The Time-Feature of Uric Acid Excretion in Hyperuricemia Mice Induced by Potassium Oxonate and Adenine
Abstract
:1. Introduction
2. Results
2.1. The General Condition of Hyperuricemia Mice Induced by Potassium Oxonate (PO) and Adenine
2.2. The Time-Feature on Bodyweight, Water Intake and Food Intake in Hyperuricemia Mice Induced by PO and Adenine
2.3. The Time-Feature on the Level of Uric Acid in Plasma of Hyperuricemia mMce Induced by PO and Adenine
2.4. The Time-Feature on Renal Morphology of Hyperuricemia Mice Induced by PO and Adenine
2.5. The Time-Feature on the Expression of Urate Transporters Protein in Hyperuricemia Mice Induced by PO and Adenine
2.6. The Time-Feature on Each Indicator in Hyperuricemia Mice Induced by PO and Adenine
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Mice
4.3. Adenine and PO Induced Hyperuricemia Mice
4.4. Ultra Performance Liquid Chromatography (UPLC) for Uric Acid Level
4.5. Histopathology of Renal Tissues
4.6. Western Blot Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PO | Potassium oxonate |
UA | Uric acid |
URAT1 | Urate-anion transporter 1 |
GLUT9 | Glucose transporter 9 |
ABCG2 | ATP-binding cassette super family G2 |
NPT1 | Sodium-dependent phosphate cotransporter 1 |
OAT1 | Organic anion transporter 1 |
UPLC | Ultra Performance Liquid Chromatography |
AKI | Acute kidney injury |
NGAL | Neutrophil gelatinase associated lipocalin |
KIM-1 | Kidney injury molecule 1 |
References
- Xu, D.; Lv, Q.; Wang, X.; Cui, X.; Zhao, P.; Yang, X.; Liu, X.; Yang, W.; Yang, G.; Wang, G.; et al. Hyperuricemia is associated with impaired intestinal permeability in mice. Am. J. Physiol. Liver Physiol. 2019, 317. [Google Scholar] [CrossRef] [PubMed]
- Thottam, G.E.; Krasnokutsky, S.; Pillinger, M.H. Gout and Metabolic Syndrome: A Tangled Web. Curr. Rheumatol. Rep. 2017, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, J.A.; Thurman, J.M.; Schrier, R.W. Pathophysiology and Etiology of Acute Kidney Injury. Compr. Clin. Nephrol. 2010, 797–812. [Google Scholar] [CrossRef]
- Wajda, J.; Dumnicka, P.; Maraj, M.; Ceranowicz, P.; Kuźniewski, M.; Kuśnierz-Cabala, B. Potential Prognostic Markers of Acute Kidney Injury in the Early Phase of Acute Pancreatitis. Int. J. Mol. Sci. 2019, 20, 3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żyłka, A.; Dumnicka, P.; Kuśnierz-Cabala, B.; Gala-Błądzińska, A.; Ceranowicz, P.; Kucharz, J.; Ząbek-Adamska, A.; Maziarz, B.; Drożdż, R.; Kuźniewski, M. Markers of Glomerular and Tubular Damage in the Early Stage of Kidney Disease in Type 2 Diabetic Patients. Mediat. Inflamm. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuśnierz-Cabala, B.; Gala-Błądzińska, A.; Mazur-Laskowska, M.; Dumnicka, P.; Sporek, M.; Matuszyk, A.; Gil, K.; Ceranowicz, P.; Walocha, J.; Kucharz, J.; et al. Serum Uromodulin Levels in Prediction of Acute Kidney Injury in the Early Phase of Acute Pancreatitis. Molecules 2017, 22, 988. [Google Scholar] [CrossRef]
