowermethanolicmonosaccharidesEscherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Listeria monocytogenes[102]
Alkanna strigose Boiss&Hohen./Boraginaceaeroothexane Alkanin, shikoninStaphylococcus aureus, Pseudomonas-aeruginosa, Escherichia coli,Bacillus subtilis[103]
Salvia kronenburgii Rech. f./Lamiaceae, Salvia euphratica Montbret, Aucher and Rech. f. var./Lamiaceaeaerial partethanolic phenolics and flavonoidsStaphylococcus aureus, Bacillus subtilis, Escherichia coli, Acinetobacter baumannii, Aeromonas hydrophila, Mycobacterium tuberculosis[104]
Juglans regia L./Inner Stratum of Oak Fruit (Jaft)/Juglandaceaefruit, stem barkethanolic-Staphylococcus aureus[105]
Garcinia mangostana L./Clusiaceaepericarpmethanolicα-mangostinStaphylococcus aureus[106]
Ficus thonningii Blume./Moraceaeleafethanolic alkaloids, phlobatannins, steroids, saponinsEscherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus[107]
Balanites aegyptiaca L. Delile./Zygophyllaceaebarkwater:ethanolic phenolicsPseudomonas aeruginosa and Staphylococcus aureus [108]
Myrciaria cauliflora (Mart.) O. Berg./Myrtaceae crudemethanolic-Staphylococcus aureus[109]
Acacia ehrenbergiana Hayne (Salam)./FabaceaeStem, barkmethanolic -Pseudomonas aeruginosa[110]
Acacia nilotica Lam./Fabaceaeseed methanolic extract/emulsifying ointment-Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, Streptococcus pyrogens and Salmonella typhi[111]
Table 2. Antiviral effect of plant extracts.
Table 2. Antiviral effect of plant extracts.
Name of the Species/FamilyPart of the Plant Type of ExtractActive Compounds/
Class of Compounds
PathogensRef.
Euphorbia cooperi N.E.Br. ex A.Berger/Euphorbiaceaeleaf, flowerwater, methanolic polyphenolsHerpes Simplex Virus type 1 (HSV-1)[141]
Euphorbia cooperi L./Euphorbiaceae, Odina wodier Roxb./Anacardiaceae, Moringa oleifera Lam./MoringaceaeFruit, bark, leaf, flowermethanolic-HSV-1 and Herpes Simplex Virus type 2 (HSV-2)[142]
Cornus canadensis L./Cornaceaeleafwater:ethanolichydrolysable tanninsHerpes Simplex Virus type 1 (HSV-1)[143]
Eleusine indica L. Gaertn./Poaceaewhole plantmethanol, hexane tannins, alkaloids, steroidsHerpes Simplex Virus type 1 (HSV-1)[144]
Pistacia lentiscus L./Anacardiaceae, Peganum harmala L./Nitrariaceaeseed, stem, fruit, flowermethanolic, dichloromethane, acetate, hexane, ethanolic-Herpes Simplex Virus type 2 (HSV-2)[145]
Orthosiphon stamineus Benth./Lamiaceaeleafwater, methanolic, ethanolicalkaloids, flavonoids, steroids, terpenoids, anthraquinone, saponinsHerpes Simplex Virus type 1 (HSV-1)[146]
Arctium lappa L./Asteraceaefruitwater:ethanolicdibenzylbutyrolactone lignans, such as arctiin and arctigeninHerpes Simplex Virus type 1 (HSV-1)[147]
Asplenium nidus L./Aspleniceaeleafwateralkaloids, flavonoids, terpenoids, anthraquinonesHerpes Simplex Virus type 1 (HSV-1)[148]
Capsicum annuum L./Solanaceaewhole fruitsmethanolicphenolic, flavonoidsHerpes Simplex Virus type 1 (HSV-1) and Herpes Simplex Virus type 2 (HSV-2)[149]
Chelidonium majus L./Papaveraceaeherbs hexane, water-Herpes Simplex Virus type 1 (HSV-1)[150]
