Drug Discovery Targeting the Disorder-To-Order Transition Regions through the Conformational Diversity Mimicking and Statistical Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Computational Reevaluation of the 10058F4 Binding to the MYC Disorder-To-Order Transition Region
2.2. MYC and MDM2 Inhibitors Docking Evaluation Shows Each Compound Binds to Peptide Corresponding Regions, and 10058F4 Interacts with MYC Y402
2.3. Chemical Compound Library Docking to MYC 390–409 Shows Better 10058F4 Scores
2.4. ABA and APC Both Have Electrostatic Interaction with MBD2, but Only ABA Shows Specific Electrostatic Interaction with p66α
3. Materials and Methods
3.1. Segmented Peptide Preparation, Molecular Docking, and Evaluation Score Update
3.2. MYC, MDM2, MBD2, and p66α T Score Heatmap
3.3. MYC, MBD2, and p66α Docking Contact Residue Mapping
3.4. MYC 390–409 Peptide Molecular Docking with 10058F4 and Chemical Compound Library (NCI Diversity Set V)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
10058F4 | 10058-F4: 5-[(4-Ethylphenyl)methylene]-2-thioxo-4-thiazolidinone, ZINC12406714, PubChem CID: 1271002 |
10074G5 | 10074-G5: 4-nitro-N-(2-phenylphenyl)-2,1,3-benzoxadiazol-7-amine, ZINC3879010, PubChem CID: 2836600 |
ABA | 2-Amino-N-[[(3S)-2,3-dihydro-1,4-benzodioxin-3-yl]methyl]acetamide, ZINC40430779, PubChem CID: 93602182 |
APC | (R)-3-(2-Amino-acetylamino)-pyrrolidine-1-carboxylic acid tert-butyl ester, ZINC60177071, PubChem CID: 66563909 |
CD | Circular dichroism |
CSA | Contact surface area |
DOPE | Discrete optimized protein energy |
DOT | Disorder-to-order transition |
EM | Electron microscopy |
IDP | Intrinsically disordered protein |
IDPR | Intrinsically disordered protein region |
MAX | Protein Max |
MBD2 | Methyl-CpG-binding domain protein 2 |
MDM2 | E3 ubiquitin-protein ligase Mdm2 |
MoRF | Molecular recognition feature |
MYC | Myc proto-oncogene protein |
NCI | National Cancer Institute |
NMR | Nuclear magnetic resonance |
p66α | Transcriptional repressor p66-alpha |
RG7112 | RG-7112: [(4S,5R)-2-(4-tert-butyl-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dimethylimidazol-1-yl]-[4- (3-methylsulfonyl propyl)piperazin-1-yl]methanone, ZINC96270381, PubChem CID: 57406853 |
References
- Lin, X.; Li, X.; Lin, X. A Review on applications of computational methods in drug screening and design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annu. Rev. Biophys. 2008, 37, 215–246. [Google Scholar] [CrossRef] [PubMed]
- Babu, M.M.; Van Der Lee, R.; De Groot, N.S.; Gsponer, J. Intrinsically disordered proteins: Regulation and disease. Curr. Opin. Struct. Boil. 2011, 21, 432–440. [Google Scholar] [CrossRef]
- Uversky, V. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure–Function Continuum Concept. Int. J. Mol. Sci. 2016, 17, 1874. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Front. Phys. 2019, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Romero, P.; Obradovic, Z.; Kissinger, C.R.; E Villafranca, J.; Garner, E.; Guilliot, S.; Dunker, A. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 1998, 437–448. [Google Scholar]
- Garner, E.; Romero, P.; Dunker, A.K.; Brown, C.; Obradovic, Z. Predicting Binding Regions within Disordered Proteins. Genome Inform. Ser. Workshop Genome Inform. 1999, 10, 41–50. [Google Scholar]