- Żyłka, A.; Gala-Błądzińska, A.; Dumnicka, P.; Ceranowicz, P.; Kuźniewski, M.; Gil, K.; Olszanecki, R.; Kuśnierz-Cabala, B. Is Urinary NGAL Determination Useful for Monitoring Kidney Function and Assessment of Cardiovascular Disease? A 12-Month Observation of Patients with Type 2 Diabetes. Dis. Markers 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Sporek, M.; Gala-Błądzińska, A.; Dumnicka, P.; Mazur-Laskowska, M.; Kielczewski, S.; Walocha, J.; Ceranowicz, P.; Kuźniewski, M.; Mituś, J.; Kuśnierz-Cabala, B. Urine NGAL is useful in the clinical evaluation of renal function in the early course of acute pancreatitis. Folia Med. Crac. 2016, 56, 13–25. [Google Scholar]
- Mateusz, S.; Paulina, D.; Agnieszka, G.B.; Piotr, C.; Zygmunt, W.; Artur, D.; Ewa, S.; Jerzy, W.; Ryszard, D.; Marek, K. Angiopoietin-2 Is an Early Indicator of Acute Pancreatic-Renal Syndrome in Patients with Acute Pancreatitis. Mediat. Inflamm. 2016, 2016, 5780903. [Google Scholar]
- Hosohata, K.; Ando, H.; Fujimura, A. Urinary Vanin-1 As a Novel Biomarker for Early Detection of Drug-Induced Acute Kidney Injury. J. Pharm. Exp. 2012, 341, 656–662. [Google Scholar] [CrossRef]
- Parr, S.K.; Clark, A.J.; Bian, A.; Shintani, A.K.; Wickersham, N.E.; Ware, L.B.; Ikizler, T.A.; Siew, E.D. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. 2014, 87, 640–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remy, C.; A Richert, D.; Westerfeld, W.W. The determination of xanthine dehydrogenase in chicken tissues. J. Boil. Chem. 1951, 193, 649–657. [Google Scholar]
- Becker, M.A.; Schumacher, H.R.; Wortmann, R.L.; Macdonald, P.A.; Eustace, D.; Palo, W.A.; Streit, J.; Joseph-Ridge, N. Febuxostat Compared with Allopurinol in Patients with Hyperuricemia and Gout. N. Engl. J. Med. 2005, 353, 2450–2461. [Google Scholar] [CrossRef] [Green Version]
- Goicoechea, M.; Vinuesa, S.G.; Verdalles, U.; Ruiz-Caro, C.; Ampuero, J.; Rincón, A.; Arroyo, D.; Luño, J. Effect of Allopurinol in Chronic Kidney Disease Progression and Cardiovascular Risk. Clin. J. Am. Soc. Nephrol. 2010, 5, 1388–1393. [Google Scholar] [CrossRef]
- Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of Hyperuricemia and Urate-Lowering Treatments. Front. Med. 2018, 5, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muriel, A.; Sophie, S.; Candice, S.; Klaus, S.; Robert, K.; Bernard, T.; Olivier, B. SLC2A9 (GLUT9) mediates urate reabsorption in the mouse kidney. Pflügers Archiv. Eur. J. Physiol. 2018, 470, 1739–1751. [Google Scholar]
- Hosomi, A.; Nakanishi, T.; Fujita, T.; Tamai, I. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2. PLoS ONE 2012, 7, e30456. [Google Scholar] [CrossRef] [Green Version]
- Hediger, M.A.; Johnson, R.J.; Miyazaki, H.; Endou, H. Molecular Physiology of Urate Transport. Physiology 2005, 20, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Matsuo, H.; Kawamura, Y.; Nagamori, S.; Nishiyama, T.; Wei, L.; Nakayama, A.; Nakamura, T.; Sakiyama, M.; Takada, T.; et al. NPT1/SLC17A1 Is a Renal Urate Exporter in Humans and Its Common Gain-of-Function Variant Decreases the Risk of Renal Underexcretion Gout. Arthritis Rheumatol. 2015, 67, 281–287. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Wang, F.; Xing, C. A zebrafish (danio rerio) model for high-throughput screening food and drugs with uric acid-lowering activity. Biochem. Biophys. Res. Commun. 2019, 508, 494–498. [Google Scholar] [CrossRef]