Chrysanthemum cinerariaefolium (Trevir.) Sch. Bip./Asteraceae flowerswater, methanolicalkaloids, flavonoids, phenols, saponins, tannins and terpenoidsHerpes Simplex Virus type 1 (HSV-1)[151]
Cinnamon Scheffer./Lauraceae cinnamon treewater:methanolic-Herpes Simplex Virus type 1 (HSV-1)[152]
Phellodendron
amurense Rupr./Rutaceae
barkwaterberberineA virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV), Enterovirus-71 (EV-71)[153]
Durian, Durio zibethinus Murray./Malvaceaeseedwater, ethanolic-Herpes Simplex Virus type 2 (HSV-2)[154]
Euphorbia spinidens Bornm./Euphorbiaceaeaerial partmethanolicphenolics, flavonoidsHerpes Simplex Virus type 1 (HSV-1)[155]
Ficus religiosa L./Moraceaebark, leafwater, methanolic, ethyl acetate, chloroform-Herpes Simplex Virus type 2 (HSV-2)[156]
Fridericia formosa (Bureau) L. G. Lohmann./Bignoniaceaeleaves, stems, and fruitsethanolicC-glucosylxanthones mangiferin, 2-O-trans-caffeoylmangiferin, 2-O-trans-coumaroylmangiferin, 2-
O-trans-cinnamoylmangiferin, flavonoid chrysin
Herpes Simplex Virus type 1 (HSV-1), murine encephalomyocarditis virus (EMCV)[157]
Graptopetalum paraguayense E. Walther./Crassulaceaeleaveswater:methanolic-Herpes Simplex Virus type (HSV)[158]
Houttuynia cordata Thunb./Saururaceaeaerial partwater, ethanolic-Herpes Simplex Virus type 1 (HSV-1) and Herpes Simplex Virus type 2 (HSV-2)[159]
Ixeris Sonchifolia (Bae.) Hance./Asteracaewhole grass or root-flavonoidsHerpes Simplex Virus type 1 (HSV-1)[160]
Jatropha multifida L./Euphorbiaceaerootn-hexane, ethanolic and methanoliclathyrane-type diterpenesHerpes Simplex Virus type 1 (HSV-1)[161]
Glycyrrhiza glabra L./Fabaceaerootwater, alkalineflavonoids and chalcone derivatives (liquiritin apioside, liquiritigenin 7-apiosylglucoside, liquiritin, neoliquiritin, liquiritigenin,
isoliquiritin apioside, licurazid, isoliquiritin, neoisoliquiritin, isoliquiritigenin)
Herpes Simplex Virus type 1 (HSV-1) and HIV virus[162]
Morus alba L./Moraceaeleaf-phenolics, flavonoidsHerpes Simplex Virus type 1 (HSV-1) and Herpes Simplex Virus type 2 (HSV-2)[163]
Peganum harmala L./
Nitrariaceae
seed, stem, leaf, and flowerhexane, dichloromethane, ethyl acetate, methanolic, ethanolic alkaloidsHerpes Simplex Virus type 2 (HSV-2)[164]
Phaleria macrocarpa (Scheff.) Boerl./Thymelaeaceaefruitwatersteroids, tannins, flavones aglycones, saponins, terpenoids, alkaloidsHerpes Simplex Virus type 1 (HSV-1)[165]
Pistacia vera L./Anacardiaceaepistachio kernels-polyphenolsHerpes Simplex Virus type 1 (HSV-1)[166]
Punica granatum L./Lythraceaefruit peelwater, water:ethanolic, ethanolicellagitannin, gallotanninHerpes Simplex Virus type 2 (HSV-2)[167]
Rhinacanthus nasutus L. Kurz./Acanthaceaestemethanolic, ethylacetate,
methanolic, dichloromethane, acetone and hexane
-Herpes Simplex Virus type 2 (HSV-2)[168]
Robinia pseudoacacia cv. Idaho./FabaceaeflowerethanolicflavonoidsHuman enterovirus 71 virus (EV-71) and Herpes Simplex Virus type 1 (HSV-1)[169]