- Oldfield, C.J.; Cheng, Y.; Cortese, M.S.; Romero, P.; Uversky, V.N.; Dunker, A.K. Coupled folding and binding with α-helix-forming molecular recognition elements. Biochemistry 2005, 44, 12454–12470. [Google Scholar] [CrossRef]
- Mohan, A.; Oldfield, C.J.; Radivojac, P.; Vacic, V.; Cortese, M.S.; Dunker, A.K.; Uversky, V.N. Analysis of Molecular Recognition Features (MoRFs). J. Mol. Boil. 2006, 362, 1043–1059. [Google Scholar] [CrossRef]
- Yin, X.; Giap, C.; Lazo, J.S.; Prochownik, E.V. Low molecular weight inhibitors of Myc–Max interaction and function. Oncogene 2003, 22, 6151–6159. [Google Scholar] [CrossRef] [Green Version]
- Follis, A.V.; Hammoudeh, D.I.; Wang, H.; Prochownik, E.V.; Metallo, S.J. structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem. Boil. 2008, 15, 1149–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.Y.; Na, I.; Kim, J.S.; Son, S.H.; Choi, S.; Lee, S.E.; Kim, J.-H.; Jang, K.; Alterovitz, G.; Chen, Y.; et al. Rational discovery of antimetastatic agents targeting the intrinsically disordered region of MBD2. Sci. Adv. 2019, 5, eaav9810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, S.K.; Burley, S.K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 2003, 112, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Panova, S.; Cliff, M.; Macek, P.; Blackledge, M.; Jensen, M.R.; Nissink, J.W.M.; Embrey, K.J.; Davies, R.; Waltho, J.P. Mapping hidden residual structure within the Myc bHLH-LZ domain using chemical denaturant titration. Structure 2019, 27, 1537–1546. [Google Scholar] [CrossRef]
- Gnanapragasam, M.N.; Scarsdale, J.N.; Amaya, M.L.; Webb, H.D.; Desai, M.A.; Walavalkar, N.M.; Wang, S.Z.; Zu Zhu, S.; Ginder, G.D.; Williams, J.D.C. p66 -MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc. Natl. Acad. Sci. USA 2011, 108, 7487–7492. [Google Scholar] [CrossRef] [Green Version]
- Lamiable, A.; Thevenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016, 44, W449–W454. [Google Scholar] [CrossRef] [Green Version]
- Michel, J.; Cuchillo, R. The impact of small molecule binding on the energy landscape of the intrinsically disordered protein C-Myc. PLoS ONE 2012, 7, e41070. [Google Scholar] [CrossRef] [Green Version]
- Heller, G.T.; Aprile, F.A.; Bonomi, M.; Camilloni, C.; De Simone, A.; Vendruscolo, M. sequence specificity in the entropy-driven binding of a small molecule and a disordered peptide. J. Mol. Boil. 2017, 429, 2772–2779. [Google Scholar] [CrossRef]
- Vassilev, L.T.; Vu, B.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303, 844–848. [Google Scholar] [CrossRef] [Green Version]
- Vu, B.; Wovkulich, P.; Pizzolato, G.; Lovey, A.; Ding, Q.; Jiang, N.; Liu, J.-J.; Zhao, C.; Glenn, K.; Wen, Y.; et al. discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett. 2013, 4, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Tovar, C.; Graves, B.; Packman, K.; Filipovic, Z.; Xia, B.H.M.; Tardell, C.; Garrido, R.; Lee, E.; Kolinsky, K.; To, K.-H.; et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013, 73, 2587–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neira, J.L.; Bintz, J.; Arruebo, M.; Rizzuti, B.; Bonacci, T.; Vega, S.; Lanas, A.; Velazquez-Campoy, A.; Iovanna, J.; Abián, O. Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci. Rep. 2017, 7, 39732. [Google Scholar] [CrossRef]