- Poffers, J.; Lumeij, J.T.; Timmermans-Sprang, E.P.M.; Redig, P.T. Further studies on the use of allopurinol to reduce plasma uric acid concentrations in the Red-tailed Hawk (Buteo jamaicensis) hyperuricaemic model. Avian Pathol. 2002, 31, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Paulina, S.; Nadia, M.; Jarosław, W.; Tetiana, Y.; Danica, G.; Liudmyla, L.; Marek, P.; Ewa, W.C.; Grzegorz, P.S.; Kateryna, G. Oral uricase eliminates blood uric acid in the hyperuricemic pig model. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-H.; Dai, Z.-X.; Zhang, G.-H.; Han, J.-B.; Zheng, Y.-T. Molecular characterization, balancing selection, and genomic organization of the tree shrew (Tupaia belangeri) MHC class I gene. Gene 2013, 522, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Su, H.; Nong, Z.; Li, D.; Wang, L.; Chu, S.; Liao, L.; Zhao, J.; Zeng, X.; Ya, Q.; et al. Hypouricemic and Nephroprotective Effects of an Active Fraction from Polyrhachis Vicina Roger On Potassium Oxonate-Induced Hyperuricemia in Rats. Kidney Blood Press. Res. 2018, 43, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wei, Y.; Liu, M.; Liu, T.; Li, J.; Ji, Y.; Liang, J. Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch. Pharmacal Res. 2014, 37, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-H.; Wang, C.-Z.; Wang, S.-Q.; Mi, C.; He, Y.; Zhang, J.; Zhang, Y.; Anderson, S.; Yuan, C.-S. Anti-hyperuricemia effects of allopurinol are improved by Smilax riparia, a traditional Chinese herbal medicine. J. Ethnopharmacol. 2015, 162, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, M.; Wu, J.-L.; Li, J.-X.; Ma, Z.-C. Effect of lemon water soluble extract on hyperuricemia in a mouse model. Food Funct. 2019, 10, 6000–6008. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, L.; Liu, J.; Wang, W.; Yu, H.; Li, J.; Chen, Q.; Wang, T. Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia. J. Ethnopharmacol. 2017, 214, 29–36. [Google Scholar] [CrossRef]
- Bao, R.; Liu, M.; Wang, D.; Wen, S.; Yu, H.; Zhong, Y.; Li, Z.; Zhang, Y.; Wang, T. Effect of Eurycoma longifolia Stem Extract on Uric Acid Excretion in Hyperuricemia Mice. Front. Pharm. 2019, 10, 1464. [Google Scholar] [CrossRef]
- Hu, Q.-H.; Zhu, J.-X.; Ji, J.; Wei, L.-L.; Miao, M.-X.; Ji, H. Fructus Gardenia Extract Ameliorates Oxonate-Induced Hyperuricemia with Renal Dysfunction in Mice by Regulating Organic Ion Transporters and mOIT3. Molecules 2013, 18, 8976–8993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, C.; Duan, S.; Yuan, X.; Liang, J.; Hou, S. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed. Pharm. 2019, 118, 109195. [Google Scholar] [CrossRef] [PubMed]
- Kodithuwakku, N.D.; Feng, Y.-D.; Zhang, Y.-Y.; Pan, M.; Fang, W.; Li, Y.-M. The molecular insight into the antihyperuricemic and renoprotective effect of Shuang Qi gout capsule in mice. J. Ethnopharmacol. 2015, 163, 278–289. [Google Scholar] [CrossRef]
- Lu, J.; Dalbeth, N.; Yin, H.; Li, C.; Merriman, T.R.; Wei, W. Mouse models for human hyperuricaemia: A critical review. Nat. Rev. Rheumatol. 2019, 15, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. Biomed Res. Int. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cleophas, M.; Joosten, L.; Stamp, L.; Dalbeth, N.; Woodward, O.M.; Merriman, T.R. ABCG2 polymorphisms in gout: Insights into disease susceptibility and treatment approaches. Pharm. Pers. Med. 2017, 10, 129–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Wakamiya, M.; Vaishnav, S.; Geske, R.; Montgomery, C.; Jones, P.; Bradley, A.; Caskey, C.T. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc. Natl. Acad. Sci. USA 1994, 91, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Hou, X.; Yuan, X.; Cui, L.; Liu, Z.; Li, X.; Ma, L.; Cheng, X.; Xin, Y.; Wang, C.; et al. Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders. Kidney Int. 2018, 93, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.; Zhang, Z.; Chen, X.; Liu, J.; Yu, H.; Han, L.; Jin, L.; Zhang, Y.; Wang, T. An improved UPLC method for determining uric acid in rat serum and comparison study with commercial colorimetric kits. Acta Chromatogr. 2019, 31, 201–205. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Calabozo, M.; Ruibal, A.; Herrero-Beites, A.M. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum. 2002, 47, 610–613. [Google Scholar] [CrossRef]
Admistration Time | Plasma Uric Acid Level | 24 h Cur | ||
---|---|---|---|---|
Normal Group | Model Group | Normal Group | Model Group | |
3 days | 42.026 ± 4.60 *** | 123.446 ± 28.672 | 1.563 ± 0.213 | 0.732 ± 0.179 |
7 days | 40.944 ± 7.260 **** | 175.703 ± 26.675 | 1.736 ± 0.263 | 0.398 ± 0.096 |
10 days | 43.955 ± 11.622 **** | 169.457 ± 49.331 | 1.584 ± 0.231 | 0.607 ± 0.142 |
14 days | 38.785 ± 6.508 **** | 170.181 ± 39.331 | 1.740 ± 0.258 | 0.329 ± 0.106 |
17 days | 44.402 ± 15.295 **** | 179.640 ± 42.672 | 1.625 ± 0.232 | 0.251 ± 0.033 |
21 days | 68.142 ± 30.834 **** | 191.005 ± 65.312 | 0.975 ± 0.226 | 0.185 ± 0.051 |
Admistration Time | Renal URAT1 (WB) | Renal GLUT9 (WB) | Renal ABCG2 (WB) | |||
---|---|---|---|---|---|---|
Normal Group | Model Group | Normal Group | Model Group | Normal Group | Model Group | |
3 days | 0.395 ± 0.071 ** | 0.672 ± 0.085 | 0.193 ± 0.017 *** | 0.517 ± 0.055 | 1.034 ± 0.045 * | 0.837 ± 0.065 |
7 days | 1.214 ± 0.172 * | 1.407 ± 0.184 | 0.152 ± 0.017 **** | 0.818 ± 0.145 | 1.252 ± 0.110 ** | 0.713 ± 0.338 |
10 days | 0.517 ± 0.191 *** | 1.126 ± 0.096 | 0.083 ± 0.019 **** | 1.407 ± 0.096 | 1.561 ± 0.131 ** | 1.108 ± 0.162 |
14 days | 0.343 ± 0.896 * | 0.552 ± 0.631 | 0.231 ± 0.019 ** | 0.472 ± 0.103 | 1.112 ± 0.055 ** | 0.552 ± 0.113 |
21 days | 0.368 ± 0.120 | 0.382 ± 0.055 | 0.022 ± 0.012 **** | 1.063 ± 0.075 | 1.179 ± 0.077 *** | 0.254 ± 0.082 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.; Wang, D.; Yu, H.; Liu, M.; Chen, Q.; Bao, R.; Liu, L.; Zhang, Y.; Wang, T. The Time-Feature of Uric Acid Excretion in Hyperuricemia Mice Induced by Potassium Oxonate and Adenine. Int. J. Mol. Sci. 2020, 21, 5178. https://doi.org/10.3390/ijms21155178
Wen S, Wang D, Yu H, Liu M, Chen Q, Bao R, Liu L, Zhang Y, Wang T. The Time-Feature of Uric Acid Excretion in Hyperuricemia Mice Induced by Potassium Oxonate and Adenine. International Journal of Molecular Sciences. 2020; 21(15):5178. https://doi.org/10.3390/ijms21155178
Chicago/Turabian StyleWen, Shaoshi, Dan Wang, Haiyang Yu, Mengyang Liu, Qian Chen, Ruixia Bao, Lin Liu, Yi Zhang, and Tao Wang. 2020. "The Time-Feature of Uric Acid Excretion in Hyperuricemia Mice Induced by Potassium Oxonate and Adenine" International Journal of Molecular Sciences 21, no. 15: 5178. https://doi.org/10.3390/ijms21155178