Solanum melongena L./Solanaceaeberry peelethanolicphenolics, flavonoidsHerpes Simplex Virus type 1 (HSV-1)[170]
Strychnos pseudoquina A. St. Hil/Loganiaceaestem barkethyl acetateflavonoidsHerpes Simplex Virus type 1 (HSV-1) and Herpes Simplex Virus type 2 (HSV-2)[171]
Tanacetum parthenium L. Sch.Bip./Asteraceaeaerial partwater:ethanolicphenolic acids
(chlorogenic acids), sesquiterpene lactones (parthenolide)
Herpes Simplex Virus type 1 (HSV-1)[172]
Terminalia chebula
Retz./Combretaceae
fruit ethanolic chebulagic acid, chebulinic Herpes Simplex Virus type 2 (HSV-2)[173]
Veronica persica Poir./Plantaginaceaestem, leaf, flowermethanolic-Herpes Simplex Virus type 1 (HSV-1) and Herpes Simplex Virus type 2 (HSV-2)[174]
Polygonum minus Huds./Polygonaceaeleaf, stemmethanolic-Herpes Simplex Virus type 1 (HSV-1)[175]
Lamium album L./Lamiaceaeaerial partwater, ethanolic -Herpes Simplex Virus type 1 (HSV-1) and Herpes Simplex Virus type 2 (HSV-2)[176]
Cuminum cyminum L./Apiaceaeseedmethanolic phenolics, flavonoidsHerpes Simplex Virus type 1 (HSV-1) and Herpes Simplex Virus type 2 (HSV-2)[177]
Table 3. Antifungal effect of plant extracts.
Table 3. Antifungal effect of plant extracts.
Name of the Species/FamilyPart of the Plant Extract/Active CompoundsActive Compounds/
Class of Compounds
PathogensRef.
Dryopteris fragrans L. Schott./Dryopteridaceaewhole plantethanolic Fourteen derivatives of phloroglucinol 62 isolates of dermatophytes (such as Trichophyton mentagrophytes or Trichophyton rubrum[196]
Vismia rubescens Oliv./Hypericaceaestem barkmethanolic1,4,8-trihydroxyxanthone, 1,7-dihydroxyxanthone, physcion, friedelin and friedelanolCandida albicans, Candida tropicalis, Candida parapsilosis and Cryptococcus neoformans[197]
Saraca indica L. (Ashoka tree)/Fabaceae, Eucalyptus citriodora L./Myrtaceaeleafmethanolic -Microsporum nanum, Microsporum gypseum, M. canis, Aspergillus niger, Rhizopus, Alternaria, Candida, Penicillium[198]
Ageratum conyzoides L./Asteraceaeleafmethanolicflavonoids, phenolics and tannins Microsporum gypseum, Trichophyton violaceum and Epidermophiton floccosum[199]
Croton tiglium L./Euphorbiaceaestem, leaf, seedethanolic- Trichophyton mentagrophytes, Trichophyton rubrum, andEpidermophyton floccosum[200]
Allium sativum L./Amaryllidaceaefresh bulbs of garlicwater, ethanolic and methanolic -Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Trichophyton verrucosum and Epidermophyton floccosum[201]
Cola nitida (Vent.) Schott
and Endl./Malvaceae
stem barkethanolic -Trichophyton rubrum,Trichophyton tonsurans[202]
Cleome gynandra L./Cleomaceae aerial partwater, methanolic alkaloids, flavonoids, tannins, terpenoids, steroidsTrichophyton rubrum, Microsporum canisandTrichophyton mentagrophytes[203]
Solanum nigrum L./Solanaceaefruitmethanolic -Microsporum canis[204]
Peganum harmala L./Nitrariaceae, Echinophora platyoba DC./Umbelliferae, Rosmarinus officinalis L./Lamiaceae and Heracleum persicum L./Apiaceaewhole plantmethanolic -Candida albicans[205]
Cocos nucifera L./Arecaceaefruitmethanolicphenolic compoundsAspergillus niger, Microsporum canis,