- Santofimia-Castaño, P.; Rizzuti, B.; Xia, Y.; Abian, O.; Peng, L.; Velázquez-Campoy, A.; Neira, J.L.; Iovanna, J. Targeting intrinsically disordered proteins involved in cancer. Cell. Mol. Life Sci. 2019, 77, 1695–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; et al. Predicting new molecular targets for known drugs. Nature 2009, 462, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Sluysmans, D.; Willet, N.; Thévenot, J.; Lecommandoux, S.; Duwez, A.-S. Single-molecule mechanical unfolding experiments reveal a critical length for the formation of α-helices in peptides. Nanoscale Horizons 2020, 5, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 Benchmarking exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef]
- Luo, Q.; Zhao, L.; Hu, J.; Jin, H.; Liu, Z.; Zhang, L. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing. PLoS ONE 2017, 12, e0171433. [Google Scholar] [CrossRef]
- Ribeiro, J.; Ríos-Vera, C.; Melo, F.; Schüller, A. Calculation of accurate interatomic contact surface areas for the quantitative analysis of non-bonded molecular interactions. Bioinformatics 2019, 35, 3499–3501. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.-Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein | Target Region | Peptides | Sequence (N’–C’) |
---|---|---|---|
MYC | 350–439 | MYC_350–369 | TEENVKRRTHNVLERQRRNE |
MYC_355–374 | KRRTHNVLERQRRNELKRSF | ||
MYC_360–379 | NVLERQRRNELKRSFFALRD | ||
MYC_365–384 | QRRNELKRSFFALRDQIPEL | ||
MYC_370–389 | LKRSFFALRDQIPELENNEK | ||
MYC_375–394 | FALRDQIPELENNEKAPKVV | ||
MYC_380–399 | QIPELENNEKAPKVVILKKA | ||
MYC_385–404 | ENNEKAPKVVILKKATAYIL | ||
MYC_390–409 | APKVVILKKATAYILSVQAE | ||
MYC_395–414 | ILKKATAYILSVQAEEQKLI | ||
MYC_400–419 | TAYILSVQAEEQKLISEEDL | ||
MYC_405–424 | SVQAEEQKLISEEDLLRKRR | ||
MYC_410–429 | EQKLISEEDLLRKRREQLKH | ||
MYC_415–434 | SEEDLLRKRREQLKHKLEQL | ||
MYC_420–439 | LRKRREQLKHKLEQLRNSCA | ||
MBD2 | 359–393 | MBD2_359–378 | CKAFIVTDEDIRKQEERVQQ |
MBD2_364–383 | VTDEDIRKQEERVQQVRKKL | ||
MBD2_369–388 | IRKQEERVQQVRKKLEEALM | ||
MBD2_374–393 | ERVQQVRKKLEEALMADILS | ||
p66α | 136–175 | p66α_136–155 | SSPEERERMIKQLKEELRLE |
p66α_141–160 | RERMIKQLKEELRLEEAKLV | ||
p66α_146–165 | KQLKEELRLEEAKLVLLKKL | ||
p66α_151–170 | ELRLEEAKLVLLKKLRQSQI | ||
p66α_156–175 | EAKLVLLKKLRQSQIQKEAT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, I.; Choi, S.; Son, S.H.; Uversky, V.N.; Kim, C.G. Drug Discovery Targeting the Disorder-To-Order Transition Regions through the Conformational Diversity Mimicking and Statistical Analysis. Int. J. Mol. Sci. 2020, 21, 5248. https://doi.org/10.3390/ijms21155248
Na I, Choi S, Son SH, Uversky VN, Kim CG. Drug Discovery Targeting the Disorder-To-Order Transition Regions through the Conformational Diversity Mimicking and Statistical Analysis. International Journal of Molecular Sciences. 2020; 21(15):5248. https://doi.org/10.3390/ijms21155248
Chicago/Turabian StyleNa, Insung, Sungwoo Choi, Seung Han Son, Vladimir N. Uversky, and Chul Geun Kim. 2020. "Drug Discovery Targeting the Disorder-To-Order Transition Regions through the Conformational Diversity Mimicking and Statistical Analysis" International Journal of Molecular Sciences 21, no. 15: 5248. https://doi.org/10.3390/ijms21155248
APA StyleNa, I., Choi, S., Son, S. H., Uversky, V. N., & Kim, C. G. (2020). Drug Discovery Targeting the Disorder-To-Order Transition Regions through the Conformational Diversity Mimicking and Statistical Analysis. International Journal of Molecular Sciences, 21(15), 5248. https://doi.org/10.3390/ijms21155248