Microsporum gypseum, Aspergillus flavus, Trichophyton rubrum, Aspergillus fumigatusandTrichophytonvercossum. Mycosis clinically isolated fromTinea corporis
[206]
Grewia asiatica L./ Malvaceae leavesacetonic phenolics, flavonoids, alkaloids, tannins, terpenoids, saponinsAspergillus spp., Candida spp., Microsporum spp., Trichophyton spp. [207]
Nectaroscordum tripedale (Trautv.) Traub./Alliaceaeaerial partsmethanolic 24 compounds with the main compounds such as: decadienal hexadecanoic acid, heptadecane Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum[208]
Dittrichia viscosa (L.) Greuter./Asteraceaeleavesmethanolic, ethanolic, and butanolic tannins, phenols, flavonoidsMalasseziaspp.,Aspergillus spp. [209]
Cinnamomum zeylanicum Blume./Lauraceae, Zingiber officinale
Rosc./Zingiberaceae, Heracleum persicum Boiss./Apiaceae, Elettaria cardamomum
L./Zingiberaceae, Salvia officinalis L./Lamiaceae, Calendula officinalis L./Astereceae, Myrtus
communis L./Myrtaceae, Mentha spicata L./Lamiaceae
flower, bark,
seed, leaf, aerial part, rhizome
methanolic Flavonoids, tannins, phenolics, alkaloids Trichophyton mentagrophytes, Trichophyton interdigitale,Microsporum
canis, andMicrosporum gypseum
[210]
Amygdalus eburnean
Spach./Rosaceae
shell rootmethanolic
water
-Trichophyton mentagrophytes and Trichophyton interdigitale[211]
Barleria grandiflora Dalz./Acanthaceaeleafwater-Aspergillus fumigatus[212]
Punica granatum L./Lythraceae, Illicium verum Hook./Schisandraceae, Nyctanthes arbor-tristis L./Oleaceae, Thespesia populnea L./Malvaceae, Piper betle L./Piperaceaefruit rind, fruit, leaf chloroform, hexane, water, methanolic-Malassezia furfur[213]
Cola nitida Schott and Endl./Malvaceae leaf and seedmethanolic anthraquinones, tannins, saponins, alkaloids and cardenolidesCandida valida, Candida glabrata, Candida tropicalis, Candida albicans, Candida krusei, Trichophyton interdigitalis, Trichophyton tonsurans, Epidermytophyton rubrum Trichophyton rubrum[214]
Leucas aspera (L.) R. Br./Lamiaceae, Leucas zeylanica (L.) W.T.Aiton./Lamiaceaeleaf methanolic -Aspergillus flavus, Candida albicans, Candida tropicalis, Epidermophyton floccosum, Microsporum nanum, Penicillium, Trichophyton mentagrophytes[215]
Commiphora molmol Engl./BurseraceaemyrrhethanolicFuranoeudesma 1,3-diene and menthofuran, 2-tert-butyl-1,4-naphthoquinone, benzenemethanol,3-methoxy-a-phenyl, curzereneTrichophyton rubrum,Trichophyton mentagrophytes,Microsporum canis,M. gypseum,andTrichophyton verrucosum[216]
Drimia sanguinea (Schinz) Jessop./Asparagaceae, Elephantorrhiza elephantine (Burch.) Skeels./Fabaceae, Helichrysum paronychioides Mill./Asteraceae, Senecio longiflorus (DC.) Sch.Bip./Asteraceaewhole plantmethanolicphenolics and flavonoidsCandida glabrata, Candida krusei, Trichophyton rubrum and Trichophyton tonsurans[217]
Ocimum gratissimum L./Lamiaceae, Vernonia amygdalina Delile./Asteraceaeleafethanolic -Microsporum spp., Trichophyton spp., Aspergillus spp., and Penicillium spp. [218]
Trigonellafoenum-graecum L./Fabaceaeleafwater Flavonoids, alkaloids, saponins, phenolicsMalassezia furfur, Aspergillus niger, Candida albicans[219]
Albizia saman (Jacq.) Merr/Fabaceaeleafmethanolic -Malassezia spp. [220]
Azadirachta indica A. Juss./Meliaceaebark neemdiethyl ether, chloroform, acetone, and ethanolicalkaloids, flavonoids, tannins, phenolics, terpenoids (nimbin, nimbolinin and nimbidin) and steroids (nimbidol)Malassezia globosa and Malassezia restricta[221]
Citrus aurantifolia Hort. ex Tanaka/Rutaceae, Curcuma domestica L./Zingiberaceae, Trigonella foenumgraceum L./Fabaceae, Cassia alata (L.) Roxb./Fabaceae, Azadirachta indica A. Juss./Meliaceae leaf, rhizome, seed, exocarp, methanolic-Malassezia spp. [222]
Salacia senegalensis (Lam.) DC/Celastraceaeleafaqueous-ethanolicflavonoidsTrichophyton rubrum, Epidermophyton floccosum[223]
Ipomoea aquatic Forsk./Convolvulaceaeapical bud and flowerethanolic -Tricophyton rubrum, Epidermophyton floccosum, Microsporum gypseum, Malassezia furfur, Malassezia globosa[224]
Betula cylindrostachya Lindl. ex Wall/Betulaceaeleafmethanolic,
water- methanol, chloroform, ethyl acetate and n-butanol
1-heptadecanol, behenyl alcohol, 1-tricosanol, 1-nonacosanol and lignoceric acidMalassezia furfur[225]
Ficus sycomorus L./Moraceaeroot, stem-bark, leaf, fruitmethanolicflavonoidsTrichophyton mentagrophytes var. erinacei, Malassezia audouinii and Microsporum gypsum, Fennellia nivea, Choaenophora cucurbitarum, Aspergillus carneus and Aspergillus fumigatus[226]
Alpinia nigra (Gaertn.) B.L.Burtt/Zingiberaceaerhizome dichloromethaneflavonoidsMalassezia furfur and Microsporum gypseum[227]
Plumbago indica L./Plumbaginaceaerootacetone -Propionibacterium acnes, Staphylococcus epidermidis, Malassezia furfur[228]
Gmelina asiatica L./Lamiaceae, Ipomoea digitate Jacq./Convolvulaceaeaerial part, tuberchloroform, ethyl acetate, and methanolicglycosides, flavonoids, phenolics, tannins, phytosterols, triterpenoids, saponins, alkaloids,Malassezia furfur,Propionibacterium
acnes,Corynebacterium diphtheriae
[229]
Senna macranthera DC.ex Colladon/Fabaceaeflowerethanolic flavan-3-ol, flavone, glycosylated flavonols, proanthocyanidin Candida albicans[230]

Share and Cite

MDPI and ACS Style

Sitarek, P.; Merecz-Sadowska, A.; Kowalczyk, T.; Wieczfinska, J.; Zajdel, R.; Śliwiński, T. Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms. Int. J. Mol. Sci. 2020, 21, 5105. https://doi.org/10.3390/ijms21145105

AMA Style

Sitarek P, Merecz-Sadowska A, Kowalczyk T, Wieczfinska J, Zajdel R, Śliwiński T. Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms. International Journal of Molecular Sciences. 2020; 21(14):5105. https://doi.org/10.3390/ijms21145105

Chicago/Turabian Style

Sitarek, Przemysław, Anna Merecz-Sadowska, Tomasz Kowalczyk, Joanna Wieczfinska, Radosław Zajdel, and Tomasz Śliwiński. 2020. "Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms" International Journal of Molecular Sciences 21, no. 14: 5105. https://doi.org/10.3390/ijms21145105

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop